共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Ge L Han D Lan GC Zhou P Liu Y Zhang X Sui HS Tan JH 《Molecular reproduction and development》2008,75(1):136-142
The removal of cumulus cells (CCs) from oocytes at the germinal vesicle (GV) stage still represents a major limitation in such embryo techniques as GV transfer, somatic cell haploidization, and oocyte cryopreservation. However, no efficient in vitro maturation (IVM) system for CC-denuded oocytes (DOs) has been established in mammalian species. Although follicular cells are considered to play an important role in oocyte maturation, the specific role and mechanisms of action of different cell types are poorly understood. Reports on whether junctional association between CCs and the oocyte is essential for the beneficial effect of CC co-culture on oocyte maturation are in conflict. Our objective was to try to address these issues using the mouse oocyte model. The results indicated that while co-culture with the CC monolayer could only partially restore the developmental potential of DOs without corona cells, it restored the competence of corona-enclosed DOs completely. Culture in medium conditioned with CC monolayer also promoted maturation of DOs. However, co-culture with the monolayer of mural granulosa cells had no effect. The efficiency of CC co-culture was affected by various factors such as density and age of the CCs, the presence of gonadotropin in the maturation medium and the duration for in vivo (IVO) gonadotropin priming. It is concluded that mouse CCs produce a diffusible factor(s) that support DO maturation in a CC-oocyte junctional communication dependent manner. The data will contribute to our understanding the mechanisms by which CCs promote oocyte maturation and to the establishment of an efficient DO IVM system. 相似文献
3.
We studied the effects of various NO-synthase inhibitors on meiotic maturation of mouse oocytes in vitro in cumulus-oocyte complexes isolated from follicles of varying sizes. Selective and nonselective inhibitors of NO-synthase isoforms suppressed meiotic maturation of oocytes to varying degrees, which was expressed in a decreased number of oocytes at metaphase II. The results obtained suggest that the role of inducible form of NO-synthase (iNOS) increases with the development of follicles and oocytes. 相似文献
4.
This study was carried out to examine the participation of epidermal growth factor (EGF)-like peptides in the induction of germinal vesicle breakdown (GVB) in mouse cumulus cell-enclosed oocytes (CEO). The EGF-like peptide, amphiregulin (AR), dose-dependently stimulated meiotic resumption in CEO, but not denuded oocytes (DO) maintained in meiotic arrest with 300 microM dbcAMP. The EGF receptor (EGFR) kinase inhibitor, AG1478, blocked meiotic resumption induced by FSH and AR in CEO, but had no effect in DO. FSH-induced maturation was also suppressed by antisera to both EGFR and EGF. Maturation occurred with slightly faster kinetics in AR-stimulated CEO when compared to FSH-stimulated CEO. When CEO were maintained in meiotic arrest with a low level of dbcAMP, FSH was initially inhibitory to maturation and later stimulatory; the stimulatory phase was prevented by AG1478, indicating mediation by EGF-like peptides. Pulsing CEO with high levels of dbcAMP also stimulated GVB and could be blocked by AG1478. Treatment of arrested CEO with PKC agonists stimulated maturation and this was prevented with AG1478 as well as antibodies to EGFR. FSH-induced maturation of dbcAMP-arrested CEO was blocked by bisindolylmaleimide I (BIM-I), an inhibitor of PKC, implicating PKC in FSH action. EGF-stimulated CEO failed to resume maturation in the presence of glycerrhetinic acid, a gap junction inhibitor, suggesting transfer of positive signal through the cell-cell coupling pathway. These data support the idea that EGF-like peptides provide a common pathway mediating the meiosis-inducing influence of FSH, cAMP pulsing, and PKC activation in mouse CEO by a gap junction-dependent process. 相似文献
5.
In this study we have examined the meiosis-inducing influence of adenosine analogs in mouse oocytes. When a varied group of nucleosides and nucleotides were tested on overnight cultures of hypoxanthine-arrested, cumulus cell-enclosed oocytes (CEO), halogenated adenosine nucleosides, but not native adenosine, exhibited a significant meiosis-inducing capability. When tested under a variety of conditions, meiotic induction by 8-bromo-adenosine (8-Br-Ado) and a second adenosine analog, methylmercaptopurine riboside (MMPR), was especially potent in denuded oocytes (DO) compared to CEO and was not dependent on the type of inhibitor chosen to maintain meiotic arrest. Germinal vesicle breakdown (GVB) was stimulated with rapid kinetics and was preceded by an increase in AMP-activated protein kinase (AMPK) activity. Moreover, compound C, an inhibitor of AMPK, blocked the meiosis-inducing activities of both adenosine analogs. When tested for an effect on meiotic progression to metaphase II (MII) in spontaneously maturing CEO, 8-Br-Ado and the AMPK activator, 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside (AICAR), increased the percentage of MII-stage oocytes, but MMPR decreased this number. Adenosine and inhibitors of de novo purine synthesis had no effect on the completion of maturation, while compound C suppressed this process. These results support the proposition that oocyte AMPK mediates the positive influence of AICAR and 8-Br-Ado on both the initiation and completion of meiotic maturation. The role of AMPK in MMPR action is less clear. 相似文献
6.
7.
Lalantha R. Abeydeera Wei-Hua Wang Thomas C. Cantley August Rieke Randall S. Prather Billy N. Day 《Molecular reproduction and development》1998,51(4):395-401
The present study examined the effect of epidermal growth factor (EGF) during in vitro maturation (IVM) and embryo culture on blastocyst development in the pig. In experiment 1, cumulus oocyte complexes were cultured in North Carolina State University (NCSU) 23 medium containing porcine follicular fluid, cysteine, hormonal supplements, and with or without EGF (0–40 ng/ml) for 20–22 hr. They then were cultured for an additional 20–22 hr without hormones. After maturation, cumulus-free oocytes were co-incubated with frozen-thawed spermatozoa for 5–6 hr. Putative embryos were transferred to NCSU 23 containing 0.4% BSA and cultured for 144 hr. In experiment 2, oocytes were matured in medium containing 10 ng/ml EGF, inseminated, and putative embryos were cultured in the presence of 0–40 ng/ml EGF. In experiment 3, oocytes were cultured in the presence of 0, 10 and 40 ng/ml EGF to examine the kinetics of meiotic maturation. In experiment 4, 2- to 4-cell and 8-cell to morula stage embryos derived from oocytes matured with 10 ng/ml EGF were transferred to the oviduct and uterus, respectively, of each of three recipient gilts (3 and 4 days post-estrus, respectively). The presence or absence of EGF during IVM did not affect cumulus expansion, nuclear maturation, fertilization parameters, or cleavage rate. However, compared to no addition (21%), presence of 1 (33%) and 10 ng/ml EGF (42%) during IVM increased (P < 0.01) the rate of blastocyst development in a concentration-dependent manner. Compared to 10 ng/ml EGF, higher concentrations (20 and 40 ng/ml) reduced (P < 0.01) blastocyst development in a concentration-dependent manner (35% and 24%, respectively). No difference was observed between no addition and 40 ng/ml EGF (22%). Compared to no addition and 10 ng/ml EGF, a significantly (P < 0.001) higher proportion (25% vs. 55%) of oocytes reached metaphase II stage 33 hr after IVM with 40 ng/ml EGF. However, no difference was observed at 44 hr. Transfer of embryos to six recipient gilts resulted in three pregnancies and birth of 18 piglets. The results show that EGF at certain concentrations in IVM medium can influence the developmental competence of oocytes. However, addition of EGF during the culture of pig embryos derived from oocytes matured in the presence of EGF is without effect. Birth of piglets provides evidence that embryos derived from oocytes matured in a medium containing EGF are viable. Mol. Reprod. Dev. 51:395–401, 1998. © 1998 Wiley-Liss, Inc. 相似文献
8.
Caitlin E. McDonough Miranda L. Bernhardt Carmen J. Williams 《Molecular reproduction and development》2020,87(2):284-292
Calcium (Ca2+) signals triggered at fertilization initiate resumption of the cell cycle and initial steps of embryonic development. In mammals, the sperm factor phospholipase Cζ triggers the release of Ca2+ from the endoplasmic reticulum (ER), initiating an oscillatory pattern of Ca2+ transients that is modulated by egg factors including Ca2+ influx channels, Ca2+ transporters, and phosphoinositide‐regulating enzymes. Here we compared characteristics of Ca2+ oscillations following in vitro fertilization (IVF) and ER Ca2+ stores among nine common laboratory mouse strains: CF1, C57BL6, SJL, CD1, DBA, FVB, 129X1, BALBc, 129S1, and the F1 hybrid B6129SF1. Sperm from B6SJLF1/J males was used for all IVF experiments. There were significant differences among the strains with respect to duration and maximum amplitude of the first Ca2+ transient, frequency of oscillations, and ER Ca2+ stores. With male strain held constant, the differences in Ca2+ oscillation patterns observed result from variation in egg factors across different mouse strains. Our results support the importance of egg‐intrinsic properties in determining Ca2+ oscillation patterns and have important implications for the interpretation and comparison of studies on Ca2+ dynamics at fertilization. 相似文献
9.
Eleanor C. Brice Jie-Xin Wu Raffaella Muraro Eileen D. Adamson Lynn M. Wiley 《Genesis (New York, N.Y. : 2000)》1993,14(3):174-184
Two-cell mouse preimplantation embryos were cultured for 48 h in four different reagents to modulate epidermal growth factor (EGF) receptor function. These were rabbit polyclonal and mouse monoclonal antibodies to EGF receptor, EGF receptor antisense RNA, and EGF receptor antisense deoxyoligonucleotides. Embryos were scored for two endpoints: onset of cavitation as a measure of trophectoderm differentiation and mean embryo cell number as a measure of cell proliferation. The consistent observations were that cavitation was significantly accelerated by antibodies and delayed by antisense RNA and antisense deoxyoligonucleotides. None of these reagents exerted a significant effect on mean embryo cell number, with one exception the polyclonal antibody. Our interpretation of these observations is that the antibody binding facilitated cavitation by mimicking natural ligand-receptor binding and inducing the signal transduction cascade that is typical for the EGF receptor. In the case of antisense RNA or deoxyoligonucleotide, we propose that they delayed onset of cavitation by interfering with EGF receptor production. We hypothesize that during this period of development, EGF receptor is concerned predominantly with the regulation of differentiation more than with cell proliferation. © 1993Wiley-Liss, Inc. 相似文献
10.
Fate of the first polar bodies in mouse oocytes 总被引:6,自引:0,他引:6
Miao Y Ma S Liu X Miao D Chang Z Luo M Tan J 《Molecular reproduction and development》2004,69(1):66-76
Both nuclear transfer and intracytoplasmic sperm injection (ICSI) practice necessitates studies on the spatial relationship between the MII spindle and the first polar bodies (FPB). Although recent observations have shown that the FPB position does not predict accurately the location of the meiotic spindle in metaphase II oocytes of monkey, hamster, and human, detailed studies on FPB deviation and its affecting factors are lacking. Since polar bodies can be used for genetic testing and oocyte quality grading, their life span under different conditions should be studied. The timing of formation and degeneration and the position relative to the MII spindle of the FPB and the factors affecting FPB deviation and degeneration during in vivo and in vitro aging of both in vivo and in vitro matured mouse oocytes were investigated in this study. Mice of the Kun-ming breed were used, and the intact and degenerated FPB were identified through microscopic morphology in combination with propidium iodide (PI) exclusion test and the chromosomes visualized by Hoechst staining. Results are summarized as follows: (i) oocytes started FPB extrusion at 8 hr after the onset of in vivo or in vitro maturation, but the number of FPB reached maximum much later in vitro (14 hr of culture) than in vivo (10 hr post hCG). (ii) Some FPB began to degenerate before ovulation and around 70% became degenerated within 6 hr after maximal nuclear maturation both in vivo and in vitro; they disappeared faster during in vivo than in vitro aging but turned from intact to degenerated at a similar tempo. (iii) Some FPB began to deviate from the MII spindle 10 hr after hCG injection or in vitro culture and the distance between FPB and the spindle increased with time during both in vivo and in vitro aging. (iv) FPB deviated more slowly in the in vitro matured oocytes than in in vivo matured. (v) Denudation performed after FPB extrusion markedly enhanced its deviation. (vi) The perivitelline space (PVS) increased with time during maturation and aging in vivo and in vitro and the values of PVS and the percentages of FPB adjacent to the spindle were significantly negatively correlated. (vii) Cytochalasin B and colchicine had no effect on FPB deviation. (viii) None of the more than 3,500 FPBs observed was found to be dividing or have divided into two cells at any time points before or after ovulation or in vitro maturation. Our results were consistent with the possibility that the displacement of the FPB was a time- and PVS-dependent process, indicating that PVS would increase with time and its formation and enlargement would facilitate the lateral displacement of the degenerating FPB. 相似文献
11.
DENGMANQI FANGZHENSUN 《Cell research》1996,6(2):167-175
Mature eggs (at metaphase II stage) produce a series of Ca^2 oscillation at fertilization.To define whether the fertilization-induced Ca^2 oscillation is restrict to the metaphase II eggs and cell cycle dependent,mouse oocytes at prophase I (arrested at germinal vesicle stage),metaphase I,metaphase II,as well as the pronuclear embryos at interphase of the first mitotic division derived from fertilization of parthenogenetic activation were inseminated after removal of zona pellucida,The results show that the fertilization-induced Ca^2 oscillation is not specific to metaphase II eggs.This is supported by the fact that immature oocytes generated the Ca^2 oscillations at fertilization regardless of their nuclear progression from prophase I to metaphase I (in vitro matured) stage.More interestingly,it was first found that pronuclear embryos at interphase derived from parthenogenetic activation showed Ca^2 oscillations in response to fertilization while the zygotes at interphase did not after reinsemination or intracytoplasmic injection of sperm extracts which induce Ca^2 oscillations in MII eggs.This suggests that the ability of oocytes to generate Ca^2 oscillation in response to sperm penetration is not regulated in a cell cycle dependent manner but dependent on the cytoplasmic maturation. 相似文献
12.
Summary Whole-cell and single-channel patch-clamp experiments were performed on unfertilized oocytes of the ascidianCiona intestinalis to investigate the properties of two voltage-dependent Ca2+ currents found in this cell. The peak of the low threshold current (channel I) occurred at –20 mV, the peak of the high-threshold current (channel II) at +20 mV. The two currents could be distinguished by voltage dependence, kinetics of inactivation and ion selectivity. During large depolarizing voltage pulses, a transient outward current was recorded which appeared to be due to potassium efflux through channel II. When the external concentrations of Ca2+ and Mg2+ were reduced sufficiently, large inward Na currents flowed through both channels I and II. Using divalent-free solutions in cell-attached patch recordings, single-channel currents representing Na influx through channels I and II were recorded. The two types of unitary events could be distinguished on the basis of open time (channel I longer) and conductance (channel I smaller). Blocking events during changel I openings were recorded when micromolar concentrations of Ca2+ or Mg2+ were added to the patch pipette solutions. Slopes of the blocking rate constantvs. concentration gave binding constants of 6.4×106
m
–1 sec–1 for Mg2+ and 4.5×108
m
–1 sec–1 for Ca2+. The Ca2+ block was somewhat relieved at negative potentials, whereas the Mg2+ block was not, suggesting that Ca2+, but not Mg2+, can exit from the binding site toward the cell interior. 相似文献
13.
In a previous study, it was shown that cumulus cell-enclosed germinal vesicle (GV)-stage oocytes, isolated from pregnant mares' serum gonadotropin (PMSG)-primed immature (22–24 day old) mice and that underwent spontaneous maturation in vitro, exhibited frequencies of embryonic development similar to oocytes stimulated to mature and ovulate in vivo by administration of gonadotropins [Schroeder AC, Eppig JJ, (1984) Dev Biol 102:493–497]. In the present study, the effect of the hormonal state of the oocyte donor on the capacity of in vitro matured oocytes to be fertilized and undergo pre- and post-implantation development was explored further. Oocytes were isolated at the GV-stage from the following groups of mice: 1) unprimed immature mice; 2) adult cycling mice; 3) unprimed Snell dwarf (dw) mice that have undetectable levels of growth hormone (GH), prolactin, and thyroid-stimulating hormone (TSH); and 4) primed and unprimed hypogonadal (hpg) mice that have undetectable levels of circulating gonadotropins. Oocytes maturing in vitro after isolation from normal unprimed immature or adult mice at all stages of the estrous cycle acquired full developmental capacity. GV-stage oocytes isolated from dwarf mice showed embryonic development equivalent to normal ( + /?) littermate controls. Therefore, GH, TSH, or prolactin are not required during oogencsis in vivo to promote the acquisition of competence to complete embryogenesis after maturation in vitro. Oocytes from hypogonadal mice had a much reduced capacity for preimplantation development when compared with normal littermates. Administration of PMSG to the hypogonadal mice significantly increased the developmental capacity of oocytes that underwent maturation in vitro. Gonadotropins, therefore, have a beneficial effect on the oocytc's capacity for embryonic development. 相似文献
14.
The effects of the putative maturation inhibitor in porcine follicular fluid on gonadotropinstimulated reversal of cyclic adenosine monophosphate (cAMP)-maintained meiotic arrest in mouse oocytes in vitro were assessed in this study. When cumulus cell-enclosed oocytes were cultured in a suboptimal inhibitory concentration of dibutyryl cAMP (dbcAMP), the effect of follicle-stimulating hormone (FSH) on oocyte maturation was initially inhibitory at 3 hr, but stimulatory at 6 hr. Supplementation of the medium with an ultrafiltrate of porcine follicuiar fluid (PM10-filtrate) completely suppressed FSH-promoted reversal of inhibition at 6 hr. Charcoal extraction eliminated this effect of the PM10-filtrate. FSH reversed the inhibition of maturation of cumulus cell-enclosed oocytes maintained by a high concentration of dbcAMP and suboptimal concentrations of the phosphodiesterase inhibitor, 3-isobutyl-1-methyl xanthine (IBMX), during a 21–22-hr culture period. However, the effect of a completely inhibitory concentration of IBMX was not reversed by gonadotropin. A component of serum was also found to inhibit FSH reversal of dbcAMP-maintained meiotic arrest, and this activity was removed by charcoal extraction. In addition, when oocytes were cultured in medium containing a suboptimal concentration of dbcAMP plus a low molecular weight fraction (< 1,000) of porcine follicular fluid, porcine serum, or fetal bovine serum, a synergistic inhibition of maturation was observed. Experiments with highly purified gonadotropins revealed that reversal of dbcAMP-maintained meiotic arrest occurred only in response to FSH; neither highly purified luteinizing hormone nor human chorionic gonadotropin could mimic this action of FSH. Also, this effect was mediated by the cumulus cells, since FSH could not reverse dbcAMP-maintained meiotic arrest in denuded oocytes. Furthermore, elevating cAMP levels in denuded oocytes augmented, rather than reversed, the inhibitory action of dbcAMP on oocyte maturation. These data therefore suggest that dbcAMP- or IBMX-maintained meiotic arrest in vitro is reversed by an FSH-stimulated, cAMP-dependent process mediated by the cumulus cells and demonstrate that a factor present both in follicular fluid and serum prevents this action of the gonadotropin. 相似文献
15.
Previously, we demonstrated that Bcl-2-like 10 (Bcl2l10) is associated with meiotic spindle assembly and that the gene that is most strongly down-regulated by Bcl2l10 RNAi is targeting protein for Xklp2 (Tpx2). Tpx2 is a well-known cofactor that controls the activity and localization of Aurora kinase A (Aurka) during mitotic spindle assembly. Therefore, this study was conducted (1) to identify the associations among Bcl2l10, Tpx2, and Aurka and (2) to understand how Bcl2l10 regulates meiotic spindle assembly in mouse oocytes. Bcl2l10, Tpx2, and Aurka co-localized on the meiotic spindles, and Bcl2l10 was present in the same complex with Tpx2. Tpx2 and Aurka expression decreased whereas phospho-Aurka increased in Bcl2l10 RNAi-treated oocytes. Counterbalancing changes in the levels of these 2 activators, Tpx2 and phospho-Aurka, resulted in decreased Aurka catalytic activity after Bcl2l10 RNAi treatment. Bcl2l10 RNAi decreased the expression of microtubule organizing center (MTOC)-related proteins, disturbed MTOC formation and disrupted meiotic spindle assembly. Our data demonstrate that Bcl2l10 is a binding partner of Tpx2 and a new regulator of the complex controlling the organization of microtubules and MTOC biogenesis in meiotic spindle assembly. The discovery of Bcl2l10 as a new effector of Aurka suggests that Bcl2l10 may have diverse functions in mitotic cells. 相似文献
16.
Kang D Hur CG Park JY Han J Hong SG 《Biochemical and biophysical research communications》2007,360(2):476-482
IP3-induced Ca2+ release is the primary mechanism that is responsible for acetylcholine (ACh)-induced Ca2+ oscillation. However, other mechanisms remain to explain intracellular Ca2+ elevation. We here report that ACh induces Ca2+ influx via T-type Ca2+ channel by activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII), and the ACh-induced Ca2+ influx facilitates the generation of Ca2+ oscillation in the mouse ovulated oocytes (oocytes(MII)). ACh increased Ca2+ current by 50+/-21%, and produced Ca2+ oscillation. However, the currents and Ca2+ peaks were reduced in Ca2+ -free extracellular medium. ACh failed to activate Ca2+ current and to produce Ca2+ oscillation in oocytes pretreated with KN-93, a CaMKII inhibitor. KN-92, an inactive analogue of KN93, and PKC modulators could not prevent the effect of ACh. These results show that ACh increases T-type Ca2+ current by activation of CaMKII, independent of the PKC pathway, in the mouse oocytes. 相似文献
17.
Edmundo Chávez David Jay Concepción Bravo 《Journal of bioenergetics and biomembranes》1987,19(3):285-295
Addition of Pb2+ to rat kidney mitochondria is followed by induction of several reactions: inhibition of Ca2+ uptake, collapse of the transmembrane potential, oxidation of pyridine nucleotides, and a fast release of accumulated Ca2+. When the incubation media are supplemented with ruthenium red, the effect of Pb2+ on NAD(P)H oxidation, membrane , and Ca2+ release are not prevented if malate-glutamate are the oxidizing substrates; however, the latter two lead-induced reactions are prevented by ruthenium red if succinate is the electron donor. It is proposed that in mitochondria oxidizing NAD-dependent substrates, Pb2+ induces Ca2+ release by promoting NAD(P)H oxidation and a parallel drop in due to its binding to thiol groups, located in the cytosol side of the inner membrane. In addition, it is proposed that with succinate as substrate, the Ca2+-releasing effect of lead is due to the collapse of the transmembrane potential as a consequence of the uptake of Pb2+ through the calcium uniporter, since such effect is ruthenium red sensitive. 相似文献
18.
Modulation of the epidermal growth factor receptor by brain-derived growth factor in Swiss mouse 3T3 cells 总被引:3,自引:0,他引:3
Incubation of Swiss mouse 3T3 cells at 37 degrees C with bovine brain-derived growth factor (BDGF) decrease the cell surface 125I-EGF binding activity of these cells by 70-80%. This down-modulation of the EGF receptor by BDGF was time, temperature, and dose dependent. Scatchard plot analysis indicated that BDGF binding led to a selective decrease in the number of high-affinity EGF receptors. The BDGF-induced down-modulation of the EGF receptor was completely blocked by protamine, a potent inhibitor of receptor binding and mitogenic activities of BDGF. BDGF down-modulated the EGF receptor in phorbol myristic acetate (PMA)-pretreated cells, as well as in control cells. Furthermore, PMA-pretreated cells responded mitogenically to BDGF, whereas PMA itself failed to stimulate the mitogenic response of PMA-pretreated cells. This BDGF-induced down-modulation of the EGF receptor in PMA-desensitized cells suggests that BDGF down-regulates the EGF receptor by a mechanism distinct from that of PMA. Incubation of cells with compounds which are known to inhibit pinocytosis blocked the down-modulation induced either by BDGF or by platelet-derived growth factor (PDGF) but had no effect on the PMA-induced down-modulation. Incubation of cells with inhibitors of receptor recycling enhanced the BDGF-induced down-modulation of the EGF receptor. These results suggest that BDGF and PDGF induce down-modulation of the EGF receptor by increasing the internalization of cell surface high-affinity receptors and that the internalization process may not be required for down-modulation induced by PMA. 相似文献
19.
Peter Skov Olsen Preben Kirkegaard Steen Seier Poulsen Ebba Nexø 《Regulatory peptides》1985,11(1):17-25
Urinary epidermal growth factor (EGF) has been demonstrated recently to originate from the kidneys. The present study was undertaken to investigate the adrenergic and cholinergic influence on secretion of renal EGF. beta-Adrenergic agonists increased the level of urinary EGF, while propranolol, a beta-adrenergic blocking agent, decreased basal and beta-adrenergic stimulated total output of urinary EGF. Acetylcholine and the anticholinergic agent atropine had no effect on the output of EGF in urine. Also chemical sympathectomy induced by 6-hydroxydopamine reduced the urinary output of EGF. None of the experimental groups had a median serum concentration above the detection limit of the assay. The present study shows that secretion of renal EGF is under the influence of the sympathetic nervous system and release of EGF is stimulated by activation of beta-adrenergic receptors in the kidneys. 相似文献
20.
Calcium-dependent signaling pathways are thought to be involved in the regulation of mammalian oocyte meiotic maturation. However, the molecular linkages between the calcium signal and the processes driving meiotic maturation are not clearly defined. The present study was conducted to test the hypothesis that the multi-functional calcium/calmodulin-dependent protein kinase II (CaM KII) functions as one of these key linkers. Mouse oocytes were treated with a pharmacological CaM KII inhibitor, KN-93, or a peptide CaM KII inhibitor, myristoylated AIP, and assessed for the progression of meiosis. Two systems for in vitro oocyte maturation were used: (1) spontaneous gonadotropin-independent maturation and (2) follicle-stimulating hormone (FSH)-induced reversal of hypoxanthine-mediated meiotic arrest. FSH-induced, but not spontaneous germinal vesicle breakdown (GVB) was dose-dependently inhibited by both myristoylated AIP and KN-93, but not its inactive analog, KN-92. However, emission of the first polar body (PB1) was inhibited by myristoylated AIP and KN-93 in both oocyte maturation systems. Oocytes that failed to produce PB1 exhibited normal-appearing metaphase I chromosome congression and spindles indicating that CaM KII inhibitors blocked the metaphase I to anaphase I transition. Similar results were obtained when the oocytes were treated with a calmodulin antagonist, W-7, and matured spontaneously. These results suggest that CaM KII, and hence the calcium signaling pathway, is potentially involved in regulating the meiotic maturation of mouse oocytes. This kinase both participates in gonadotropin-induced resumption of meiosis, as well as promoting the metaphase I to anaphase I transition. Further evidence is therefore, provided of the critical role of calcium-dependent pathways in mammalian oocyte maturation. 相似文献