首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Telomerase is a ribonucleoprotein that synthesizes telomere repeats onto chromosome ends and is involved in maintaining telomere length in germline tissues and in immortal and cancer cells. In the present study, the temporal regulation of expression of telomerase activity was examined in human germline and somatic tissues and cells during development. Telomerase activity was detected in fetal, newborn, and adult testes and ovaries, but not in mature spermatozoa or oocytes. Blastocysts expressed high levels of telomerase activity as did most human somatic tissues at 16–20 weeks of development with the exception of human brain tissue. This activity could no longer be detected in the somatic tissues examined from the neonatal period onward. Neither placenta nor cultured fetal amniocytes contained detectable telomerase activity. Fetal tissues explanted into primary cell culture showed a dramatic decline in telomerase activity which became undetectable after the first passage in vitro. Elucidation of the regulatory pathways involved in the repression of telomerase activity during development may lead to the ability to manipulate telomerase levels and explore the consequences both for cellular aging and for the survival of cancer cells. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Telomere and telomerase in oncology   总被引:10,自引:0,他引:10  
Telomere and cell replicative senescenceTelomeres, which are located at the end of chro-mosome, are crucial to protect chromosome againstdegeneration, rearrangment and end to end fusion[1].Human telomeres are tandemly repeated units of thehexanucleotide TTAGGG. The estimated length oftelomeric DNA varies from 2 to 20 kilo base pairs,depending on factors such as tissue type and hu-man age. The buck of telomeric DNA is double-stranded, but the end of telomeric DNA consists of3' overhang of…  相似文献   

3.
Telomerase is the enzyme responsible for maintenance of the length of telomeres by addition of guanine-rich repetitive sequences. Telomerase activity is exhibited in gametes and stem and tumor cells. In human somatic cells proliferation potential is strictly limited and senescence follows approximately 50–70 cell divisions. In most tumor cells, on the contrary, replication potential is unlimited. The key role in this process of the system of the telomere length maintenance with involvement of telomerase is still poorly studied. No doubt, DNA polymerase is not capable to completely copy DNA at the very ends of chromosomes; therefore, approximately 50 nucleotides are lost during each cell cycle, which results in gradual telomere length shortening. Critically short telomeres cause senescence, following crisis, and cell death. However, in tumor cells the system of telomere length maintenance is activated. Besides catalytic telomere elongation, independent telomerase functions can be also involved in cell cycle regulation. Inhibition of the telomerase catalytic function and resulting cessation of telomere length maintenance will help in restriction of tumor cell replication potential. On the other hand, formation of temporarily active enzyme via its intracellular activation or due to stimulation of expression of telomerase components will result in telomerase activation and telomere elongation that can be used for correction of degenerative changes. Data on telomerase structure and function are summarized in this review, and they are compared for evolutionarily remote organisms. Problems of telomerase activity measurement and modulation by enzyme inhibitors or activators are considered as well.  相似文献   

4.
Telomeres, telomerase, and myc. An update   总被引:16,自引:0,他引:16  
Cerni C 《Mutation research》2000,462(1):31-47
  相似文献   

5.
Regulation of telomerase activity in immortal cell lines.   总被引:26,自引:0,他引:26       下载免费PDF全文
Telomerase is a ribonucleoprotein whose activity has been detected in germ line cells, immortal cells, and most cancer cells. Except in stem cells, which have a low level of telomerase activity, its activity is absent from normal somatic tissues. Understanding the regulation of telomerase activity is critical for the development of potential tools for the diagnosis and treatment of cancer. Using the telomeric repeat amplification protocol, we found that immortal, telomerase-positive, pseudodiploid human cells (HT1080 and HL60 cells) sorted by flow repressed in quiescent cells. This was true whether quiescence was induced by contact inhibition (NIH 3T3 mouse cells), growth factor removal (bromodeoxyuridine-blocked mouse myoblasts), reexpression of cellular senescence (the reversibly immortalized IDH4 cells), or irreversible cell differentiation (HL60 promyelocytic leukemia cells and C2C12 mouse myoblasts). Taken together, these results indicate that telomerase is active throughout the cell in dividing, immortal cells but that its activity is repressed in cells that exit the cell cycle. This suggests that quiescent stem cells that have the potential to express telomerase may remain unaffected by potential antitelomerase cancer therapies.  相似文献   

6.
7.
The ribonucleoprotein, telomerase, is responsible for the maintenance of telomere length in most immortal and cancer cells. Telomerase appears to be a marker of human malignancy with at least 85% of human cancers expressing its activity. In the present study, we examined a series of tumor-derived and in vitro immortalized cell lines for telomerase activity levels, telomere lengths, and expression levels of the RNA and catalytic components of telomerase. We found significant variability in both telomere lengths and telomerase activity in clones from tumor cells. In addition, the levels of telomerase components or telomerase activity were not predictive of telomere length. Data from clonally derived cells suggest that critically shortened telomeres in these tumor-derived cell lines may signal activation of telomerase activity through an increase in the expression of the catalytic subunit of telomerase. Although clones with low telomerase shorten their telomeres over time, their subclones all have high levels of telomerase activity with no telomere shortening. In addition, analysis of early clones for telomerase activity indicates substantial variability, which suggests that activity levels fluctuate in individual cells. Our data imply that cell populations exhibit a cyclic expression of telomerase activity, which may be partially regulated by telomere shortening.  相似文献   

8.
Studies of the molecular mechanisms in the regulation of telomerase activity.   总被引:30,自引:0,他引:30  
J P Liu 《FASEB journal》1999,13(15):2091-2104
Telomerase, a specialized RNA-directed DNA polymerase that extends telomeres of eukaryotic chromosomes, is repressed in normal human somatic cells but is activated during development and upon neoplasia. Whereas activation is involved in immortalization of neoplastic cells, repression of telomerase permits consecutive shortening of telomeres in a chromosome replication-dependent fashion. This cell cycle-dependent, unidirectional catabolism of telomeres constitutes a mechanism for cells to record the extent of DNA loss and cell division number; when telomeres become critically short, the cells terminate chromosome replication and enter cellular senescence. Although neither the telomere signaling mechanisms nor the mechanisms whereby telomerase is repressed in normal cells and activated in neoplastic cells have been established, inhibition of telomerase has been shown to compromise the growth of cancer cells in culture; conversely, forced expression of the enzyme in senescent human cells extends their life span to one typical of young cells. Thus, to switch telomerase on and off has potentially important implications in anti-aging and anti-cancer therapy. There is abundant evidence that the regulation of telomerase is multifactorial in mammalian cells, involving telomerase gene expression, post-translational protein-protein interactions, and protein phosphorylation. Several proto-oncogenes and tumor suppressor genes have been implicated in the regulation of telomerase activity, both directly and indirectly; these include c-Myc, Bcl-2, p21(WAF1), Rb, p53, PKC, Akt/PKB, and protein phosphatase 2A. These findings are evidence for the complexity of telomerase control mechanisms and constitute a point of departure for piecing together an integrated picture of telomerase structure, function, and regulation in aging and tumor development-Liu, J.-P. Studies of the molecular mechanisms in the regulation of telomerase activity.  相似文献   

9.
Telomerase therapeutics for degenerative diseases   总被引:2,自引:0,他引:2  
Telomerase is active in early embryonic and fetal development but is down-regulated in all human somatic tissues before birth. Since telomerase is virtually absent or only transiently active in normal somatic cells throughout postnatal life, telomere length gradually decreases as a function of age in most human tissues. Although telomerase repression likely evolved as a tumor suppressor mechanism, a growing body of evidence from epidemiology and genetic studies point to a role of telomerase repression and short telomeres in a broad spectrum of diseases: (a) Humans with shorter than average telomere length are at increased risk of dying from heart disease, stroke, or infection; (b) Patients with Dyskeratosis congenita are born with shortened telomeres due to mutations in telomerase components, suffer from a variety of proliferative tissue disorders, and typically die early of bone marrow failure; and (c) Individuals with long-term chronic stress or infections have accelerated telomere shortening compared to age-matched counterparts. Telomerase activation may prove useful in the treatment of diseases associated with telomere loss. While human cells dividing in culture lose telomeric DNA and undergo changes that mirror certain age- or disease-associated changes in vivo, telomerase transduced cells have extended replicative capacities, increased resistance to stress, improved functional activities in vitro and in vivo, and no loss of differentiation capacity or growth control. In addition, telomerase transduction in vivo can prevent telomere dysfunction and cirrhotic changes in liver of telomerase knockout mice. Thus, pharmacological activation of telomerase has significant potential for the treatment of a broad spectrum of chronic or degenerative diseases.  相似文献   

10.
Telomere loss: mitotic clock or genetic time bomb?   总被引:38,自引:0,他引:38  
C B Harley 《Mutation research》1991,256(2-6):271-282
The Holy Grail of gerontologists investigating cellular senescence is the mechanism responsible for the finite proliferative capacity of somatic cells. In 1973, Olovnikov proposed that cells lose a small amount of DNA following each round of replication due to the inability of DNA polymerase to fully replicate chromosome ends (telomeres) and that eventually a critical deletion causes cell death. Recent observations showing that telomeres of human somatic cells act as a mitotic clock, shortening with age both in vitro and in vivo in a replication dependent manner, support this theory's premise. In addition, since telomeres stabilize chromosome ends against recombination, their loss could explain the increased frequency of dicentric chromosomes observed in late passage (senescent) fibroblasts and provide a checkpoint for regulated cell cycle exit. Sperm telomeres are longer than somatic telomeres and are maintained with age, suggesting that germ line cells may express telomerase, the ribonucleoprotein enzyme known to maintain telomere length in immortal unicellular eukaryotes. As predicted, telomerase activity has been found in immortal, transformed human cells and tumour cell lines, but not in normal somatic cells. Telomerase activation may be a late, obligate event in immortalization since many transformed cells and tumour tissues have critically short telomeres. Thus, telomere length and telomerase activity appear to be markers of the replicative history and proliferative potential of cells; the intriguing possibility remains that telomere loss is a genetic time bomb and hence causally involved in cell senescence and immortalization.  相似文献   

11.
Tárkányi I  Aradi J 《Biochimie》2008,90(1):156-172
Telomerase enzyme is a ribonucleoprotein maintaining the length of the telomeres by adding G-rich repeats to the end of the eukaryotic chromosomes. Normal human somatic cells, cultured in vitro, have a strictly limited proliferative potential undergoing senescence after about 50-70 population doublings. In contrast, most of the tumor cells have unlimited replicative potential. Although the mechanisms of immortalization are not understood completely at a genetic level, the key role of the telomere/telomerase system in the process is clear. The DNA replication machinery is not able to replicate fully the DNA at the very end of the chromosomes; therefore, about 50-200 nucleotides are lost during each of the replication cycles resulting in a gradual decrease of telomere length. Critically short telomere induces senescence, subsequent crisis and cell death. In tumor cells, however, the telomerase enzyme prevents the formation of critically short telomeres, adding GGTTAG repeats to the 3' end of the chromosomes immortalizing the cells. Immortality is one of the hallmarks of cancer. Besides the catalytic activity dependent telomere maintenance, catalytic activity-independent effects of telomerase may also be involved in the regulation of cell cycle. The telomere/telomerase system offers two possibilities to intervene the proliferative activity of the cell: (1) inhibition the telomere maintenance by inhibiting the telomerase activity; (2) activating the residual telomerase enzyme or inducing telomerase expression. Whilst the former approach could abolish the limitless replicative potential of malignant cells, the activation of telomerase might be utilized for treating degenerative diseases. Here, we review the current status of telomerase therapeutics, summarizing the activities of those pharmacological agents which either inhibit or activate the enzyme. We also discuss the future opportunities and challenges of research on pharmacological intervention of telomerase activity.  相似文献   

12.
端粒是真核细胞染色体末端的DNA序列,在维持染色体的稳定中起着重要的作用。快速生长的细胞通过端粒酶来合成端 粒重复序列以弥补其损耗。在人类恶性肿瘤细胞中,85%以上能检测到端粒酶的活性,使其成为一个几乎普遍的癌标志物,而在大 多数正常体细胞中,端粒酶是阴性的。端粒酶与肿瘤之间的最新研究已经在肿瘤生物学领域开辟了新的途径,可能会彻底改变抗 癌疗法。在这篇文章中,我们将会总结端粒和端粒酶在癌细胞中的作用。随着科技的发展,端粒和端粒酶拥有巨大的潜力,必将能 够为肿瘤的治疗带来更多的方法。  相似文献   

13.
Telomerase activity is involved in telomere length maintenance. Leukocytes, unlike many human somatic tissues, have detectable telomerase activity. These cells provide a normal human cell type in which to study telomerase. We studied the regulation of telomerase activity and the telomerase RNA component as leukocytes were stimulated to enter the cell cycle. In primary human leukocytes stimulated with phytohemagglutinin, telomerase activity increased > 10-fold as naturally quiescent cells entered the cell cycle. Antibodies to the T cell receptor (TCR)/CD3 complex and the costimulatory CD28 receptor induced telomerase activity in a T cell-enriched population of cells. Rapamycin, an immunosuppressant that blocks TCR/CD3 signal transduction pathways and cdk2 activation, blocked telomerase induction. Hydroxyurea, an inhibitor of S phase, did not block cdk2 kinase activity or telomerase activation. In summary, telomerase is regulated in G1 phase as normal human T cells enter the cell cycle.  相似文献   

14.
15.
16.
17.
Telomerase activity is responsible for telomere maintenance and is believed to be crucial in most immortal cells and cancer cells; however, its clinicopathological significance in gastric cancer remains to be clarified. The aim of the present study was to assess whether malignant progression of gastric adenocarcinoma correlates with telomerase activity. We also investigated the correlation between telomerase activity and histopathological findings. We examined telomerase activity in tumor specimens and adjacent normal tissues from 43 patients with gastric adenocarcinoma. Telomerase activity was measured quantitatively by the TRAPEZE Gel Based Telomerase Detection Kit. Approximately 98% of the tumor tissues were telomerase positive, but telomerase activity was detected not only in tumor tissues but also in normal gastric mucosa. Although telomerase activity was found to be higher in tumor samples than normal tissue for each subject, we could not find a general cut-off level for telomerase activity in gastric adenocarcinoma. In addition, telomerase activity was not correlated with tumor invasion, lymph node involvement and histological stage. Our results support the idea that telomerase reactivation is a common event in gastric adenocarcinoma and it is not related to histopathological parameters. Since it is difficult to set a cut-off level for this type of cancer, we suggest that the prognostic utility of telomerase assay has not yet reached the clinic in terms of predicting outcome for patients with gastric adenocarcinoma. For the assessment of gastric carcinoma, telomerase activity should be evaluated in both tumor and normal tissues, because normal gastric mucosa samples show appreciable telomerase activity.  相似文献   

18.
19.
Inhibition of the up-regulated telomerase activity in cancer cells has previously been shown to slow cell growth but only after prior telomere shortening. Previously, we have reported that, unexpectedly, a hairpin short interfering RNA specifically targeting human telomerase RNA rapidly inhibits the growth of human cancer cells independently of p53 or telomere length and without bulk telomere shortening (Li, S., Rosenberg, J. E., Donjacour, A. A., Botchkina, I. L., Hom, Y. K., Cunha, G. R., and Blackburn, E. H. (2004) Cancer Res. 64, 4833-4840). Here we have demonstrated that such telomerase RNA knockdown in cancer cells does not cause telomere uncapping but rather induces changes in the global gene expression profile indicative of a novel response pathway, which includes suppression of specific genes implicated in angiogenesis and metastasis, and is distinct from the expression profile changes induced by telomere-uncapping mutant template telomerase RNAs. These cellular responses to depleting telomerase in human cancer cells together suggest that cancer cells are "telomerase-addicted" and uncover functions of telomerase in tumor growth and progression in addition to telomere maintenance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号