首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
本文运用免疫组化显示Fos蛋白的方法首次研究了棕色田鼠脑和行为不同发育阶段副嗅球和主嗅球的细胞活动。当不同年龄阶段的幼鼠同时暴露于自己家庭的熟悉底物和另一家庭的陌生底物时 ,嗅闻和呆在自己熟悉底物上的时间较多 ,直到产后 15d、 2 0d和 2 5d时 ,幼鼠探究不同底物的行为显示出显著性差异。脑的大小随着日龄增加而增加 ,但从产后 1到 15d ,脑重、脑宽和嗅球大小随着日龄增加特别显著。当不同日龄幼鼠暴露于陌生底物或者暴露于自己的熟悉底物时 ,从产后 5到 15日龄 ,主嗅球僧帽细胞层、颗粒细胞层、副嗅球僧帽细胞层和颗粒细胞层Fos免疫阳性细胞随着日龄明显增加 ,但直到 15和 30日龄时 ,和对照组相比 ,陌生底物可引起幼鼠主嗅球Fos免疫阳性细胞明显增加 ,从 2 0日龄起 ,陌生底物可引起副嗅球Fos免疫阳性细胞明显增加。主嗅球颗粒细胞层Fos免疫阳性细胞随着日龄的增加从边缘到中心逐渐出现 ,而副嗅球Fos免疫阳性细胞随着日龄的增加从顶部到底部逐渐出现。以上结果说明产后第 1d到 15d左右可能是棕色田鼠脑结构发育的重要阶段 ,而从此以后棕色田鼠主嗅球和副嗅球就具有区别熟悉气味和陌生气味的能力 ,表明棕色田鼠行为、脑发育和细胞活动间有紧密关系  相似文献   

4.
Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic) brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD) and short day lengths (SD) for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus.  相似文献   

5.
Recent evidence indicated that alcohol exposure during the fetal period increases the susceptibility to tumor development in mammary and prostate tissues. Whether fetal alcohol exposure increases the susceptibility to prolactin-producing tumor (prolactinoma) development in the pituitary was studied by employing the animal model of estradiol-induced prolactinomas in Fischer 344 female rats. We employed an animal model of fetal alcohol exposure that simulates binge alcohol drinking during the first two trimesters of human pregnancy and involves feeding pregnant rats with a liquid diet containing 6.7% alcohol during gestational day 7 to day 21. Control rats were pair-fed with isocaloric liquid diet or fed ad libitum with rat chow diet. Adult alcohol exposed and control female offspring rats were used in this study on the day of estrus or after estrogen treatment. Results show that fetal alcohol-exposed rats had increased levels of pituitary weight, pituitary prolactin (PRL) protein and mRNA, and plasma PRL. However, these rats show decreased pituitary levels of dopamine D2 receptor (D2R) mRNA and protein and increased pituitary levels of D2R promoter methylation. Also, they show elevated pituitary mRNA levels of DNA methylating genes (DNMT1, DNMT3b, MeCP2) and histone modifying genes (HDAC2, HDAC4, G9a). When fetal alcohol exposed rats were treated neonatally with a DNA methylation inhibitor 5-Aza deoxycytidine and/or a HDAC inhibitor trichostatin-A their pituitary D2R mRNA, pituitary weights and plasma PRL levels were normalized. These data suggest that fetal alcohol exposure programs the pituitary to increase the susceptibility to the development of prolactinomas possibly by enhancing the methylation of the D2R gene promoter and repressing the synthesis and control of D2R on PRL-producing cells.  相似文献   

6.
Accumulating evidence indicates a critical implication of DNA methylation in the brain development. We aim to determine whether the disruption of DNA methylation patterns in the developing brain adversely affects neurobehavioral phenotypes later in life in a sex-dependent manner. 5-Aza-2′-deoxycytidine (5-Aza), a DNA methylation inhibitor, was administered in newborn rats from postnatal day 1 to 3. Neurobehavioral outcomes were analyzed at 3 months of age. 5-Aza treatment significantly inhibited DNA methyltransferase activity and decreased global DNA methylation levels in neonatal rat brains, resulting in asymmetric growth restriction with the increased brain to body weight ratio in both male and female rats at 14 days and 3 months of age. Compared with the saline control, 5-Aza treatment significantly improved performance of male rats on the rotarod test, and 5-Aza-treated female rats demonstrated less anxiety, less depression-like behaviors, and enhanced spatial learning performance. Of importance, neonatal 5-Aza treatment eliminated the sexually dimorphic differences in several neurobehavioral tests in adult rats. In addition, 5-Aza treatment decreased promoter methylation of brain-derived neurotrophic factor (BDNF) gene and significantly increased BDNF mRNA and protein abundance in the prefrontal cortex and hippocampus of female rats in a sex-dependent manner. Thus, brain DNA methylation appears to be essential for sexual differentiations of the brain and neurobehavioral functions. Inhibition of DNA methylation in the developing brain of early life induces aberrant neurobehavioral profiles and disrupts sexually dimorphic neurobehavioral phenotypes in adulthood, of which altered BDNF signaling pathway may be an important mediator.  相似文献   

7.
The anterior part of the embryonic telencephalon gives rise to several brain regions that are important for animal behavior, including the frontal cortex (FC) and the olfactory bulb. The FC plays an important role in decision‐making behaviors, such as social and cognitive behavior, and the olfactory bulb is involved in olfaction. Here, we show the organizing activity of fibroblast growth factor 8 (Fgf8) in the regionalization of the anterior telencephalon, specifically the FC and the olfactory bulb. Misexpression of Fgf8 in the most anterior part of the mouse telencephalon at embryonic day 11.5 (E11.5) by ex utero electroporation resulted in a lateral shift of dorsal FC subdivision markers and a lateral expansion of the dorsomedial part of the FC, the future anterior cingulate and prelimbic cortex. Fgf8‐transfected brains had lacked ventral FC, including the future orbital cortex, which was replaced by the expanded olfactory bulb. The olfactory region occupied a larger area of the FC when transfection efficiency of Fgf8 was higher. These results suggest that Fgf8 regulates the proportions of the FC and olfactory bulb in the anterior telencephalon and has a medializing effect on the formation of FC subdivisions.  相似文献   

8.
Alcohol exposure in utero can result in Fetal Alcohol Spectrums Disorders (FASD). Measures of hippocampal neuroplasticity, including long‐term potentiation, synaptic and dendritic organization, and adult neurogenesis, are consistently disrupted in rodent models of FASD. The current study investigated whether third trimester‐equivalent binge‐like alcohol exposure (AE) [postnatal days (PD) 4–9] affects dendritic morphology of immature dentate gyrus granule cells, and brain‐derived neurotrophic factor (Bdnf ) gene expression and DNA methylation in hippocampal tissue in adult male rats. To understand immediate impact of alcohol, DNA methylation was measured in the PD10 hippocampus. In addition, two behavioral interventions, wheel running (WR) and environmental complexity (EC), were utilized as rehabilitative therapies for alcohol‐induced deficits. AE significantly decreased dendritic complexity of the immature neurons, demonstrating the long‐lasting impact of neonatal alcohol exposure on dendritic morphology of immature neurons in the hippocampus. Both housing conditions robustly enhanced dendritic complexity in the AE animals. While Bdnf exon I DNA methylation was lower in the AE and sham‐intubated animals compared with suckle controls on PD10, alterations to Bdnf DNA methylation and gene expression levels were not present at PD72. In control animals, exercise, but not exercise followed by housing in EC, resulted in higher levels of hippocampal Bdnf gene expression and lower DNA methylation. These studies demonstrate the long‐lasting negative impact of developmental alcohol exposure on hippocampal dendritic morphology and support the implementation of exercise and complex environments as therapeutic interventions for individuals with FASD. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 708–725, 2017  相似文献   

9.
 PACE4 is a mammalian Kexin family protease that is involved in the maturation of precursor proteins. Four PACE4 isoforms have been identified. We identified a novel PACE4 isoform, PACE4E, from a human cerebellum cDNA library, which possesses a hydrophobic cluster in its C-terminus participating in membrane association. The size of PACE4E mRNA from adult rat brain was estimated by Northern blotting to be 4.4 kb. In situ hybridization histochemistry revealed that the highest level of PACE4E mRNA was expressed in the mitral cells of the adult rat olfactory bulb (OB). The OB is a unique sensory organ in that it has a lifelong regenerating capacity and it affects brain development. We further analyzed the expression of PACE4E mRNA in the developing olfactory system. On day 13.5 of gestation, PACE4E mRNA was expressed at high levels in the neuroepithelium of the forebrain vesicle (FV), olfactory epithelium, and cells in the fiber bundles projecting to the FV. As development proceeded, PACE4E mRNA was expressed in developing mitral cells but decreased in the olfactory epithelium. In the newborn, its expression was confined to the mitral cells in both the main and accessory OB and in some periglomerular cells, as shown in adult rats. The spatio-temporal expression of PACE4E suggests that it plays a role in the establishment and maintenance of the olfactory receptor system. Accepted: 15 April 1997  相似文献   

10.
11.
We have localized brain-derived neurotrophic factor (BDNF) mRNA in rat brain and examined its regulation by seizure activity. In situ hybridization of BDNF 35S-cRNA most prominently labeled neurons in hippocampal stratum pyramidale and stratum granulosum, superficial olfactory cortex, pyramidal cell layers of neocortex, amygdala, claustrum, endopiriform nucleus, anterior olfactory nucleus, and ventromedial hypothalamus. Hybridization to BDNF mRNA was markedly increased in all of these regions after lesion-induced recurrent limbic seizures and within dentate gyrus granule cells following one electrically stimulated epileptiform afterdischarge. In contrast to seizure-elicited changes in nerve growth factor (NGF) mRNA expression, increases in BDNF mRNA occur in a greater number of different neuronal populations and develop several hours more rapidly in extrahippocampal loci. These results indicate that regulation by physiological activity may be an intrinsic property of this class of neurotrophic factor but that, in the recurrent seizure paradigm, different mechanisms mediate increased expression of mRNAs for BDNF and NGF outside hippocampus.  相似文献   

12.
The adverse effects of alcohol consumption during pregnancy are known, but the molecular events that lead to the phenotypic characteristics are unclear. To unravel the molecular mechanisms, we have used a mouse model of gestational ethanol exposure, which is based on maternal ad libitum ingestion of 10% (v/v) ethanol for the first 8 days of gestation (GD 0.5-8.5). Early neurulation takes place by the end of this period, which is equivalent to the developmental stage early in the fourth week post-fertilization in human. During this exposure period, dynamic epigenetic reprogramming takes place and the embryo is vulnerable to the effects of environmental factors. Thus, we hypothesize that early ethanol exposure disrupts the epigenetic reprogramming of the embryo, which leads to alterations in gene regulation and life-long changes in brain structure and function. Genome-wide analysis of gene expression in the mouse hippocampus revealed altered expression of 23 genes and three miRNAs in ethanol-exposed, adolescent offspring at postnatal day (P) 28. We confirmed this result by using two other tissues, where three candidate genes are known to express actively. Interestingly, we found a similar trend of upregulated gene expression in bone marrow and main olfactory epithelium. In addition, we observed altered DNA methylation in the CpG islands upstream of the candidate genes in the hippocampus. Our MRI study revealed asymmetry of brain structures in ethanol-exposed adult offspring (P60): we detected ethanol-induced enlargement of the left hippocampus and decreased volume of the left olfactory bulb. Our study indicates that ethanol exposure in early gestation can cause changes in DNA methylation, gene expression, and brain structure of offspring. Furthermore, the results support our hypothesis of early epigenetic origin of alcohol-induced disorders: changes in gene regulation may have already taken place in embryonic stem cells and therefore can be seen in different tissue types later in life.  相似文献   

13.
The lipid composition of whole brain, cerebrum, cerebellum and brain stem was studied in rat pups exposed to alcohol during prenatal and postnatal period and subsequent withdrawal or continuation during postweaning period. The concentrations of cholesterol and galactolipids were increased in the whole brain and brain regions of the pups exposed to alcohol. Even after 6 weeks of withdrawal from alcohol during postweaning period, the lipid levels were significantly higher compared to the controls. These observations suggest possible alterations in the functions of CNS related to membrane integrity.  相似文献   

14.
Using multiple 35S-labeled oligonucleotide probes concurrently, the type I insulin-like growth factor receptor (IGF-I-R) mRNA was demonstrated by Northern blot hybridization in newborn and adult rat brain as a single species of approximately 11 kilobases. The probes were used to localize IGF-I-R mRNA by in situ hybridization in slices of adult rat brain. The highest levels of IGF-I-R mRNA expression were found in the glomerular and mitral cell body layers of the olfactory bulb, the granule cell body layers of the dentate gyrus and cerebellum, the pyramidal cell body layers of the piriform cortex and Ammon's horn, and the choroid plexus. The lowest levels of IGF-I-R mRNA expression were found in white matter. At the cellular level, IGF-I-R mRNA was expressed by a variety of neurons, by epithelial cells of the choroid plexus, and by ependymal cells of the third ventricle. Of the neuron types studied, the highest levels of IGF-I-R mRNA were consistently found in perikarya of mitral and tufted cells in the olfactory bulb, in pyramidal cells of the piriform cortex and Ammon's horn, and in granule cells of the dentate gyrus. There was a close congruency between the distribution of IGF-I binding and IGF-I-R mRNA at the regional level. Neuropil layers in the cerebral cortex, olfactory bulb, hippocampus, and cerebellum contained a high level of IGF-I binding, whereas the adjacent cell body layers contained a high level of the IGF-I-R mRNA. We conclude that in these regions, IGF-I-R mRNA is synthesized in neuronal cell bodies, and the receptors are transported to axons and dendrites in adjacent synapse-rich layers, where appropriate IGF effects are achieved.  相似文献   

15.
We have found a regional distribution of IL 1 beta mRNA and IL 1 activity in the normal adult rat brain, which reveals at least partially a colocalization with nerve growth factor (NGF). The predominantly neuronal signal patterns were found over the granule cells of the dentate gyrus, the pyramidal cells of the hippocampus, the granule cells of the cerebellum, the granule and periglomerular cells of the olfactory bulb, and over dispersed cells of the ventromedial hypothalamus and of the frontal cortex. In these areas also the highest levels of IL 1 activity were observed. In the striatum and septum much lower levels of IL 1 beta mRNA and IL 1 activity (shown for the striatum), most likely synthesized by glial cells, could be determined. IL 1 beta-expressing cells were mainly found in brain regions that also synthesize NGF mRNA as shown by in situ hybridization. NGF mRNA could be demonstrated over pyramidal cells of the hippocampus, granule cells of the dentate gyrus, periglomerular cells of the olfactory bulb and over prefrontal cortex neurons. These data indicate that IL 1 beta, among other factors, might also play a regulatory role in the synthesis of NGF in the CNS, as has been demonstrated in the peripheral nervous system (Lindholm, D., R. Heumann, M. Meyer, and H. Thoenen. 1987. Nature (Lond.). 330:658-659).  相似文献   

16.
DNA methylation is one of the mechanisms underlying epigenetic modifications. DNA methylations can be environmentally induced and such induced modifications can at times be transmitted to successive generations. However, it remains speculative how common such environmentally induced transgenerational DNA methylation changes are and if they persist for more than one offspring generation. We exposed multiple accessions of two different apomictic dandelion lineages of the Taraxacum officinale group (Taraxacum alatum and T. hemicyclum) to drought and salicylic acid (SA) treatment. Using methylation‐sensitive amplified fragment length polymorphism markers (MS‐AFLPs) we screened anonymous methylation changes at CCGG restriction sites throughout the genome after stress treatments and assessed the heritability of induced changes for two subsequent unexposed offspring generations. Irrespective of the initial stress treatment, a clear buildup of heritable DNA methylation variation was observed across three generations, indicating a considerable background rate of heritable epimutations. Less evidence was detected for environmental effects. Drought stress showed some evidence for accession‐specific methylation changes, but only in the exposed generation and not in their offspring. By contrast, SA treatment caused an increased rate of methylation change in offspring of treated plants. These changes were seemingly undirected resulting in increased transgenerational epigenetic variation between offspring individuals, but not in predictable epigenetic variants. While the functional consequences of these MS‐AFLP‐detected DNA methylation changes remain to be demonstrated, our study shows that (1) stress‐induced transgenerational DNA methylation modification in dandelions is genotype and context‐specific; and (2) inherited environmental DNA methylation effects are mostly undirected and not targeted to specific loci.  相似文献   

17.
Role of serotonin in olfactory recognition was tested by depleting the olfactory bulb serotonin during postnatal day (PND) 1 - 4 following administration of 5,7-dihydroxytryptamine. Significant difference in the olfactory recognition test was observed during PND5-7; control pups successfully recognized and oriented towards their mother; whereas treated pups failed to recognize their mother odour. Later on, during PND12-14, both group of pups responded equally in the recognition test. Levels of olfactory bulb serotonin were depleted (53.3%) in the treated pups on PND-8, which was restored on PND-14 with only 15% variation. Further analysis demonstrated that depletion of serotonin in olfactory bulb did not affect the normal suckling and weight gain, it only modulates olfactory recognition.  相似文献   

18.
aftographic exeperiments on the localization of radiolabelednoradrenaline, dopamine and dopa, as well as immunohistochemicalstudies on hydroxylase-like activity, are summarized and comparedin both rat and turtle olfactory bulbs. Evoked field potentialstudies on effects of dopamine are also discussed. The histochemicalstudies suggest that dopaminergic periglomerular neurons arethe most significant cellular component of the catecholaminergicsystem in the olfactory bulb of both species. Scattered fluorescentcell group was also present in the internal plexiform layerand superficial granule cell layer of the turtle olfactory bulb.Other fibres, not related to intrinsic bulbar neuronal cellbodies, were also labeled, mostly in the granule cell layerbut also in the external plexiform layer. These might belongto a centrifugal catecholaminergic system from brain stem neurons.In the in vitro turtle olfactory bulb, dopamine and apomorphinedepressed the amplitude of field potentials evoked by a singlevolley in the olfactory nerve or lateral olfactory tract, andreduced the depression and latency of reponses when paired volleywere delivered. It is suggested that catecholaminergic systemsplay a key role in modulating mitral cell activity through actionsin both superficial (glomerular) and deep (granule) layers.This may involve direct actions, or other, non-catecholaminergicinterneurons.  相似文献   

19.
Consumption of fifteen percent alcohol, during gestation did not cause any decrease in the total calorie or fluid intake of the rats maintained on normal dietary regimen. However, the alcohol consumption by gestating mothers resulted in a decreased contents of both DNA and protein in the CNS of thein utero alcohol exposed pups at birth. DNA content was also found to be less in the undernourished pups compared to the normal pups. On the other hand an increase in the total gangliosides and a decrease in the ganglioside catabolizing enzymes was observed in the brain and spinal cord of alcoholic pups at birth. However undernutrition resulted in a decrease in the content of total gangliosides both in brain and spinal cord. Maternal alcohol consumption and undernutrition had also resulted in an altered proportions of the individual ganglioside fractions.  相似文献   

20.
Molecular mechanisms of neurotrophin signaling on dendrite development and dynamics are only partly understood. To address the role of brain‐derived neurotrophic factor (BDNF) in the morphogenesis of GABAergic neurons of the main olfactory bulb, we analyzed mice lacking BDNF, mice carrying neurotrophin‐3 (NT3) in the place of BDNF, and TrkB signaling mutant mice with a receptor that can activate phospholipase Cγ (PLCγ) but is unable to recruit the adaptors Shc/Frs2. BDNF deletion yielded a compressed olfactory bulb with a significant loss of parvalbumin (PV) immunoreactivity in GABAergic interneurons of the external plexiform layer. Dendrite development of PV‐positive interneurons was selectively attenuated by BDNF since other Ca2+‐binding protein‐containing neuron populations appeared unaffected. The deficit in PV‐positive neurons could be rescued by the NT3/NT3 alleles. The degree of PV immunoreactivity was dependent on BDNF and TrkB recruitment of the adaptor proteins Shc/Frs2. In contrast, PLCγ signaling from the TrkB receptor was sufficient for dendrite growth in vivo and consistently, blocking PLCγ prevented BDNF‐dependent dendrite development in vitro. Collectively, our results provide genetic evidence that BDNF and TrkB signaling selectively regulate PV expression and dendrite growth in a subset of neurochemically‐defined GABAergic interneurons via activation of the PLCγ pathway. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号