首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone morphogenetic proteins (BMPs) are a family of growth differentiation factors which induce bone formation from mesenchymal cells. These proteins are members of the transforming growth factor-beta super-family. The expression of BMPs in the nervous system as well as in other tissues has been reported. In this study, we show that the presence of BMP-2 resulted in a dose-dependent increase in the number of tyrosine hydroxylase-immunoreactive ventral mesencephalic cells after 7 days in serum-free medium cultures. A maximal response was elicited at 10 ng/mL. BMP-2 also increased the number of primary neurites and branch points as well as the length of the longest neurite in a dose-dependent manner, with a maximal effect at 1 ng/mL. In contrast, BMP-2 did not modify the number or the function of GABAergic neurons. On the other hand, we observed stimulation of proliferation and morphological changes in glial cells (astrocytes become more fibrous shaped) in the presence of a high BMP-2 concentration (100 ng/mL), but not with lower doses, suggesting that the neurotrophic effect in dopaminergic neurons is not mediated by astroglial cells. This is consistent with the fact that the BMP-2 effect on dopaminergic neurons was observed even when the cultures were treated with alpha-aminoadipic acid to exclude the presence of glial cells. In summary, our data indicate that BMP-2 is a potent neurotrophic factor for ventral mesencephalic dopaminergic cells in culture.  相似文献   

2.
Glial growth factor-2 (GGF2) and other neuregulin (NRG) isoforms have been shown to play important roles in survival, migration, and differentiation of certain neural and non-neural cells. Because midbrain dopamine (DA) cells express the NRG receptor, ErbB4, the present study examined the potential neurotrophic and/or neuroprotective effects of GGF2 on cultured primary dopaminergic neurons. Embryonic day 14 rat mesencephalic cell cultures were maintained in serum-free medium and treated with GGF2 or vehicle. The number of tyrosine hydroxylase-positive (TH+) neurons and high-affinity [3H]DA uptake were assessed at day in vitro (DIV) 9. Separate midbrain cultures were treated with 100 ng/mL GGF2 on DIV 0 and exposed to the catecholamine-specific neurotoxin 6-hydroxydopamine (6-OHDA) on DIV 4. GGF2 treatment significantly increased DA uptake, the number of TH+ neurons, and neurite outgrowth when compared to the controls in both the serum-free and the 6-OHDA-challenged cultures. Furthermore, three NRG receptors were detected in the midbrain cultures by western blot analysis. Immunostaining for glial fibrillary acidic protein revealed that GGF2 also weakly promoted mesencephalic glial proliferation in the midbrain cultures. These results indicate that GGF2 is neurotrophic and neuroprotective for developing dopaminergic neurons and suggest a role for NRGs in repair of the damaged nigrostriatal system that occurs in Parkinson's disease.  相似文献   

3.
Abstract: The effect of glial cell line-derived neurotrophic factor (GDNF) on the growth of mesencephalic dopaminergic neurons and on their survival following exposure to the neurotoxin 1-methyl-4-phenylpyridinium (MPP+) was examined in vitro. In cultures developing under normal conditions, GDNF at 1 ng/ml optimally improved the survival and stimulated the growth of dopaminergic neurons without affecting glial growth. In cultures treated with MPP+, GDNF could not prevent toxicity to dopaminergic neurons. The uptake of [3H]dopamine and the number of tyrosine hydroxylase-positive neurons were similarly reduced by MPP+ in the presence or absence of GDNF. However, after removal of MPP+, GDNF protected dopaminergic neurons from the continuous cell death and stimulated the regrowth of dopaminergic fibers damaged by MPP+. We conclude that GDNF supports the growth of normally developing dopaminergic neurons and stimulates their survival and recovery after damage. These findings suggest that GDNF could be useful in the development of therapeutic approaches to Parkinson's disease, which is characterized by dopaminergic cell loss.  相似文献   

4.
Members of the transforming growth factor‐β superfamily, including bone morphogenetic protein 4 (BMP‐4), have been implicated as regulators of neuronal and glial differentiation. To test for a possible role of BMP‐4 in early mammalian neural specification, we examined its effect on neurogenesis in aggregate cultures of mouse embryonic stem (ES) cells. Compared to control aggregates, in which up to 20% of the cells acquired immunoreactivity for the neuron‐specific antibody TuJ1, aggregates maintained for 8 days in serum‐free medium containing BMP‐4 generated 5‐ to 10‐fold fewer neurons. The action of BMP‐4 was dose dependent and restricted to the fifth through eighth day in suspension. In addition to the reduction in neurons, we observed that ES cell cultures exposed to BMP‐4 contained fewer cells that were immunoreactive for glial fibrillary acidic protein or the HNK‐1 neural antigen. Furthermore, under phase contrast, cultures prepared from BMP‐4–treated aggregates contained a significant proportion of nonneuronal cells with a characteristic flat, elongated morphology. These cells were immunoreactive for antibodies to the intermediate filament protein vimentin; they were rare or absent in control cultures. Treatment with BMP‐4 enhanced the expression of the early mesodermal genes brachyury and tbx6 but had relatively little effect on total cell number or cell death. Coapplication of the BMP‐4 antagonist noggin counteracted the effect of exogenous BMP‐4, but noggin alone had no effect on neuralization in either the absence or presence of retinoids. Collectively, our results suggest that BMP‐4 can overcome the neuralizing action of retinoic acid to enhance mesodermal differentiation of murine ES cells. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 271–287, 1999  相似文献   

5.
The locus coeruleus (LC) is a major target of several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases. However, very little is known of the trophic requirements of LC neurons. In the present work, we have studied the biological activity of neurotrophic factors from different families in E15 primary cultures of LC neurons. In agreement with previous results, neurotrophin‐3 (NT‐3) and also glial cell line‐ derived neurotrophic factor (GDNF) increased the number of embryonic LC noradrenergic neurons in the presence of serum. In serum‐free conditions, none of the factors tested, including NT‐3, GDNF, neurturin, basic fibroblast growth factor (bFGF), or bone morphogenetic protein‐2 (BMP‐2), promoted the survival of tyrosine hydroxylase (TH)‐immunoreactive neurons at 6 days in vitro. However, when BMP‐2 was coadministered with any of these factors the number of LC TH‐positive neurons increased twofold. Similar results were obtained by cotreatment of LC neurons with forskolin and NT‐3, bFGF, or BMP‐2. The strongest effect (a fourfold increase in the number of TH‐positive cells) was induced by cotreatment with forskolin, BMP‐2, and GDNF. Thus, our results show that LC neurons require multiple factors for their survival and development, and suggest that activation of LC neurons by bone morphogenetic proteins and cAMP plays a decisive role in conferring noradrenergic neuron responsiveness to several trophic factors. © 2002 Wiley Periodicals, Inc. J Neurobiol 50: 291–304, 2002; DOI 10.1002/neu.10034  相似文献   

6.
Cultures of embryonic rat septum were exposed for 24-48 h to 2-5 nm okadaic acid (OA), an inhibitor of pp1A and pp2A phosphatases. This stress killed approximately 75% of neurons. A neurotrophin (NT) combination (nerve growth factor and brain-derived neurotrophic factor, each 100 ng/mL) plus a bone morphogenetic protein (BMP6 or BMP7, 5 nm) reduced the death of both cholinergic and non-cholinergic neurons, and preserved choline acetyltransferase (ChAT) activity assayed 2-6 days post-stress. This NT + BMP combination preserved ChAT activity better than either NTs or BMPs alone, and was effective even if trophic factor addition was delayed until 12 h after stress onset. A general caspase inhibitor (qVD-OPH, 10 micro g/mL) also increased survival of stressed cholinergic neurons, but its protection of ChAT activity was shorter lived than that produced by the NT + BMP combination. Neither the NT + BMP combination nor the caspase inhibitor reduced the OA-induced increase in tau phosphorylation. These findings indicate that NTs and BMPs have synergistic protective effects against an OA stress, and suggest that at least some of these protective effects occur upstream of caspase activation.  相似文献   

7.
To examine the roles of Shp-2, a cytoplasmic tyrosine phosphatase, in neuronal survival, we generated and used recombinant adenoviruses expressing wild type and phosphatase-inactive (C/S), phosphatase domain-deficient (delta P) and constitutively active (D61A and E76A) mutants of Shp-2. We found that wild-type Shp-2 enhanced brain-derived neurotrophic factor (BDNF)-promoted survival of cultured ventral mesencephalic dopaminergic neurons. In contrast, the C/S and delta P mutants of Shp-2 did not affect survival. In addition, the constitutively active D61A and E76A mutants mimicked BDNF and promoted survival. Furthermore, to examine the effects of BIT/SHPS-1, a substrate of Shp-2, on the BDNF-promoted survival, we generated adenovirus vectors expressing wild-type BIT/SHPS-1 and its 4F mutant in which all tyrosine residues in the cytoplasmic domain of BIT/SHPS-1 were replaced with phenylalanine. We found that BDNF-promoted survival of cultured mesencephalic dopaminergic neurons was enhanced by expression of the 4F mutant but not of wild-type BIT/SHPS-1. In addition, we found that co-expression of wild-type BIT/SHPS-1 with Shp-2 significantly enhanced the survival-promoting effect of BDNF on cultured mesencephalic dopaminergic neurons. These results indicated that Shp-2 positively regulates the survival-promoting effect of BDNF on cultured ventral mesencephalic dopaminergic neurons. Dephosphorylation of BIT/SHPS-1 by Shp-2 may participate in BDNF-stimulated survival signaling.  相似文献   

8.
Neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. Here we investigated the effect of the anti-apoptotic protein Bcl-xL and oxygen tension on dopaminergic differentiation and survival of a human ventral mesencephalic stem cell line (hVM1). hVM1 cells and a Bcl-xL over-expressing subline (hVMbcl-xL) were differentiated by sequential treatment with fibroblast growth factor-8, forskolin, sonic hedgehog, and glial cell line-derived neurotrophic factor. After 10 days at 20% oxygen, hVMbcl-xL cultures contained proportionally more tyrosine hydroxylase(TH)-positive cells than hVM1 control cultures. This difference was significantly potentiated from 11 ± 0.8% to 17.2 ± 0.2% of total cells when the oxygen tension was lowered to 3%. Immunocytochemistry and Q-PCR-analysis revealed expression of several dopaminergic markers besides of TH just as dopamine was detected in the culture medium by HPLC analysis. Although Bcl-xL-over-expression reduced cell death in the cultures, it did not alter the relative content of GABAergic, neurons, while the content of astroglial cells was reduced in hVMbcl-xL cell cultures compared with control. We conclude that Bcl-xL and lowered oxygen tension act in concert to enhance dopaminergic differentiation and survival of human neural stem cells.  相似文献   

9.
10.
Neuronal progenitor cells (NPCs) possess high potential for use in regenerative medicine. To overcome their limited mitotic competence, various immortalization strategies have been applied that allow their prolonged maintenance and expansion in vitro. Such immortalized cells can be used for the design and discovery of new cell-based therapies for neurodegenerative diseases, such as Parkinson’s disease. We immortalized rat ventral mesencephalic NPCs by using SV40 large T antigen (SV40Tag). All cell clones displayed a two- to three–fold higher proliferation rate compared with the primary cells. In order to induce dopaminergic differentiation of generated cell clones, both glial-derived neurotrophic factor and di-butyryl cyclic adenosine monophosphate were applied. Treated cells were then characterized regarding the expression of dopaminergic lineage markers, differentiation of various cell populations, calcium imaging in the presence of kainate, and immunohistochemistry after intrastriatal transplantation. Treated cells displayed morphological maturation, and calcium imaging revealed neuronal properties in the presence of kainate. These cells also expressed low mRNA levels of the dopamine transporter and tyrosine hydroxylase (TH), although no TH-immunopositive neurons were found. Intrastriatal transplantation into the neurotoxin-lesioned rats did not induce further differentiation. As an alternative approach, we silenced SV40Tag with short interfering RNA, but this was not sufficient to trigger differentiation into dopaminergic neurons. Nevertheless, neuronal and glial cells were detected as shown by β-tubulin type III and glial fibrillary acidic protein staining, respectively. SV40Tag cells are suitable for carrying out controlled genetic modifications as shown by overexpression of enhanced green fluorescence protein after efficient non-viral transfection.  相似文献   

11.
(1) Neurogenesis driven by neural stem cells (NSCs) is regulated by physiological and pathological factors. Melatonin (MT) has profound neurotrophic and neuroprotective effects. Hence, we studied the role of MT in regulating the viability and differentiation of NSCs derived from rat ventral midbrain. (2) NSCs were isolated from the rat ventral midbrain. The viability of NSCs was determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-ulfophenyl)-2H-tetrazolium assay. The differentiation of NSCs was examined by analyzing the expression of the neural markers, MT receptors, brain derived neurotropic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) with semi-quantitative RT-PCR, immunofluorescence cytochemistry, and Western blot. (3) Our results showed that MT could promote the viability of NSCs. In addition, MT could significantly elevate the mRNA and protein levels of tyroxine hydroxylase (TH), a marker of dopaminergic neurons, and decrease the expression of the astrocytes maker glial fibrillary acidic protein (GFAP). MT also increased the production of BDNF and GDNF in the cultured NSCs. Meanwhile, we first found that two subtypes of MT receptors, MT1 and MT2, were expressed in the ventral midbrain NSCs. (4) These results demonstrated that MT could induce NSCs to differentiate into dopaminergic neurons and decrease astrocyte production. These findings also suggest that MT could offer a beneficial tool in guiding directional differentiation of NSCs.  相似文献   

12.
The distribution of brain-derived neurotrophic factor was examined in the rat mesencephalic trigeminal tract nucleus after transection and crush of the masseteric nerve. In the intact mesencephalic trigeminal tract nucleus, brain-derived neurotrophic factor was detected in small cells with fine processes. These cells and processes were occasionally located adjacent to tyrosine kinase B receptor-immunoreactive sensory neurons. The transection and crush of the masseteric nerve increased expression of brain-derived neurotrophic factor in the nucleus. The number and size of brain-derived neurotrophic factor-immunoreactive cells and processes were dramatically elevated by the nerve injury. As a result, the density of brain-derived neurotrophic factor-immunoreactive profiles in the mesencephalic trigeminal tract nucleus at 7 days after the injury was significantly higher compared with the intact nucleus. Double immunofluorescence method also revealed that brain-derived neurotrophic factor-immunoreactive cells were mostly immunoreactive for OX-42 but not glial fibrillary acidic protein. In addition, the retrograde tracing method demonstrated that brain-derived neurotrophic factor-immunoreactive cells and processes surrounded retrogradely labeled neurons which showed tyrosine kinase B receptor-immunoreactivity. These findings indicate that the nerve injury increases expression of brain-derived neurotrophic factor in microglia within the mesencephalic trigeminal tract nucleus. The glial neurotrophic factor may be associated with axonal regeneration of the injured primary proprioceptor in the trigeminal nervous system.  相似文献   

13.
The survival and functional maintenance of vertebrate neurons depends on the availability of specific neurotrophic factors. We studied the influence of neurotrophic support on responses of dopaminergic neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin known to damage the nigrostriatal dopaminergic pathway in humans and other mammals. Treatment of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine caused decreases in levels of Ret, a tyrosine kinase receptor for glial cell line-derived neurotrophic factor (GDNF) in the striatum, under the condition in which tyrosine hydroxylase was moderately decreased and the GDNF family receptor alpha1, another receptor of GDNF that is the ligand-binding subunit, were unaffected. Down-regulation of Ret was also observed in dopamine-producing PC12 cells undergoing apoptosis induced by rotenone, another toxic substance for dopaminergic neurons, while other cellular components were not affected. Ret was also extremely vulnerable to other apoptotic inducing conditions. Taken together, these results indicate that Ret, an important signal molecule in dopaminergic neurons, may be down-regulated in the early stages of neuronal degeneration caused by various neurotoxic substances, and may lead to reduced neurotrophic influences.  相似文献   

14.
15.
We examined the potential neurotrophic effects of bone morphogenetic protein (BMP)-2 on the survival and differentiation of neurons cultured from the rat developing striatum at embryonic day 16, a period during which the mRNAs for BMP-2 and its receptor subunits (types IA, IB, and II) were detected. BMP-2 exerted potent activity to promote the survival of striatal neurons and increased the number of surviving microtubule-associated protein-2-positive cells by 2.4-fold as compared with the control cultures after 4 days in vitro. Although basic fibroblast growth factor (bFGF) also showed relatively high activity to promote the survival of striatal neurons, transforming growth factor-beta1, -beta2, and -beta3, glial cell line-derived neurotrophic factor, or brain-derived neurotrophic factor promoted their survival weakly. Striatal neurons cultured in the presence of BMP-2 or bFGF possessed extensive neurite outgrowths, the majority of which were GABA-immunoreactive. Inhibition of glial cell proliferation by 5-fluorodeoxyuridine did not affect the capacity of BMP-2 to promote the survival of striatal GABAergic neurons. In contrast, the ability of bFGF to promote the survival of striatal neurons was inhibited significantly by the treatment of cells with 5-fluorodeoxyuridine. All these results suggest that BMP-2 exerts potent neurotrophic effects on the striatal GABAergic neurons in a glial cell-independent manner.  相似文献   

16.
17.
Wood  T. K.  Sullivan  A. M.  McDermott  K. W. 《Brain Cell Biology》2003,32(1):97-103
Transplantation of embryonic nigral grafts into the striatum of Parkinson's disease patients is not optimal, mainly due to low survival of grafted neurones. Current strategies focus on enhancing neuronal survival by transplanting enriched neuronal cell populations. There is growing evidence for the importance of astroglia in neuronal survival.To characterise the effects of glial cells on dopaminergic neurones, 5-fluoro-2′-deoxyuridine was added to embryonic rat ventral mesencephalic cultures in the presence or absence of serum. The survival and morphology of glial fibrillary acidic protein immunopositive astroglia and tyrosine hydroxylase immunopositive dopaminergic neurones was examined. In serum-containing medium, astroglial cells predominated and 5-fluoro-2′-deoxyuridine had no significant effect on either astroglia or dopaminergic neurone survival. In serum-free medium, astroglial growth was attenuated and numbers were significantly lower in 5-fluoro-2′-deoxyuridine treated compared with untreated cultures. There was no significant difference in the numbers of dopaminergic neurones between 5-fluoro-2′-deoxyuridine treated and untreated cultures. However, by the eighth day in vitro, there were differences in the morphology of these neurones between treated and untreated cultures. This study shows that the use of 5-fluoro-2′-deoxyuridine and serum-free medium can produce a neurone-enriched culture. However, the dopaminergic neurone population present in these cultures appeared to be morphologically dissimilar to those found in control cultures as neurites were retracted and the cell somas of these cells appeared enlarged. These results provide information on the effects of astrocytes on dopaminergic neurones in ventral mesencephalic cultures and thus have implications for transplantation in Parkinson's disease.  相似文献   

18.
19.
20.
Noggin antagonizes BMP signaling to create a niche for adult neurogenesis   总被引:70,自引:0,他引:70  
Large numbers of new neurons are born continuously in the adult subventricular zone (SVZ). The molecular niche of SVZ stem cells is poorly understood. Here, we show that the bone morphogenetic protein (BMP) antagonist Noggin is expressed by ependymal cells adjacent to the SVZ. SVZ cells were found to express BMPs as well as their cognate receptors. BMPs potently inhibited neurogenesis both in vitro and in vivo. BMP signaling cell-autonomously blocked the production of neurons by SVZ precursors by directing glial differentiation. Purified mouse Noggin protein promoted neurogenesis in vitro and inhibited glial cell differentiation. Ectopic Noggin promoted neuronal differentiation of SVZ cells grafted to the striatum. We thus propose that ependymal Noggin production creates a neurogenic environment in the adjacent SVZ by blocking endogenous BMP signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号