首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Expression of mRNAs and proteins of ZO-1 and occludin was analyzed in pig oocytes and parthenogenetic diploid embryos during preimplantation development using real-time RT-PCR, western blotting and immunocytochemistry. All germinal vesicle (GV) and metaphase (M)II oocytes and preimplantation embryos expressed mRNAs and proteins of ZO-1 and occludin. mRNA levels of both ZO-1 and occludin decreased significantly from GV to MII, but increased at the 2-cell stage followed by temporal decrease during the early and late 4-cell stages. Then, both mRNAs increased after compaction. Relative concentration of zo1α- was highest in 2-cell embryos, while zo1α+ was expressed from the morula stage. Occludin expression greatly increased after the morula stage and was highest in expanded blastocysts. Western blotting analysis showed constant expression of ZO-1α- throughout preimplantation development and limited translation of ZO-1α+ from the blastocysts, and species-specific expression pattern of occludin. Immunocytochemistry analysis revealed homogeneous distribution of ZO-1 and occludin in the cytoplasm with moderately strong fluorescence in the vicinity of the contact region between blastomeres, around the nuclei in the 2-cell to late 4-cell embryos, and clear network localization along the cell-boundary region in embryos after the morula stage. Present results show that major TJ proteins, ZO-1 and occludin are expressed in oocytes and preimplantation embryos, and that ZO-1α+ is transcribed by zygotic gene activation and translated from early blastocysts with prominent increase of occludin at the blastocyst stage.  相似文献   

3.
L Guo  ST Qi  DQ Miao  XW Liang  H Li  XH Ou  X Huang  CR Yang  YC Ouyang  Y Hou  QY Sun  Z Han 《PloS one》2012,7(7):e40528
Parathyroid hormone-like hormone (PTHLH) was first identified as a parathyroid hormone (PTH)-like factor responsible for humoral hypercalcemia in malignancies in the 1980s. Previous studies demonstrated that PTHLH is expressed in multiple tissues and is an important regulator of cellular and organ growth, development, migration, differentiation, and survival. However, there is a lack of data on the expression and function of PTHLH during preimplantation embryonic development. In this study, we investigated the expression characteristics and functions of PTHLH during mouse preimplantation embryonic development. The results show that Pthlh is expressed in mouse oocytes and preimplantation embryos at all developmental stages, with the highest expression at the MII stage of the oocytes and the lowest expression at the blastocyst stage of the preimplantation embryos. The siRNA-mediated depletion of Pthlh at the MII stage oocytes or the 1-cell stage embryos significantly decreased the blastocyst formation rate, while this effect could be corrected by culturing the Pthlh depleted embryos in the medium containing PTHLH protein. Moreover, expression of the pluripotency-related genes Nanog and Pou5f1 was significantly reduced in Pthlh-depleted embryos at the morula stage. Additionally, histone acetylation patterns were altered by Pthlh depletion. These results suggest that PTHLH plays important roles during mouse preimplantation embryonic development.  相似文献   

4.
Interspecies somatic cell nuclear transfer (iSCNT) involves the transfer of a nucleus or cell from one species into the cytoplasm of an enucleated oocyte from another. Once activated, reconstructed oocytes can be cultured in vitro to blastocyst, the final stage of preimplantation development. However, they often arrest during the early stages of preimplantation development; fail to reprogramme the somatic nucleus; and eliminate the accompanying donor cell's mitochondrial DNA (mtDNA) in favour of the recipient oocyte's genetically more divergent population. This last point has consequences for the production of ATP by the electron transfer chain, which is encoded by nuclear and mtDNA. Using a murine-porcine interspecies model, we investigated the importance of nuclear-cytoplasmic compatibility on successful development. Initially, we transferred murine fetal fibroblasts into enucleated porcine oocytes, which resulted in extremely low blastocyst rates (0.48%); and failure to replicate nuclear DNA and express Oct-4, the key marker of reprogramming. Using allele specific-PCR, we detected peak levels of murine mtDNA at 0.14±0.055% of total mtDNA at the 2-cell embryo stage and then at ever-decreasing levels to the blastocyst stage (<0.001%). Furthermore, these embryos had an overall mtDNA profile similar to porcine embryos. We then depleted porcine oocytes of their mtDNA using 10 μM 2',3'-dideoxycytidine and transferred murine somatic cells along with murine embryonic stem cell extract, which expressed key pluripotent genes associated with reprogramming and contained mitochondria, into these oocytes. Blastocyst rates increased significantly (3.38%) compared to embryos generated from non-supplemented oocytes (P<0.01). They also had significantly more murine mtDNA at the 2-cell stage than the non-supplemented embryos, which was maintained throughout early preimplantation development. At later stages, these embryos possessed 49.99±2.97% murine mtDNA. They also exhibited an mtDNA profile similar to murine preimplantation embryos. Overall, these data demonstrate that the addition of species compatible mtDNA and reprogramming factors improves developmental outcomes for iSCNT embryos.  相似文献   

5.
6.
NEK5, a member of never in mitosis‐gene A‐related protein kinase, is involved in the regulation of centrosome integrity and centrosome cohesion at mitosis in somatic cells. In this study, we investigated the expression and function of NEK5 during mouse oocyte maturation and preimplantation embryonic development. The results showed that NEK5 was expressed from germinal vesicle (GV) to metaphase II (MII) stages during oocyte maturation with the highest level of expression at the GV stage. It was shown that NEK5 localized in the cytoplasm of oocytes at GV stage, concentrated around chromosomes at germinal vesicle breakdown (GVBD) stage, and localized to the entire spindle at prometaphase I, MI and MII stages. The small interfering RNA‐mediated depletion of Nek5 significantly increased the phosphorylation level of cyclin‐dependent kinase 1 in oocytes, resulting in a decrease of maturation‐promoting factor activity, and severely impaired GVBD. The failure of meiotic resumption caused by Nek5 depletion could be rescued by the depletion of Wee1B. We found that Nek5 depletion did not affect CDC25B translocation into the GV. We also found that NEK5 was expressed from 1‐cell to blastocyst stages with the highest expression at the blastocyst stage, and Nek5 depletion severely impaired preimplantation embryonic development. This study demonstrated for the first time that NEK5 plays important roles during meiotic G2/M transition and preimplantation embryonic development.  相似文献   

7.
Ghrelin在绵羊体内卵母细胞和早期胚胎的表达   总被引:1,自引:0,他引:1  
为了明确ghrelin是否参与了卵母细胞成熟及胚胎早期发育进程,本研究利用免疫荧光技术和实时定量RT-PCR技术检测了绵羊卵母细胞和体内早期胚胎中ghrelin蛋白的表达定位和ghrelin mRNA水平相对表达变化规律。免疫荧光染色结果表明,ghrelin蛋白主要分布于卵母细胞胞质内;实时定量RT-PCR结果揭示绵羊卵母细胞和早期胚胎ghrelin mRNA的相对表达量依据发育阶段的不同而呈现一定变化规律,即在成熟卵母细胞,2细胞胚胎期和8细胞胚胎期显著高于未成熟卵母细胞和4细胞胚胎期(P<0.05),囊胚期表达量最高。卵母细胞和早期胚胎中ghrelin蛋白的表达及ghrelin mRNA特定的表达模式,揭示这一新型分子在绵羊卵母细胞成熟以及胚胎早期发育过程中具有潜在的调控作用。  相似文献   

8.
CCN proteins play crucial roles in development, angiogenesis, cell motility, matrix turnover, proliferation, and other fundamental cell processes. Early embryonic lethality in CCN5 knockout and over-expressing mice led us to characterize CCN5 distribution in early development. Previous papers in this series showed that CCN5 is expressed widely in mice from E9.5 to adult; however, its distribution before E9.5 has not been studied. To fill this gap in our knowledge of CCN5 expression in mammals, RT-PCR was performed on preimplantation murine embryos: 1 cell, 2 cell, 4 cell, early morula, late morula, and blastocyst. CCN5 mRNA was not detected in 1, 2, or 4 cell embryos. It was first detected at the early morula stage and persisted to the preimplantation blastocyst stage. Immunohistochemical staining showed widespread CCN5 expression in post-implantation blastocysts (E4.5), E5.5, E6.5, and E7.5 stage embryos. Consistent with our previous study on E9.5 embryos, this expression was not limited to a particular germ layer or cell type. The widespread distribution of CCN5 in early embryos suggests a crucial role in development.  相似文献   

9.
10.
11.
12.
Accurate reprogramming of DNA methylation occurring in preimplantation embryos is critical for normal development of both fetus and placenta. Environmental stresses imposed on oocytes usually cause the abnormal DNA methylation reprogramming of early embryos. However, whether oocyte vitrification alters the reprogramming of DNA methylation (5 mC) and its derivatives in mouse preimplantation embryo development remains largely unknown. Here, we found that the rate of cleavage and blastocyst formation of embryos produced by IVF of vitrified matured oocytes was significantly lower than that in control counterparts, but the quality of blastocysts was not impaired by oocyte vitrification. Additionally, although vitrification neither altered the dynamic changes of 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5 fC) before 4-cell stage nor affected the levels of 5 mC and 5-carboxylcytosine (5caC) throughout the preimplantation development, vitrification significantly reduced the levels of 5hmC and 5 fC from 8-cell stage onwards. Correspondingly, vitrification did not alter the expression patterns of Tet3 in preimplantation embryos but apparently reduced the expression levels of Tet1 in 4-cell and 8-cell embryos and increased the expression levels of Tet2 at morula stage. Taken together, these results demonstrate that oocyte vitrification perturbs DNA methylation reprogramming in mouse preimplantation embryo development.  相似文献   

13.
Uhm SJ  Chung HM  Kim C  Shim H  Kim NH  Lee HT  Chung KS 《Theriogenology》2000,54(4):559-570
In the pig little information is available on cytoplasmic events during the reprogramming of oocytes reconstructed with somatic nuclei. The present study was conducted to determine the developmental potential of porcine cumulus cells (CC) and fetal fibroblasts (FF) after they were transferred into enucleated oocytes. Non-quiescent FF were fused to the enucleated oocytes using electrical pulse, whereas CC were directly injected into the oocytes. Transferred nuclei from both CC and FF underwent premature chromosome condensation (PCC), nuclear swelling and pronucleus formation. The remodeled oocytes developed to the mitotic and 2-cell stage at 18 to 24 h after nuclear transfer. The pattern of nuclear remodeling was similar regardless of the sources of karyoplasts or nuclear transfer methods. However, using FF, 24% of nuclear transferred embryos developed to the morula or blastocyst stage, whereas only 8% of those using CC developed to the morula or blastocyst stage. These results suggest that porcine oocyte cytoplasm can successfully reprogram somatic cell nuclei and support the development of nuclear transferred embryos to the blastocyst stage.  相似文献   

14.
Successful cloning by nuclear transfer has been reported with somatic or embryonic stem (ES) cell nucleus injection into enucleated mouse metaphase II oocytes. In this study, we enucleated mouse oocytes at the germinal vesicle (GV) or pro-metaphase I (pro-MI) stage and cultured the cytoplasm to the MII stage. Nuclei from cells of the R1 ES cell line were injected into both types of cytoplasm to evaluate developmental potential of resulting embryos compared to MII cytoplasmic injection. Immunocytochemical staining revealed that a spindle started to organize 30 min after nucleus injection into all three types of cytoplasm. A well-organized bipolar spindle resembling an MII spindle was present in both pro-MI and MII cytoplasm 1 h after injection with ES cells. However, in the mature GV cytoplasm, chromosomes were distributed throughout the cytoplasm and a much bigger spindle was formed. Pseudopronucleus formation was observed in pro-MI and MII cytoplasm after activation treatment. Although no pronucleus formation was found in GV cytoplasm, chromosomes segregated into two groups in response to activation. Only 8.1% of reconstructed embryos with pro-MI cytoplasm developed to the morula stage after culture in CZB medium. In contrast, 53.5% of embryos reconstructed with MII cytoplasm developed to the morula/blastocyst stage, and 5.3% of transferred embryos developed to term. These results indicate that GV material is essential for nucleus remodeling after nuclear transfer.  相似文献   

15.
通过人-牛异种核移植技术获得异种克隆囊胚, 便于在不消耗人类卵母细胞的情况下从异种克隆胚中分离出人类干细胞。通过透明带下注射法将人胎儿成纤维细胞和牛耳成纤维细胞分别注入去核牛卵母细胞中构建异种和同种胚胎, 并比较两者之间的融合率、卵裂率、8-细胞发育率以及囊胚率。并对处于2-细胞、4-细胞、8-细胞、桑椹胚、囊胚阶段的异种克隆胚的线粒体DNA来源进行检测。结果表明, 异种克隆胚体外各个阶段的发育率均低于同种克隆胚, 尤其是8-细胞到囊胚阶段的发育率, 以及囊胚率都显著低于同种克隆胚(P<0.05)。异种克隆胚在2-细胞到桑椹胚阶段检测到人、牛线粒体DNA共存, 囊胚阶段只检测到牛线粒体DNA。结果表明: 牛卵母细胞可以重编程人胎儿成纤维细胞, 完成异种克隆胚植入前的胚胎发育, 异种克隆胚由于核质相互作用的不谐调, 影响其发育能力, 使其囊胚率显著低于同种克隆胚。牛线粒体DNA存在于植入前异种胚胎发育的各个阶段。异种克隆胚胎用于人类胚胎干细胞分离具有可行性。  相似文献   

16.
17.
Oocyte cytoplasm plays a prominent role in cloned embryonic development. To investigate the influence of oocyte cytoplasmic amount on cloned embryo development, we generated bovine somatic cell nuclear transfer (SCNT) embryos containing high (30-40% of the cytoplasm was removed), medium (15-25% of the cytoplasm was removed) and low (<10% of the cytoplasm was removed) nucleocytoplasmic volume ratios (N/C) using enucleated metaphase II oocyte as recipient, and fibroblast as donor nucleus, and analyzed the expression levels of ND1, Cytb and ATPase6, as well as the embryonic quality. The results indicated: (1) the process of embryonic development was not influenced by <40% of cytoplasm removal; (2) the rate of blastocyst formation, the total number of blastomere and the ratio of ICM to TE were inversely proportional to the N/C; (3) SCNT embryos with reduced volume equal to 75-85% or >90% of an intact oocyte volume showed similar karyotype structure of the donor cells; (4) the number of mtDNA copy was larger in low N/C embryos than that in medium or high N/C embryos, and the expression levels of each gene hardly varied from the 2-cell to 8-cell stage, while the expression levels increased dramatically at the blastocyst stage; (5) from 16-cell to the blastocyst stage, the change of the expression level of each gene was not significant between low N/C embryos and IVF embryos, but it was more significant than those of high or medium N/C embryos. The results suggest that the decrease of mtDNA copy number and mitochondrial gene expression may be related to the impairment in early embryonic development, and removal of <10% adjacent cytoplasm volume may be optimal for bovine SCNT embryo development.  相似文献   

18.
Wang H  Luan L  Ding T  Brown N  Reese J  Paria BC 《Theriogenology》2011,76(4):678-686
The objective was to study the expression of zonula occludens-2, a tight junction protein, during preimplantation hamster embryonic development, to predict its possible localization, source, and roles in trophectoderm differentiation and blastocyst formation in this species. Comparison of zonula occludens-2 expression pattern between the hamster and mouse preimplantation embryos from the zygote up to the blastocyst stage was also an objective of this study. Zonula occludens-2 localization was noted in nuclei of blastomeres in all stages of hamster and mouse embryonic development. Compared to mice, where zonula occludens-2 was first localized in the interblastomere membrane at the morula stage, hamster embryos had membranous zonula occludens-2 localization from the 2-cell stage onwards. Based on combined results of immunolocalization study in parthenogenic embryos and ovarian and epididymal sections, and quantitative PCR done in oocytes and all developmental stages of preimplantation embryos, perhaps there was a carry-over of zonula occludens-2 proteins or mRNA from the dam to the embryo. Based on these findings, we inferred that maternally derived zonula occludens-2 was involved in nuclear functions, as well as differentiation of blastomeres and blastocoel formation during preimplantation embryonic development in the hamster.  相似文献   

19.
This study describes the localization of the U2 small nuclear RNA (snRNA) and the major U snRNA group ribonucleoproteins (snRNPs) during bovine preimplantation development. In vitro maturation, fertilization, and oviductal epithelial cell coculture methods were employed to produce several developmental series totalling over 2,000 preimplantation-stage bovine oocytes and embryos. These oocytes and preimplantation embryos were processed for in situ hybridization, immunofluorescence and Northern blotting methods. The U2 snRNA and the major U group snRNPS were localized initially over the germinal vesicle (GV) of preovulatory oocytes but following GV breakdown were released throughout the ooplasm. They subsequently reassociated with both pronuclei during fertilization. From the two-cell to the blastocyst stages, the U2 snRNA and U snRNPs were localized to the interphase nucleus of each blastomere. The levels of U2 snRNA throughout bovine preimplantation development were determined by probing a Northern blot containing total RNA isolated from the following preimplantation bovine embryo stages: one to two cell, eight to 16 cell, early morula (greater than 32 cell), and late morula/early blastocysts. The levels of U2 snRNA remained constant between the one-cell and eight- to 16-cell bovine embryo stages but increased 4.4-fold between the eight- to 16-cell stage and the late morula/early blastocyst stages. The results suggest that a maternal pool of snRNAs is maintained in mammalian preimplantation embryos regardless of the duration of maternal control of development.  相似文献   

20.
Mammalian oocytes and zygotes have the unique ability to reprogram a somatic cell nucleus into a totipotent state. SUV39H1/2‐mediated histone H3 lysine‐9 trimethylation (H3K9me3) is a major barrier to efficient reprogramming. How SUV39H1/2 activities are regulated in early embryos and during generation of induced pluripotent stem cells (iPSCs) remains unclear. Since expression of the CRL4 E3 ubiquitin ligase in oocytes is crucial for female fertility, we analyzed putative CRL4 adaptors (DCAFs) and identified DCAF13 as a novel CRL4 adaptor that is essential for preimplantation embryonic development. Dcaf13 is expressed from eight‐cell to morula stages in both murine and human embryos, and Dcaf13 knockout in mice causes preimplantation‐stage mortality. Dcaf13 knockout embryos are arrested at the eight‐ to sixteen‐cell stage before compaction, and this arrest is accompanied by high levels of H3K9me3. Mechanistically, CRL4‐DCAF13 targets SUV39H1 for polyubiquitination and proteasomal degradation and therefore facilitates H3K9me3 removal and zygotic gene expression. Taken together, CRL4‐DCAF13‐mediated SUV39H1 degradation is an essential step for progressive genome reprogramming during preimplantation embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号