首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is generally accepted that spermatozoa become functionally mature during epididymal transit. The objective of this study was to determine whether the cellular location of equine PH-20 is modified during epididymal transit and, if so, the mechanism for such modification. Sperm were isolated from caput and cauda epididymal regions from stallions undergoing castration (n = 7) and used as whole sperm cell or subjected to nitrogen cavitation for isolation of plasma membrane proteins. Both caput and cauda sperm and sperm protein extracts were subjected to N-deglycosylation, O-deglycosylation, or trypsinization. The SDS-PAGE and Western blot analysis using a polyclonal anti-equine PH-20 IgG were performed in sperm extracts, and indirect immunofluorescence on whole sperm was also performed to determine the cellular distribution of plasma membrane PH-20 following similar treatments (deglycosylation or trypsinization). Hyaluronan substrate gel electrophoresis was performed to detect hyaluronidase activity in SDS-PAGE proteins. Western blots revealed significant differences in electrophoretic migration of PH-20 proteins from caput and cauda epididymal sperm. No effect was seen from deglycosylation treatments on the Western blot pattern; caput protein extracts exposed to trypsin showed the same band pattern as extracts from the cauda epididymis. N-deglycosylation resulted in the loss of hyaluronidase activity of sperm from both epididymal regions, whereas O-deglycosylation or trypsinization did not affect hyaluronidase activity. In caput epididymal sperm, the PH-20 protein is distributed over the entire sperm head; in cauda epididymal sperm, it is restricted to the postacrosomal region. No effect from deglycosylation on the cellular distribution of PH-20 was observed; however, treatment with trypsin changed the cellular distribution of PH-20 in caput sperm similar to that of the distribution of cauda sperm. These results suggest that PH-20 distribution during epididymal maturation is dependent on proteolytic trypsin-like mechanisms and, possibly, on complementary membrane-associated factors.  相似文献   

2.
3.
4.
Glioma pathogenesis‐related 1‐like protein1 (GliPr1L1) was identified by liquid chromatography‐tandem mass spectrometry analyses of proteins associated to bovine sperm lipid raft membrane domains. This protein belongs to the CAP superfamily including cysteine‐rich secretory proteins, Antigen 5 and pathogenesis‐related 1 protein. PCR analysis revealed that GliPr1L1 is expressed in testis and, at a much lower level, all along the epididymis. Western blotting showed a similar distribution of GliPr1L1 in testicular and epididymal tissue extracts. In the epididymal lumen, GliPr1L1 was associated with the maturing spermatozoa and epididymosomes all along the excurrent duct but was undetectable in the soluble fraction of epididymal fluid. The protein was detectable as multiple isoforms with a higher MW form in the testis and proximal caput. Treatments with PNGase F revealed that N‐glycosylation was responsible of multiple bands detected on Western blots. These results suggest that the N‐glycosylation moiety of GliPr1L1 is processed during the transit in the caput. Western blots demonstrated that GliPr1L1 was associated with the sperm plasma membrane preparation. GliPr1L1 is glycosyl phosphatidyl inositol (GPI) anchored to caput and cauda spermatozoa as demonstrated by the ability of phosphatidylinositol specific phospholipase C to release GliPr1L1 from intact sperm cells. Lipid raft membrane domains were separated from caput and cauda epididymal spermatozoa. GliPr1L1 was immunodetectable in the low buoyant density fractions where lipid rafts are distributed. GliPr1L1 was localized on sperm equatorial segment and neck. In vitro fertilization performed in presence of anti‐GliPr1L1 showed that this protein is involved in sperm–zona pellucida interaction. J. Cell. Physiol. 227: 3876–3886, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Epididymal SPAM1 is a marker for sperm maturation in the mouse   总被引:3,自引:0,他引:3  
Sperm adhesion molecule 1 (SPAM1), is a glycosyl phoshatidylinositol-linked sperm membrane protein that is dually expressed in testis and epididymis. Epididymal SPAM1 is secreted in all three regions of the epididymis in all mammalian species studied, including humans. It shares the same molecular mass and neutral hyaluronidase activity as the testicular and sperm isoforms that are responsible for the penetration of the cumulus during fertilization. Using wild-type (W/T) sperm and those from mice homozygous for either a null (Spam1-/-) or mutant Spam1 allele, which results in decreased mRNA and protein, we demonstrate that sperm binding of epididymal SPAM1 occurs in vitro after exposure to W/T sperm-free epididymal luminal fluid (ELF). Binding or adsorption that occurred after incubation at room temperature or 32 degrees C was detected immunocytochemically and confirmed quantitatively using flow cytometry. The localization of SPAM1 on the plasma membrane of Spam1-null sperm mimicked that seen in the W/T. The remarkable increase in binding on W/T caudal sperm indicates that they are not fully saturated with SPAM1 during storage, and suggests that uptake of epididymal SPAM1 in vivo augments testicular SPAM1. Spam1-null sperm exposed to W/T ELF for 45-60 min during in vitro capacitation to allow epididymal SPAM1 binding showed a highly significant (P < 0.001) increase in cumulus penetration after 6-7 h compared to those incubated in ELF from null males. Similarly, the number of cumulus-free oocytes was also highly significantly greater (P < 0.001) than that for sperm capacitated in W/T SPAM1-antibody-inhibited ELF. Because epididymal SPAM1 uptake significantly increases cumulus penetration, we conclude that it is a marker of sperm maturation.  相似文献   

6.
Developing spermatozoa require a series of posttesticular modifications within the luminal environment of the epididymis to achieve maturation; this involves several surface modifications including changes in plasma membrane lipids, proteins, carbohydrates, and alterations in the outer acrosomal membrane. Epididymal maturation can therefore allow sperm to gain forward motility and fertilization capabilities. The objective of this study was to identify maturation-dependent protein(s) and to investigate their role with the production of functionally competent spermatozoa. Lectin blot analyses of caput and cauda sperm plasma membrane fractions identified a 17.5 kDa wheat germ agglutinin (WGA)-binding polypeptide present in the cauda sperm plasma membrane not in the caput sperm plasma membrane. Among the several WGA-stained bands, the presence of a 17.5 kDa WGA-binding polypeptide band was detected only in cauda epididymal fluid not in caput epididymal fluid suggesting that the 17.5 kDa WGA-binding polypeptide is secreted from the cauda epididymis and binds to the cauda sperm plasma membrane during epididymal transit. Proteomic identification of the 17.5 kDa polypeptide yielded 13 peptides that matched the sequence of peroxiredoxin-5 (PRDX5) protein (Bos Taurus). We propose that bovine cauda sperm PRDX5 acts as an antioxidant enzyme in the epididymal environment, which is crucial in protecting the viable sperm population against the damage caused by endogeneous or exogeneous peroxide.  相似文献   

7.
Secretions from the mammalian epididymis contain proteins that bind to developing sperm and are presumed to play a role in sperm maturation. The biochemical functions in sperm of most of these proteins are not known. In this report we describe the presence of a low molecular weight compound in bovine caudal epididymal luminal fluid (CF) that has a potent stimulatory effect on calcium (45Ca2+) uptake in immature caput epididymal spermatozoa. The studies were initially undertaken to characterize the effect of the protein caltrin, present in bovine seminal plasma (BSP), on calcium uptake into caput spermatozoa. Caltrin is known to block calcium influx into mature bovine sperm. Unexpectedly, the kinetics of calcium uptake into caput sperm showed a biphasic response when treated with BSP, namely, a stimulation of uptake at 1 to 5 min and inhibition of uptake after this time. Since caudal sperm do not show this biphasic response, we reasoned that BSP contained a factor derived from CF that must interact with developing sperm before the binding of caltrin to sperm can prevent further calcium uptake. We first demonstrated that preincubation of caput sperm with CF eliminated the biphasic calcium uptake effect induced in caput sperm by BSP and that caudal fluid alone had a potent stimulatory effect on calcium uptake in caput sperm. Half-maximal stimulation (fivefold over control) occurred at a caudal fluid protein concentration of 0.27 mg/ml. Partial purification of the factor indicates that it is of low molecular weight (MW ~ 1,000), but further chemical characterization has not been carried out and its epididymal site of origin is not known. The results indicate that the regulation of intracellular calcium levels in sperm differs in immature and mature bovine sperm in that an epididymal factor promotes calcium uptake during epididymal maturation, and the seminal fluid protein caltrin prevents it at ejaculation.  相似文献   

8.
Testis- and sperm-specific protein phosphatase, PP1gamma2, is a key enzyme regulating sperm function. Its activity decreases during sperm maturation in the epididymis. Inhibition of PP1gamma2 leads to motility initiation and stimulation. Our laboratory is focused on identifying mechanisms responsible for the decline in PP1gamma2 activity during sperm motility initiation in the epididymis. Previously, using immuno-affinity chromatography, we showed that a mammalian homologue of yeast sds22 is bound to PP1gamma2 in motile caudal spermatozoa (Huang Z, et al. Biol Reprod 2002; 67:1936-1942). The objectives of this study were to determine: 1) stoichiometry of PP1gamma2-sds22 binding and 2) whether PP1gamma2 in immotile caput epididymal spermatozoa is bound to sds22. The enzyme from caudal and caput sperm extracts was purified by column chromatography. Immunoreactive PP1gamma2 and sds22 from both caudal and caput spermatozoa were found in the flow-through fraction of a DEAE-cellulose column. However, PP1gamma2 from caudal spermatozoa was inactive, whereas in caput spermatozoa it was active. The DEAE-cellulose flow-through fractions were next passed through a SP-sepharose column. Caudal sperm sds22 and PP1gamma2 coeluted in the gradient fraction. In contrast, caput sperm sds22 and PP1gamma2 were separated in the flow-through and gradient fractions, respectively. Further purification through a Superose 6 column showed that PP1gamma2-sds22 complex from caudal sperm was 88 kDa in size. Caput sperm sds22 and PP1gamma2 eluted at 60 kDa and 39 kDa, respectively. SDS-PAGE of these purified fractions revealed that in caudal sperm, the 88-kDa species is composed of sds22 (43 kDa) and PP1gamma2 (39 kDa), suggesting a 1:1 complex between these two proteins. PP1gamma2 bound to sds22 in this complex was inactive. Caput sperm sds22 eluting as a 60-kDa species was found to be associated with a 17-kDa protein (p17). This suggests that dissociation of sds22 from p17 or some other posttranslational modification of sds22 is required for its binding and inactivation of PP1gamma2. Studies are currently underway to determine the mechanisms responsible for development of sds22 binding to PP1gamma2 during epididymal sperm maturation.  相似文献   

9.
SDS-PAGE analysis of luminal fluid from the ram testis and epididymis revealed a protein of about 105 kDa in the fluid in the caput epididymal region. The molecular mass of this fluid protein shifted from 105 kDa to 94 kDa in the distal caput epididymidis and remained at 94 kDa in the lower regions of the epididymis. The possible sperm origin of this protein was suggested by the decrease in intensity of a 105-kDa compound on the sperm plasma membrane extract and by its total disappearance from the fluid of animals with impaired sperm production caused by scrotal heating. The 94-kDa protein was purified from ram cauda epididymal fluid, and a rabbit polyclonal antiserum was obtained. This antiserum showed that membranes of testicular sperm and sperm from the initial caput were positive for the presence of an immunologically related antigen. The protein was immunolocalized mainly on the flagellar intermediate piece, whereas in some corpus and caudal sperm, only the apical ridge of the acrosomal vesicle was labeled. The purified protein was microsequenced: its N-terminal was not found in the sequence database, but its tryptic fragments matched the sequence of the angiotensin I-converting enzyme (ACE). Indeed, the purified 94-kDa protein exhibited a carboxypeptidase activity inhibited by specific blockers of ACE. All the soluble seminal plasma ACE activity in the ram was attributable to the 94-kDa epididymal fluid ACE. The polyclonal antiserum also showed that a soluble form of ACE appeared specifically in the caput epididymal fluid of the boar, stallion, and bull. This soluble form was responsible for all the ACE activity observed in the fluid from the distal caput to the cauda epididymidis in these species. Our results strongly suggest that the epididymal fluid ACE derives from the germinal form of ACE that is liberated from the testicular sperm in a specific epididymal area.  相似文献   

10.
The molecular mechanisms underlying sperm penetration of the physical barriers surrounding the oocyte have not been completely delineated. Although neutral‐active or “reproductive” hyaluronidases (hyases), exemplified by Sperm Adhesion Molecule 1 (SPAM1), are thought to be responsible for hyaluronan digestion in the egg vestments and for sperm‐zona binding, their roles in mouse sperm have been recently questioned. Here we report that acidic “somatic” Hyaluronidase 3 (HYAL3), a homolog of SPAM1 with 74.6% structural similarity, exists in two isoforms in human (~47 and ~55 kDa) and mouse (~44 and ~47 kDa) sperm, where it resides on the plasma membrane over the head and midpiece. Mouse isoforms are differentially distributed in the soluble (SAP), membrane (MBP), and acrosome‐reacted (AR) fraction where they are most abundant. Comparisons of zymography of Hyal3 null and wild‐type (WT) AR and MBP fractions show significant HYAL3 activity at pH 3 and 4, and less at pH 7. At pH 4, a second acid‐active hyase band at ~57 kDa is present in the AR fraction. HYAL3 activity was confirmed using immunoprecipitated HYAL3 and spectrophotometry. In total proteins, hyase activity was higher at pH 6 than at 4, where Spam1 nulls had significantly (P < 0.01) diminished activity implicating an acidic optima for murine SPAM1. Although fully fertile, Hyal3 null sperm showed delayed cumulus penetration and reduced acrosomal exocytosis. HYAL3 is expressed in epididymal tissue/fluid, from where it is acquired by caudal mouse sperm in vitro. Our results reveal concerted activity of both neutral‐ and acid‐active hyaluronidases in sperm. Mol. Reprod. Dev. 77: 759–772, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Movement characteristics of untreated bovine caudal epididymal spermatozoa were compared by high-speed cinemicrography with those of theophylline-activated caput epididymal spermatozoa with and without added forward motility protein (FMP). Comparison of individual movement characteristics clearly established the importance of FMP in converting the nonprogressive motility of theophylline-activated caput sperm into the progressive swimming of mature caudal sperm. Although the total or curvilinear distance traveled in 1 sec by theophylline-activated caput sperm was not changed by the addition of FMP, the linear progression was doubled and the percentage of progressively motile sperm was tripled by this protein. Untreated caudal sperm were 80% motile and theophylline-activated caput sperm were nearly 50% motile; the percentage of motile sperm that were progressive was the same for theophylline-activated caput sperm with FMP and for untreated caudal sperm. Caput sperm without FMP roll infrequently, if at all, but caput sperm with FMP and caudal sperm roll at 4.7 Hz. The beat frequency increases significantly with the addition of FMP and is even higher for caudal sperm. The hydrodynamic power output rises concomitantly with the beat frequency. Perhaps the most striking difference between caput sperm without FMP and those with it is in the swimming paths they follow. Caput sperm without FMP exhibit frequent reversals in direction, or yawing of the sperm heads as they loop back and cross over their tails in an apparently very flexible bending. Their average swimming paths are circles. Caput sperm with FMP and caudal sperm do not show this behavior, but swim in average paths which are linear. The minimum radius of curvature of the tail of caput sperm without FMP is much smaller than that for the other two cell types. These studies clarify the role of FMP in epididymal development of sperm motility.  相似文献   

12.
Mammalian spermatozoa acquire functionality during epididymal maturation and ability to penetrate and fertilize the oocyte during capacitation. The aim of this study was to investigate the impact of epididymal maturation, ejaculation and capacitation on phosphotyrosine content of sperm proteins. Western blot, immunocytochemical and flow cytometry analyses demonstrated that epididymal maturation in vivo is associated with a progressive loss of phosphotyrosine residues of the sperm head followed by a subtle increase after in vitro capacitation. As cells pass from caput to cauda epididymis, tyrosine phosphorylation becomes confined to a triangular band over the posterior part of midacrosome region, whereas in vitro capacitation causes a spread labeling over the whole head. Different bands with phosphotyrosine residues were detected during epididymal maturation and after in vitro capacitation: 1) 93, 66 and 45 kDa bands with specific phosphotyrosine expression in immature spermatozoa; 2) 76, 23 and 12 kDa bands with specific phosphotyrosine expression in mature spermatozoa, being significantly increased in their expression after in vitro capacitation; 3) 49, 40, 37, 30, 26 and 25 kDa constitutive bands that increased their phosphotyrosine expression after maturation and/or in vitro capacitation; and 4) 28 and 20 kDa bands with a specific phosphotyrosine expression in in vitro capacitated spermatozoa. These results provided integral novel data of expression and location of phosphotyrosine residues during epididymal maturation, ejaculation and in vitro capacitation of boar spermatozoa. Two new constitutive proteins bands of 26 and 25 kDa with phosphotyrosine residues were also identified.  相似文献   

13.
Proacrosin from guinea pig cauda epididymal sperm has a lower molecular weight compared with the testicular zymogen. In this study, we have examined the structural basis of this change and where the conversion in proacrosin molecular weight occurs during sperm maturation. Immunoblotting of trifluoromethanesulfonic acid-deglycosylated testicular and cauda epididymal sperm extracts with antibody to guinea pig testicular proacrosin demonstrated that the polypeptide backbones of proacrosins from the testis and cauda epididymal sperm had the same molecular weights (approximately 44,000). Keratanase, an endo-beta-galactosidase specific for lactosaminoglycans, partially digested testicular proacrosin but had no effect on proacrosin from cauda epididymal sperm. In extracts of testis, caput epididymis, and corpus epididymis analyzed by immunoblotting, anti-proacrosin recognized a major antigen with an apparent molecular weight (Mr) of 55,000, although a 50,000-Mr minor antigen began to appear in the corpus epididymis. By contrast, extracts of cauda epididymis, vas deferens, and cauda epididymal sperm had the 50,000 Mr protein as the only immunoreactive antigen. By enzymography following electrophoresis, the major bands of proteolytic activity in extracts of testis, caput epididymis, and corpus epididymis had 55,000 Mr. A band of protease activity with 55,000 Mr also appeared in extracts of the corpus epididymis. However, the most prominent bands of proteolytic activity in cauda epididymis, vas deferens, and cauda epididymal sperm had 50,000 Mr. In addition, two other major protease activities were detected with 32,000 and 34,000 Mr; the relationships of these proteases to proacrosin are unclear. From these results, we conclude that the oligosaccharides of proacrosin are altered during epididymal transit and that this modification occurs in the corpus epididymis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Binding of epididymal proteins to rat spermatozoa in vivo.   总被引:2,自引:0,他引:2  
The secretion of epididymal proteins and their binding to spermatozoa in rats were examined after retrograde perfusion of the superior and inferior epididymal arteries with [35S]methionine. PAGE revealed that the pattern of radioactive proteins in the luminal fluid was markedly different from the well-characterized pattern of secretory proteins obtained by in vitro incubation of epididymal minces with labeled methionine. Of the proteins secreted into the lumen, about 1% were associated with Percoll-purified spermatozoa. More proteins were associated with the spermatozoa in the corpus epididymidis than in the caput. Sequential extraction of spermatozoa with an isotonic buffer, a high-salt buffer, Triton X-100, and SDS revealed that almost half of the radiolabeled proteins could be extracted with the isotonic buffer. The firmly bound radioactive proteins remaining, which were extracted with Triton X-100 or SDS, consisted of one major band of 25 kDa and two minor bands of 30 kDa and 32 kDa. Analysis of the sperm-associated proteins at various times after the isotope was administered indicated that tight binding of proteins to spermatozoa occurs within 3 h after isotope injection.  相似文献   

15.
The electrophoretic analysis of the proteins that were extracted from immature caput and mature cauda sperm showed evidence of accumulation of several proteins during the epididymal transit of the sperm. An antiserum, raised against detergent-extracted proteins from mature spermatozoa, immunostained six epididymal proteins with apparent molecular masses of 16, 22.5, 26, 37, 60, and 80 kDa on Western blots of epididymal fluid. Of these proteins, only the 26 kDa protein was significantly immunodetected in proximal caput epididymal fluid. Its biosynthesis by caput epididymis was confirmed by immunoprecipitation of an in vitro translated product of caput poly (A) RNA. The homology of the 26 kDa epididymal protein with the 26 kDa sperm protein was verified by epitope mapping. The other epididymal proteins were found in the fluid of the more distal portions of the organ. Their presence in the epididymal fluid coincided with their detection on the sperm. These epididymal proteins were considered to be sperm-coating proteins.  相似文献   

16.
The bat Corynorhinus mexicanus provides an interesting experimental model for the study of epididymal sperm maturation because after spermatogenesis and the regression of the testes, this bat stores sperm in the epididymal cauda for several months. Earlier research conducted by our group suggested that sperm maturation in this species must be completed in the caudal region of the epididymis. One of the major signal transduction events during sperm maturation is the tyrosine phosphorylation of sperm proteins. The aim of the present study was to comparatively evaluate tyrosine phosphorylation in spermatozoa obtained from the caput, corpus and cauda of the epididymis during the sperm storage period. The maturation status of the sperm was determined by the percentage of capacitation and tyrosine phosphorylation in sperm obtained from the epididymis. The highest proportion of tyrosine phosphorylation was registered after the sperm had reached the cauda epididymis during the middle of the storage period. In conclusion, in Corynorhinus mexicanus and most likely in other chiropteran species with an asynchronous male reproductive pattern, epididymal sperm maturation ends in the caudal region of the epididymis and is related to the time that the sperm remains in the epididymis before mating activity.  相似文献   

17.
The maturation of various aspects of sperm function have been demonstrated in monkey and human epididymal sperm, including the ability to undergo the acrosome reaction. The present study aimed to investigate the maturational changes in non‐human primate sperm in the signal transduction mechanisms leading to the acrosome reaction involving cyclic AMP, Ca2+ influx, protein kinase C, and protein tyrosine phosphorylation. Sperm from the caput, corpus, and cauda epididymidis of cynomolgus monkeys were incubated in a complete medium for 2.5 hr, followed by 30 min stimulation with 1 mM dibutyryl cAMP and 1 mM caffeine, 50 μM 1,2‐dioctanoyl‐sn‐glycerol (DOG), and 50 μM Ca2+‐ionophore A23187. Quantitative Western blotting revealed little difference in tyrosine phosphorylated proteins among the caput, corpus, and cauda sperm without stimulation. Incubation with cAMP increased the amount of tyrosine phosphorylated proteins up to 10‐fold in the corpus and cauda sperm, but to a lower extent in the caput sperm. Ca2+‐ionophore attenuated the cAMP stimulation but had no effect on its own. Such responses in tyrosine phosphorylated proteins were in great contrast to the responses in the acrosome reaction, where A23187 was the strongest stimulant, resulting in induction of the reaction in 50 ± 5%, 11 ± 5%, and 8 ± 4% cauda, corpus and caput sperm, respectively (mean ± sem, n = 6). DOG and cAMP in combination induced acrosome reactions in about 10% of viable cells in the cauda and corpus but not caput sperm. Caput sperm responded to cAMP with increases in percentage motility without forward progression whereas cauda sperm displayed marked kinematic changes expected of hyperactivation. Comparisons of responses suggest that the major tyrosine phosphorylated proteins detected are unlikely to be involved immediately in the precipitation of the acrosome reaction, but more related to flagellar motion. Development of signal transduction pathways is part of the epididymal maturational process. Mol. Reprod. Dev. 54:194–202, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
This study was undertaken to determine the role of calcium ion, a key regulator of the intensity and form of motility in mature demembranated sperm, in the development of motility during passage through the bovine epididymis. Cellular calcium levels in bovine caput and cauda epididymal spermatozoa were measured with three different techniques. 45Ca2+ uptake measurements revealed that net calcium uptake and Ca2(+)-Ca2+ exchange in caput spermatozoa were about 2 to 3 times higher than in caudal spermatozoa. Intracellular free calcium determination with the calcium fluorophore Fura 2 showed that the levels were 6 times higher in caput spermatozoa. The values for caput and caudal sperm were 875 +/- 55 nM (n = 15) and 155 +/- 6 nM (n = 24), respectively. Total cellular calcium levels quantitated by atomic absorption were 626 +/- 30 (n = 48) and 304 +/- 19 (n = 46) ng/10(8) sperm in caput and caudal epididymal sperm, respectively. At least one of the reasons for the high calcium content of caput epididymal sperm is the result of a higher rate and extent of mitochondrial calcium accumulation in caput compared to caudal sperm. Mitochondrial calcium uptake rates measured in digitonin permeabilized cells revealed uptake rates 2- to 3-fold higher in caput compared to caudal sperm. However, mitochondrial calcium efflux rates were identical in caput and caudal epididymal sperm. The efflux rates in both cell types were unaffected by external sodium levels but were found to be proportional to pH. Alkalinization or acidification of internal pH of intact sperm resulted in a corresponding lowering or elevation of cytoplasmic free calcium levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In mice bearing the Rb(6.16) or Rb(6.15) Robertsonian translocation (Rb), sperm dysfunction associated with the Rbs has been shown to lead to transmission ratio distortions (TRDs) in heterozygotes. The severity of the TRDs is directly related to the severity in the alteration of expression of the gene for the Sperm Adhesion Molecule 1 (Spam1), which maps to proximal mouse Chromosome 6 (Chr 6) near the translocation junction and encodes a sperm antigen with hyaluronidase activity. Here we demonstrate that there is a significantly reduced fertility in the Rb homozygotes (P < 0.001), based on litter size; and that with the Sperm Select Penetration assay Rb-bearing sperm have significantly decreased (P < 0.02–0.001) rates of penetration of hyaluronic acid. Catalytic kinetics studies indicate that reduced Spam1 (PH-20) hyaluronidase activity in the Rb(6.15) mice results from a qualitative defect, while for Rb(6.16) with the greater TRD both a qualitative and a quantitative deficiency (confirmed by Western analysis) of Spam1 exist. Six point mutations were shown to be clustered in the Spam1 hyaluronic acid-binding domain in Rb(6.15). For Rb(6.16) which has a gross genomic alteration at the Spam1 locus, 11 point mutations are scattered in the 5′ and 3′ UTRs and the coding region, where one leads to the replacement of a conserved residue. Entrapment of spontaneous Spam1 mutations, owing to recombination suppression near the Rb junctions, is proposed as the major underlying defect of the sperm dysfunction. Received: 19 April 2001 / Accepted: 5 July 2001  相似文献   

20.
Sperm hyaluronidase has been implicated in sperm penetration of the extracellular matrix of the cumulus oophorus and may play a crucial role in gamete interaction and fertility in mammals. The objectives of this study were to characterize the enzyme activity of equine sperm hyaluronidase and to investigate its cellular distribution. Zymography of stallion sperm plasma membrane extracts was used to identify hyaluronidase activity in protein bands. Affinity-purified polyclonal IgG raised against equine sperm hyaluronidase was used to label fresh and capacitated stallion sperm, followed by indirect immunofluorescence. Equine sperm plasma membrane extracts displayed 3 major protein bands with potent hyaluronidase activity of approximately 54, 59, and 83 kDa. Under reducing conditions, a single protein band was observed at 62 kDa, although the reduced sample exhibited no enzyme activity. The polyclonal IgG labeled the postacrosomal region of stallion sperm and was redistributed over the acrosomal region during in vitro capacitation in a significant percentage of sperm cells. These studies suggest that a specific protein localized to the equine sperm head displays hyaluronidase activity, gets redistributed over the acrosomal region during capacitation, and may be important in fertility in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号