首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Daily body, heart, liver, spleen, pancreas and bursa of Fabricius weights of developing turkey poults were measured. Neither organ nor body weight was affected by sex of the poults during the first 10 days posthatch. Decreases in growth were apparent between days 3 and 6 or 7 and 9 posthatch and coincided with peaks in early mortality.  相似文献   

2.
We have shown previously that in addition to the adult myosin heavy chain (MyHC) isoform present throughout the length of each fast-twitch glycolytic muscle fibre within the pectoralis of the mature chicken, the neonatal isoform is retained in the tapered ends of these fibres. This work, however, has been the only published report of this phenomenon. Here, we tested the hypothesis that similar to the chicken, the ends of mature pigeon pectoralis muscle fibres contain developmental MyHC isoform(s). A histological stain was used to visualize endomysium to assist in the analysis of transverse sections of pectoralis muscle from four mature pigeons. Immunocytochemical techniques were used to localize MyHC isoform(s) characteristic of pigeon pectoralis development. We show that within mature pigeon pectoralis, the ends of both fast-twitch glycolytic and fast-twitch oxidative-glycolytic fibre types express MyHC isoform(s) characteristic of their earlier development. Thus, we extend our findings on chicken to another species and an additional muscle fibre type. Retention of developmental MyHC isoform(s) within the tapered ends of mature muscle fibres may be more widespread than is currently appreciated.  相似文献   

3.
Our previous studies demonstrated that illumination of chicken embryos with monochromatic green light results in enhanced body and muscle weight at later posthatch stages. In the present study, we investigated the cellular and molecular basis of this phenomenon. First, we showed that on day 6 posthatch, myofibers were more uniform in the in ovo illuminated group than in the control group incubated in the dark, with respect to the number of myofibers displaying diameter values within the range of the mean value. Second, we tested the hypothesis that in ovo illumination causes an increase in the number of myoblasts; this in turn can promote posthatch muscle growth. Indeed, a significant increase in the number of skeletal muscle cells isolated from pectoralis muscle was observed in the in ovo illuminated group on days 1 and 3 posthatch relative to the control group. This increased cell number was accompanied by higher expression levels of Pax7 and myogenin proteins on posthatch days 1 and 3, respectively. A parallel analysis of proliferating cells in the intact muscle further demonstrated a significant increase in the number of cells positive for proliferating cell nuclear antigen in muscle from the in ovo illuminated group. Third, we demonstrated that the transition from fetal- to adult-type myoblasts, normally occurring in late stages of chicken embryogenesis, is initiated earlier in embryos subjected to in ovo green-light illumination. We suggest that the stimulatory effect of in ovo illumination on posthatch muscle growth is the result of enhanced proliferation and differentiation of adult myoblasts and myofiber synchronization.  相似文献   

4.
Body weight gain and shank-toe growth during a 26-day treatment period following hypophysectomy were 55 and 46%, respectively, of control values, but the body weight gain was unaffected and bone growth only slightly reduced when the hypophysectomized chickens were fed a low dose of corticosterone (5 ppm). Bovine growth hormone (0.5 mg GH/kg body wt/day for 18 days) enhanced body weight gain and shank-toe length increase (an estimate of bone growth) by 46 and 33%, respectively, compared to the growth of hypophysectomized chickens receiving only corticosterone. These same endpoints were increased approximately 24% after ovine growth hormone treatment in hypophysectomized chickens not receiving corticosterone. Body weight gain during 18 days of treatment with bovine prolactin (0.5 mg PRL/kg/day) was 27% greater than the value for corticosterone-treated hypophysectomized chickens, but bone growth was unaffected. The mammalian GH preparations increased heart weight of the hypophysectomized chickens (25-29%), but pectoralis muscle weight was unaffected. GH treatment enhanced thymal weights by 71% in corticosterone-treated hypophysectomized chickens, and by 93% in hypophysectomized animals not receiving corticosterone. GH had no significant effect on bursal weights, and PRL had no effect on either of these lymphoid organ weights in corticosterone-treated hypophysectomized chickens. GH increased liver and adipose tissue weights considerably more than the large increases that followed treatment of hypophysectomized chickens with corticosterone alone (69 and 126% greater, respectively), but had no effect on these endpoints in hypophysectomized chickens not receiving corticosterone. PRL also greatly increased liver and adipose tissue weights in corticosterone-treated hypophysectomized chickens (79 and 75%, respectively). These results provide evidence that mammalian GH enhances body weight gain, bone growth, and the growth of several organs in the hypophysectomized chicken. Mammalian PRL increased body weight gain, liver weight, and adipose tissue weight in corticosterone-treated hypophysectomized chickens, but did not influence bone growth or the weights of the heart, pectoralis, thymi, or bursa.  相似文献   

5.
6.
To assess the influence of paralysis on the expression of phenotypic protein isoforms related to muscle relaxation, the effects of spinal cord transection (ST) on sarco(endo)plasmic reticulum calcium ATPase (SERCA) pump isoform protein levels in the slow rat soleus were measured. Western blotting using SERCA isoform specific antibodies demonstrated a rapid up-regulation (7 days post ST) of the fast fiber type-specific isoform (SERCA1). In contrast, the slow fiber type-specific isoform, SERCA2, was decreased with a slower time-course. The up-regulation of SERCA1 protein preceded the up-regulation of fast myosin heavy chain (MyHC) (i.e., MyHC-II). Immunohistochemical analyses of single muscle fibers showed that 15 days after ST there was a pronounced increase in the proportion of slow MyHC fibers with SERCA1 confirming that SERCA1 was up-regulated in the slow fibers of the soleus prior to MyHC-II. These data suggest that the expression of the SERCA isoforms (particularly SERCA1) may serve as more sensitive markers of phenotypic adaptation in response to altered levels of contractile activity than the MyHC isoforms. In addition, since the expression of SERCA isoforms was dissociated from MyHC isoforms, regulation of gene expression for these two different protein systems must involve different signaling events and/or synthetic processes.  相似文献   

7.
Biceps femoris (BF) and masseter muscle (MM) are the mixture of slow oxidative and fast-twitch fibres. Compared with MM, BF had the significantly higher expression of myosin heavy chain (MyHC) fast IIx and IIb isoforms (MyHCIIx and MyHCIIb), but lower expression of MyHC slow isoform (MyHCI) and fast IIa isoform (MyHCIIa). The objective of this study was to investigate the expression pattern of troponin I (TnI) slow-twitch isoform (TNNI1) and fast-twitch isoform (TNNI2) in BF and MM of Yorkshire and Meishan pigs which differed significantly in the growth rate. The expression of the TNNI1 and TNNI2 peaked at the postnatal 35 days in Yorkshire pigs and postnatal 60 days in Meishan pigs. The expression of TNNI1 and TNNI2 in Meishan pigs was significantly higher than that in Yorkshire pigs at the foetal 60 days, while the opposite occurred at postnatal 35 days. The expression ratio of TNNI1 relative to TNNI2 favoured TNNI2 expression in BF and MM regardless of Yorkshire and Meishan pigs. TNNI1 expression in MM was significantly higher than that in BF at 60, 120 and 180 days in Meishan pigs and at 120 and 180 days in Yorkshire pigs. On the contrary, no significant difference of TNNI2 expression in BF and MM was found except for Yorkshire pigs of 180 days. This study provided the foundation for future research on TnI isoforms as the model gene to study mechanisms of muscle fibre-specific gene regulation in pigs.  相似文献   

8.
The expression of fast myosin heavy chain (MHC) isoforms was examined in developing bicep brachii, lateral gastrocnemius, and posterior latissimus dorsi (PLD) muscles of inbred normal White Leghorn chickens (Line 03) and genetically related inbred dystrophic White Leghorn chickens (Line 433). Utilizing a highly characterized monoclonal antibody library we employed ELISA, Western blot, immunocytochemical, and MHC epitope mapping techniques to determine which MHCs were present in the fibers of these muscles at different stages of development. The developmental pattern of MHC expression in the normal bicep brachii was uniform with all fibers initially accumulating embryonic MHC similar to that of the pectoralis muscle. At hatching the neonatal isoform was expressed in all fibers; however, unlike in the pectoralis muscle the embryonic MHC isoform did not disappear. With increasing age the neonatal MHC was repressed leaving the embryonic MHC as the only detectable isoform present in the adult bicep brachii muscle. While initially expressing embryonic MHC in ovo, the post-hatch normal gastrocnemius expressed both embryonic and neonatal MHCs. However, unlike the bicep brachii muscle, this pattern of expression continued in the adult muscle. The adult normal gastrocnemius stained heterogeneously with anti-embryonic and anti-neonatal antibodies indicating that mature fibers could contain either isoform or both. Neither the bicep brachii muscle nor the lateral gastrocnemius muscle reacted with the adult specific antibody at any stage of development. In the developing posterior latissimus dorsi muscle (PLD), embryonic, neonatal, and adult isoforms sequentially appeared; however, expression of the embryonic isoform continued throughout development. In the adult PLD, both embryonic and adult MHCs were expressed, with most fibers expressing both isoforms. In dystrophic neonates and adults virtually all fibers of the bicep brachii, gastrocnemius, and PLD muscles were identical and contained embryonic and neonatal MHCs. These results corroborate previous observations that there are alternative programs of fast MHC expression to that found in the pectoralis muscle of the chicken (M.T. Crow and F.E. Stockdale, 1986, Dev. Biol. 118, 333-342), and that diversification into fibers containing specific MHCs fails to occur in the fast muscle fibers of the dystrophic chicken. These results are consistent with the hypothesis that avian muscular dystrophy is a developmental disorder that is associated with alterations in isoform switching during muscle maturation.  相似文献   

9.
Plantaris muscle hypertrophy resulting from surgical ablation of the synergistic gastrocnemius muscle was compared between nontumor- and GH3 tumor-bearing rat groups (n = 8-10). GH3 cells (10(6)) were subcutaneously injected into 150-g female Wistar-Furth rats to initiate the tumor. After 17 days, the tumor-bearing rats gained 5.7 g body wt/day compared with 2.0 for the nontumor-bearing rats. The left gastrocnemius muscle was surgically removed from both nontumor and tumor groups. The gastrocnemius was removed from the tumor group after an increased growth rate was achieved. Seven days after surgery, the animals were killed and plantaris muscles were removed. The wet weight of the left plantaris muscle increased 45.6 and 44.0% over the unoperated contralateral control (right side) in the nontumor and tumor groups, respectively. The right control plantaris muscle in the tumor group was 63% heavier than the right control plantaris from the nontumor group; however, the proportion of body weight for plantaris was similar between the two groups. The effect of gastrocnemius ablation and tumor treatment on plantaris weight was additive, and the percent increase over the unoperated contralateral control side was similar between the two groups. These data demonstrate that skeletal muscle hypertrophy occurs in adult animals in which growth has been stimulated by a growth hormone-secreting tumor and could suggest that the muscle growth response caused by the tumor is operating by a mechanism different than work-induced hypertrophy.  相似文献   

10.
The purpose of this study was to find the effect of dexamethasone on the myosin heavy chain (MyHC) isoforms' composition in different skeletal muscles and glycolytic (G) fibres in relation with their synthesis rate and degradation of MyHC isoforms by alkaline proteinases. Eighteen-week-old male rats of the Wistar strain were treated with dexamethasone (100 microg/100 g bwt) during 10 days. The forelimb strength decreased from 9.52 to 6.19 N (P<0.001) and hindlimb strength from 15.54 to 8.55 N (P<0.001). Daily motor activity decreased (total activity from 933 to 559 and ambulatory activity from 482 to 226 movements/h, P<0.001). The degradation rate of muscle contractile proteins increased from 2.0 to 5.9% per day (P<0.001), as well as the myosin heavy chain IIB isoform degradation with alkaline proteinase in fast-twitch (F-T) muscles (12 +/- 0.9%; P<0.05) and glycolytic muscle fibres (15 +/- 1.1%; P<0.001). The synthesis rate of MyHC type II isoforms decreased in Pla muscles (P<0.05) and MyHC IIA (P<0.05) and IIB in EDL muscle and G fibres (P<0.001). The relative content of MyHC IIB isoform decreased in F-T muscles (P<0.001) and in G fibres (P<0.01), and the relative content of IIA and IID isoforms increased simultaneously. Dexamethasone decreased the MyHC IIB isoform synthesis rate and increased the sensibility of MyHC IIB isoform to alkaline proteinase, which in its turn led to the decrease of MyHC IIB isoform relative content in F-T muscles with low oxidative potential and G muscle fibres.  相似文献   

11.
Growth hormone (GH) and β agonists increase muscle mass, but the mechanisms for this response are unclear and the magnitude of response is thought to vary with age of animal. To investigate the mechanisms driving the muscle response to these agents, we examined the effects of short-term (6 day) administration of GH or cimaterol (a β2-adrenergic agonist, BA) on skeletal muscle phenotype in both young (day 60) and mature (day 120) lambs. Expression of myosin heavy chain (MyHC) isoforms were measured in Longissimus dorsi (LD), Semitendinosus (ST) and Supraspinatus (SS) muscles as markers of fibre type and metabolic enzyme activities were measured in LD. To investigate potential mechanisms regulating the changes in fibre type/metabolism, expression or activity of a number of signalling molecules were examined in LD. There were no effects of GH administration on MyHC isoform expression at either the mRNA or protein level in any of the muscles. However, BA treatment induced a proportional change in MyHC mRNA expression at both ages, with the %MyHCI and/or IIA mRNA being significantly decreased in all three muscles and %MyHCIIX/IIB mRNA significantly increased in the LD and ST. BA treatment induced de novo expression of MyHCIIB mRNA in LD, the fastest isoform not normally expressed in sheep LD, as well as increasing expression in the other two muscles. In the LD, the increased expression of the fastest MyHC isoforms (IIX and IIB) was associated with a decrease in isocitrate dehydrogenase activity, but no change in lactate dehydrogenase activity, indicating a reduced capacity for oxidative metabolism. In both young and mature lambs, changes in expression of metabolic regulatory factors were observed that might induce these changes in muscle metabolism/fibre type. In particular, BA treatment decreased PPAR-γ coactivator-1β mRNA and increased receptor-interacting protein 140 mRNA. The results suggest that the two agents work via different mechanisms or over different timescales, with only BA inducing changes in muscle mass and transitions to a faster, less oxidative fibre type after a 6-day treatment.  相似文献   

12.
Early post-hatch fasting induces satellite cell self-renewal   总被引:3,自引:0,他引:3  
Early post-hatch satellite cell kinetics are an important aspect of muscle development, and understanding the interplay between fasting and muscle development will lead to improvements in muscle mass following an illness, and optimal meat production. The objective of this experiment was to test the influence of immediate post-hatch fasting on satellite cells in the poult. Male Nicholas poults (Meleagris gallopavo) were placed into two treatments: a fed treatment with immediate access to feed and water upon placement and a fasted treatment without access to feed and water for the first three days post-hatch. 5-bromo-2'-deoxyuridine (BrdU) was injected intra-abdominally in all poults to label mitotically active satellite cells. The pectoralis thoracicus muscle was harvested two hours following the BrdU injection. Immunohistochemistry for BrdU, Pax7, Bcl-2, Pax7 with BrdU, and determining myofiber cross-sectional area along with computer-based image analysis was used to study muscle development. Fed poults had higher body masses throughout the experiment (P< or =0.01), and they had higher pectoralis thoracicus muscle mass (P< or =0.01) at ten days of age than the fasted poults. Fed poults had higher satellite cell mitotic activity at three days and four days of age (P< or =0.01) compared to the fasted poults. However, Pax7 labeling index was higher in the fasted poults (P< or =0.01) at three days, four days, and five days post-hatch than the fed group. Similarly Bcl-2 labeling was higher in the fasted than in the fed group at three days post-hatch. Therefore, fasting depleted proliferating satellite cells indicated by the lower BrdU labeling in the fasted poults compared to the fed poults, and conserved the satellite cell proliferative reserve indicated by the higher level of Pax7 labeling for the fasted poults compared to the fed poults.  相似文献   

13.
During early postnatal development, the myosin heavy chain (MyHC) expression pattern in equine gluteus medius muscle shows adaptation to movement and load,resulting in a decrease in the number of fast MyHC fibers and an increase in the number of slow MyHC fibers. In the present study we correlated the expression of MyHC isoforms to the expression of sarcoplasmic(endo)reticulum Ca2+-ATPase 1 and 2a (SERCA), phospholamban (PLB), calcineurin A (CnA), and calcineurin B (CnB). Gluteus medius muscle biopsies were taken at 0, 2, 4, and 48 weeks and analyzed using immunofluorescence. Both SERCA isoforms and PLB were expressed in almost all fiber types at birth. From 4 weeks of age onward, SERCA1 was exclusively expressed in fast MyHC fibers and SERCA2a and PLB in slow MyHC fibers. At all time points, CnA and CnB proteins were expressed at a basal level in all fibers, but with a higher expression level in MyHC type 1 fibers. From 4 weeks onward, expression of only CnA was also higher in MyHC type 2a and 2ad fibers. We propose a double function of calcineurin in calcium homeostasis and maintenance of slow MyHC fiber type identity. Although equine muscle is already functional at birth, expression patterns of the monitored proteins still show adaptation, depending on the MyHC fiber type.  相似文献   

14.
The expression of myosin heavy chain (MHC) and C-protein isoforms has been examined immunocytochemically in regenerating skeletal muscles of adult chickens. Two, five, and eight days after focal freeze injury to the anterior latissimus dorsi (ALD) and posterior latissimus dorsi (PLD) muscles, cryostat sections of injured and control tissues were reacted with a series of monoclonal antibodies previously shown to specifically bind MHC or C-protein isoforms in adult or embryonic muscles. We observed that during the course of regeneration in each of these muscles there was a reproducible sequence of antigenic changes consistent with differential isoform expression for these two proteins. These isoform switches appear to be tissue specific; i.e., the isoforms of MHC and C-protein which are expressed during the regeneration of a "slow" muscle (ALD) differ from those which are synthesized in a regenerating "fast" muscle (PLD). Evidence has been obtained for the transient expression of a "fast-type" MHC and C-protein during ALD regeneration. Furthermore, during early stages of PLD regeneration this muscle contains MHCs which antigenically resemble those found in the pectoralis muscle at embryonic and early posthatch stages of development. Both regenerating muscles express an isoform of C-protein which appears immunochemically identical to that normally expressed in embryonic and adult cardiac muscle. These results support the concept that isoform transitions in regenerating skeletal muscles qualitatively resemble those found in developing muscles but differences may exist in temporal and tissue-specific patterns of gene expression.  相似文献   

15.
The exogenous recombinant human growth hormone (rhGH) administration on gastrocnemius muscle growth performance and its contribution to body growth of male and female BALB/c mice fed a 12 % protein diet from 25 to 50 days of age, as well as the mechanism of utilization of feed intake to the lean muscle deposition were studied. Male and female weaning mice (21 days of age) were injected subcutaneously for 29 days with rhGH (74 ng x g(-1)) or saline vehicle (control). Feed intake and body weight (BW) were measured daily. At 25, 30, 35, 40, 45 and 50 days of age twenty mice were killed by cervical dislocation and the gastrocnemius muscle was isolated, weighed and the protein content was measured. The rhGH administration caused a biphasic response of BW and muscle growth as a consequence of age-specific feed intake changes. The initial feed intake fall induced the allometric proportion decreases in both muscle growth versus body growth and protein muscle versus muscle growth. That effect was due to ineffient utilization of energy and protein intake on protein muscle store. Later on, the self-controlled increase of feed intake leads to the recovery of muscle weight to control values, through nutrient partitioning toward non protein tissue showing a compensatory muscle growth. This suggests that a higher dietary protein level should be necessary for promoting the protein anabolic effect of GH during weaning.  相似文献   

16.
17.
The ontogeny of a primary flight muscle, the pectoralis, in the little brown bat (Myotis lucifugus: Vespertilionidae) was studied using histochemical, immunocytochemical, and electrophoretic techniques. In fetal and early neonatal (postnatal age 1–6 days) Myotis, histochemical techniques for myofibrillar ATPase (mATPase) and antibodies for slow and fast myosins demonstrated the presence of two fiber types, here called types I and IIa. These data correlated with multiple transitional myosin heavy chain isoforms and native myosin isoforms demonstrated with SDS-PAGE and 4% pyrophosphate PAGE. There was a decrease in the distribution and number of type I fibers with increasing postnatal age. At postnatal age 8–9 days, the adult phenotype was observed with regard to muscle fiber type (100% type IIa fibers) and myosin isoform profile (single adult MHC and native myosin isoforms). This “adult” fiber type profile and myosin isoform composition preceeded adult function by about 2 weeks. For example, little brown bats were incapable of sustained flight until approximately postnatal day 24, and myofiber size did not achieve adult size until approximately postnatal day 25. Although Myotis pectoralis is unique in being composed of 100% type IIa fibers, transitional fiber types and isoforms were present. These transitional forms had been observed previously in other mammals bearing mixed adult muscle fibers and which undergo transitional stages in muscle ontogeny. However, in Myotis pectoralis, this transition transpires relatively early in development. © 1994 Wiley-Liss, Inc.  相似文献   

18.
The purpose of this investigation was to evaluate changes in myosin heavy chain (MyHC) and titin isoforms after using various loads during explosive jump squat training. Twenty-four male athletic subjects were recruited for this study. Two experimental groups performed 8-weeks of jump squats using either 30% (n = 9) or 80% (n = 9) of their previously determined 1 repetition maximum. A third group served as controls (n = 6). Muscle biopsies were obtained before and after 8 weeks from vastus lateralis. The analysis of titin within these subjects confirmed that human skeletal muscle contains 2 isoforms of titin. There was no significant group x time interaction for MyHC or titin isoform expression. The data from this investigation indicates that a relatively short period of explosive resistance training results in negligible changes in the expression of MyHC or titin isoforms.  相似文献   

19.
The aim of this investigation was to determine whether 10 weeks of three different types of training can alter the myosin heavy chain (MyHC) composition of the trapezius muscle. Twenty-one women were randomly assigned to three training groups that performed strength (n=9), endurance (n=7) or coordination training (n=5). Pre and post biopsies were taken from the upper part of the descending trapezius muscle and were analysed for MyHC isoform content using 5% gel electrophoresis. In addition, we have studied the expression of embryonic and neonatal MyHCs using double-immunofluorescence staining. In the strength-trained group, there was a significant increase in the amount of MyHC IIA and a significant decrease in the amount of MyHC IIB and MyHC I. In the endurance group, there was a significant decrease in the amount of MyHC IIB. MyHC composition in the coordination group was not altered. Following the training period, myotubes and individual small-sized muscle fibres were observed in the strength and endurance trained groups. These structures were stained with the markers for early myogenesis (MyHC embryonic and neonatal). These data suggest that specific shifts in MyHC isoforms occur in the trapezius muscle following strength and endurance training. The presence of small-sized muscle fibres expressing the developmental isoforms of MyHC suggests that strength and endurance training induced the formation of new muscle fibres. Accepted: 31 March 1999  相似文献   

20.
Chronic arthritis induces cachexia associated with an inhibition of the growth hormone (GH)-insulin-like growth factor-I (IGF-I) system and an activation of the E3 ubiquitin-ligating enzymes muscle atrophy F-box (MAFbx) and muscle Ring finger 1 (MuRF1) in the skeletal muscle. The aim of this work was to study the role of cyclooxygenase (COX)-2 in chronic arthritis-induced cachexia. Arthritis was induced in rats by Freund's adjuvant injection, and the effects of two COX inhibitors (indomethacin, a nonspecific inhibitor, and meloxicam, a selective COX-2 inhibitor on pituitary GH and on liver and serum IGF-I levels) were tested. Arthritis decreased body weight gain and GH and liver IGF-I gene expression. In the arthritic rats, both inhibitors, indomethacin and meloxicam, prevented the inhibitory effect of arthritis on body weight gain. Indomethacin and meloxicam administration to arthritic rats increased pituitary GH and liver IGF-I mRNA as well as serum levels of IGF-I. These data suggest that induction of COX-2 during chronic inflammation is involved in the inhibition of the GH-IGF-I axis and in the body weight loss. In the gastrocnemius muscle, arthritis increased the gene expression of tumor necrosis factor (TNF)-alpha, the E3 ubiquitin-ligating enzymes MAFbx and MuRF1, as well as of IGF-I and IGF-binding protein-5 (IGFBP-5). Inhibition of COX-2 by meloxicam administration increased gastrocnemius weight and decreased MAFbx, MuRF1, TNF-alpha, and IGFBP-5 gene expression. In summary, our data indicate that chronic arthritis-induced cachexia and muscle wasting are mediated by the COX-2 pathway resulting in a decreased GH-IGF-I secretion and increased expression of MAFbx and MuRF1 mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号