首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here an analysis of the expression and function of the α chain of human VLA-4 in stable mouse L cell transfectants and the requirement for the β chain in these processes. L cells were transfected with human α4 cDNA or α4 and human β1 cDNA. Unexpectedly, human α4 cDNA, when transfected alone, could induce de novo surface expression of host β7 and increased expression of host β1. Induction of mouse β7 and β1 surface expression was not due to de novo gene activation, but instead represented α4/β intracellular subunit association and transport to the cell surface. Transfection with human β1 prevented surface expression of mouse β integrins. Whereas human α4 and human β1 subunits associated very tightly in anti-α4 immunoprecipitates, human α4 and mouse β subunits were only partially associated. Furthermore, binding of human/mouse chimeric receptors to recombinant VCAM, a major ligand for α4β7 and α4β1, was very poor, whereas human α4/human β1 receptors bound strongly to VCAM. One α4 transfectant, which exhibited a tight human α4/mouse β1 association, could be induced, but only after PMA activation, to bind strongly to VCAM. These results indicate that α4 subunits have specific affinity for β7 and β1 integrins and require β subunits for surface expression as well as high affinity ligand binding activity. Our results indicate that a tight association between the α4 and β subunit appears to be critical for ligand binding, consistent with a direct as well as regulatory role for the β subunit in ligand binding. Furthermore, these studies demonstrate that expression of foreign recombinant proteins can alter host cell protein expression resulting in de novo surface protein expression. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Type IV collagen includes six genetically distinct polypeptides named alpha1(IV) through alpha6(IV). These isoforms are speculated to organize themselves into unique networks providing mammalian basement membranes specificity and inequality. Recent studies using bovine and human glomerular and testis basement membranes have shown that unique networks of collagen comprising either alpha1 and alpha2 chains or alpha3, alpha4, and alpha5 chains can be identified. These studies have suggested that assembly of alpha5 chain into type IV collagen network is dependent on alpha3 expression where both chains are normally present in the tissue. In the present study, we show that in the lens and inner ear of normal mice, expression of alpha1, alpha2, alpha3, alpha4, and alpha5 chains of type IV collagen can be detected using alpha chain-specific antibodies. In the alpha3(IV) collagen-deficient mice, only the expression of alpha1, alpha2, and alpha5 chains of type IV collagen was detectable. The non-collagenous 1 domain of alpha5 chain was associated with alpha1 in the non-collagenous 1 domain hexamer structure, suggesting that network incorporation of alpha5 is possible in the absence of the alpha3 chain in these tissues. The present study proves that expression of alpha5 is not dependent on the expression of alpha3 chain in these tissues and that alpha5 chain can assemble into basement membranes in the absence of alpha3 chain. These findings support the notion that type IV collagen assembly may be regulated by tissue-specific factors.  相似文献   

3.
Type IV collagen is a major component of basement membranes. We have characterized 11 mutations in emb-9, the α1(IV) collagen gene of Caenorhabditis elegans, that result in a spectrum of phenotypes. Five are substitutions of glycines in the Gly-X-Y domain and cause semidominant, temperature-sensitive lethality at the twofold stage of embryogenesis. One is a glycine substitution that causes recessive, non–temperature-sensitive larval lethality. Three putative null alleles, two nonsense mutations and a deletion, all cause recessive, non–temperature-sensitive lethality at the threefold stage of embryogenesis. The less severe null phenotype indicates that glycine substitution containing mutant chains dominantly interfere with the function of other molecules. The emb-9 null mutants do not stain with anti–EMB-9 antisera and show intracellular accumulation of the α2(IV) chain, LET-2, indicating that LET-2 assembly and/or secretion requires EMB-9. Glycine substitutions in either EMB-9 or LET-2 cause intracellular accumulation of both chains. The degree of intracellular accumulation differs depending on the allele and temperature and correlates with the severity of the phenotype. Temperature sensitivity appears to result from reduced assembly/secretion of type IV collagen, not defective function in the basement membrane. Because the dominant interference of glycine substitution mutations is maximal when type IV collagen secretion is totally blocked, this interference appears to occur intracellularly, rather than in the basement membrane. We suggest that the nature of dominant interference caused by mutations in type IV collagen is different than that caused by mutations in fibrillar collagens.  相似文献   

4.
We investigated the secretion, matrix incorporation and interactions of molecules with one and two mutant alpha1(I) collagen chains in the Brtl IV murine model for Osteogenesis Imperfecta, carrying a Gly-349 to Cys substitution in one col1a1 allele. We detected a significant deviation from the expected 25 and 50% content of the molecules with no (37-46%) and one (26-40%) mutant chains in skin and bone as well as in fibroblast and osteoblast cell culture media. Steady-state labeling with (35)S-Cys demonstrated incomplete secretion of the mutant collagen in cell culture, particularly molecules containing one mutant chain. Pulse and pulse-chase experiments revealed slower secretion of the latter. An enlargement of endoplasmic reticulum in skin fibroblasts from Brtl IV mice, clearly visible by electron microscopy, supported the abnormal secretion identified by biochemical studies. We observed increased susceptibility of molecules with one mutant chain to proteolytic degradation in vitro, but we did not detect significant selective degradation in cell culture media. Mutant collagen molecules incorporated from the media into newly deposited fibers and into fully crosslinked and mature matrix in the same ratio as they were secreted. Specific labeling of reactive -SH demonstrated that about half of the Cys349-SH groups in the mutant molecules were exposed and potentially available for aberrant interactions with other molecules inside or outside the cells. Based on these and our previous findings, we argue that the outcome in Brtl IV may be significantly affected by cellular stress and malfunction caused by the retention and degradation of newly synthesized mutant collagen.  相似文献   

5.
Final assembly of the procollagen I heterotrimeric molecule is initiated by interactions between the carboxyl propeptide domains of completed, or nearly completed nascent pro α chains. These interactions register the chains for triple helix folding. Prior to these events, however, the appropriate nascent chains must be brought within the same compartments of the endoplasmic reticulum (ER). We hypothesize that the co-localization of the synthesis of the nascent pro α1(I) and pro α2(I) chains results from an interaction between their translational complexes during chain synthesis. This has been investigated by studying the polyribosomal loading of the pro α-chain messages during in vitro translation in the presence and absence of microsomal membranes, and in cells which have the ability to synthesize the pro α1 homotrimer or the normal heterotrimer. Recombinant human pro α1(I) and pro α2(I) C DNAs were inserted into plasmids and then transcribed in vitro. The resulting RNAs were translated separately and in mixture in a cell-free rabbit reticulocyte lysate ± canine pancreatic microsomes. Cycloheximide (100 μg/ml) was added and the polysomes were collected and fractionated on a 15–50% sucrose gradient. The RNA was extracted from each fraction and the level of each chain message was determined by RT-PCR. Polysomes from K16 (heterotrimer-producing), W8 (pro α1(I) homotrimer), and A2′ (heterotrimer + homotrimer) cells were similarly analyzed. Translations of the pro α1(I) and pro α2(I) messages proceeded independently in the cell-free, membrane-free systems, but were coordinately altered in the presence of membrane. The cell-free + membrane translation systems mimicked the behavior of the comparable cell polysome mRNA loading distributions. These data all suggest that there is an interaction between the pro α chain translational complexes at the ER membrane surface which temporally and spatially localize the nascent chains for efficient heteromeric selection and folding. © 1995 Wiley-Liss, Inc.  相似文献   

6.
During adipogenic differentiation human mesenchymal stem cells (hMSC) produce collagen type IV. In immunofluorescence staining differentiating hMSCs started to express collagen type IV when Oil Red O-positive fat droplets appeared intracellularly. Quantitative real time-polymerase chain reaction confirmed progressive increase of collagen type IV α1 and α2 mRNA levels over time, 18.6- and 12.2-fold by day 28, respectively, whereas the copy numbers of α3-α6 mRNAs remained rather stable and low. Type IV collagen was in confocal laser scanning microscopy seen around adipocytes, where also laminins and nidogen were found, suggesting pericellular deposition of all key components of the fully developed basement membrane. Immunofluorescence staining of matrix metalloproteinase-2 (MMP-2, 72 kD type IV collagenase, gelatinase A) and MMP-9 (92 kD type IV collagenase, gelatinase B) disclosed only faint staining of MSCs, but MMP-9 was strongly induced during adipogenesis, whereas MSC supernatants disclosed in zymography pro-MMP-2 and faint pro-MMP-9 bands, which increased over time, with partial conversion of pro-MMP-2 to its active 62 kD form. Differentiation was associated with increasing membrane type 1-MMP/MMP-14 and tissue inhibitor of metalloproteinase-2 (TIMP-2) staining, which may enable participation of type IV collagenases in basement membrane remodelling via ternary MT1-MMP/TIMP-2/MMP-2 or -9 complexes, focalizing the fully active enzyme to the cell surface. MMP-9, which increased more in immunofluorescence staining, was perhaps preferentially bound to cell surface and/or remodelling adipocyte basement membrane. These results suggest that upon MSC-adipocyte differentiation collagen type IV synthesis and remodelling become necessary when intracellular accumulation of fat necessitates a dynamically supporting and instructive, partly denatured adipogenic pericellular type IV collagen scaffold.  相似文献   

7.
Type I collagen is composed of two α1(I) chains and one α2(I) chain that together form a unique triple helical structure. The genes for these chains are located on different chromosomes but their expression is tightly regulated. In order to investigate the mechanism of regulation of coordinate expression of these genes, I examined conditions for the efficient transfection of normal human skin fibroblasts with luciferase reporter gene constructs containing noncoding region of the first exon and the upper 500 base pairs sequence of the α1(I) or α2(I) gene. Expression ratio of these two reporter gene constructs was two to one, indicating these regions of α1(I) and α2(I) genes contain essential regulatory elements for the coordinate expression of α1(I) and α2(I) genes located on different chromosomes.  相似文献   

8.
Adhesion to collagens by most cell types is mediated by the integrins α1β1 and α2β1. Both integrin α subunits belong to a group which is characterized by the presence of an I domain in the N-terminal half of the molecule, and this domain has been implicated in the ligand recognition. Since purified α1β1 and α2β1 differ in their binding to collagens I and IV and recognize different sites within the major cell binding domain of collagen IV, we investigated the potential role of the α1 and α2 I domains in specific collagen adhesion. We find that introducing the α2 I domain into α1 results in surface expression of a functional collagen receptor. The adhesion mediated by this chimeric receptor (α1-2-1β1) is similar to the adhesion profile conferred by α2β1, not α1β1. The presence of α2 or α1-2-1 results in preferential binding to collagen I, whereas α1 expressing cells bind better to collagen IV. In addition, α1 containing cells bind to low amounts of a tryptic fragment of collagen IV, whereas α2 or α1-2-1 bearing cells adhere only to high concentrations of this substrate. We also find that collagen adhesion of NIH-3T3 mediated by α2β1 or α1-2-1β1, but not by α1, requires the presence of Mn2+ ions. This ion requirement was not found in CHO cells, implicating the I domain in cell type-specific activation of integrins. J. Cell. Physiol. 176:634–641, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Twelve of sixteen different cell types including fibroblasts and tumor cells were able to attach and spread on substrates of pepsin-solubilized or intact collagen VI, and on its triple helical domain. Attachment and spreading were independent of soluble mediator proteins (fibronectin, laminin) and collagen VI was distinct from collagens I, IV and V in the cells with which it interacted. Many of the same cells bound and spread on substrates prepared from unfolded α2(VI) and α3(VI) chains but not on the α1(VI) chain. The interactions with the chains were inhibited by low concentrations (10–100 μM) of synthetic RGDS and RGDT but not RGES peptides while the binding of cells to pepsin-solubilized collagen VI was more than 20-fold less sensitive to these peptides. The data incidate that cells have the ability to bind to collagen VI in a specific manner suggesting a similar function for collagen VI in situ.  相似文献   

10.
We evaluated cellular mechanisms involved in the activation pathway of matrix prometalloproteinase-2 (pro-MMP-2), an enzyme implicated in the malignant progression of many tumor types. Membrane type-1 matrix metalloproteinase (MT1-MMP) cleaves the N-terminal prodomain of pro-MMP-2 thus generating the activation intermediate that then matures into the fully active enzyme of MMP-2. Our results provide evidence on how a collaboration between MT1-MMP and integrin αvβ3 promotes more efficient activation and specific, transient docking of the activation intermediate and, further, the mature, active enzyme of MMP-2 at discrete regions of cells. We show that coexpression of MT1-MMP and integrin αvβ3 in MCF7 breast carcinoma cells specifically enhances in trans autocatalytic maturation of MMP-2. The association of MMP-2′s C-terminal hemopexin-like domain with those molecules of integrin αvβ3 which are proximal to MT1-MMP facilitates MMP-2 maturation. Vitronectin, a specific ligand of integrin αvβ3, competitively blocked the integrin-dependent maturation of MMP-2. Immunofluorescence and immunoprecipitation studies supported clustering of MT1-MMP and integrin αvβ3 at discrete regions of the cell surface. Evidently, the identified mechanisms appear to be instrumental to clustering active MMP-2 directly at the invadopodia and invasive front of αvβ3-expressing cells or in their close vicinity, thereby accelerating tumor cell locomotion.  相似文献   

11.
Ascorbic acid stimulates secretion of type I collagen because of its role in 4-hydroxyproline synthesis, but there is some controversy as to whether secretion of type IV collagen is similarly affected. This question was examined in differentiated F9 cells, which produce only type IV collagen, by labeling proteins with [14C]proline and measuring collagen synthesis and secretion. Hydroxylation of proline residues in collagen was inhibited to a greater extent in cells treated with the iron chelator α,α′-dipyridyl (97.7%) than in cells incubated without ascorbate (63.1%), but both conditions completely inhibited the rate of collagen secretion after 2–4 h, respectively. Neither treatment affected laminin secretion. Collagen synthesis was not stimulated by ascorbate even after treatment for 2 days. On SDS polyacrylamide gels, collagen produced by α,α′-dipyridyl-treated cells consisted mainly of a single band that migrated faster than either fully (+ ascorbate) or partially (− ascorbate) hydroxylated α1(IV) or α2(IV) chains. It did not contain interchain disulfide bonds or asn-linked glycosyl groups, and was completely digested by pepsin at 15°C. These results suggested that it was a degraded product lacking the 7 S domain and that it could not form a triple helical structure. In contrast, the partially hydroxylated molecule contained interchain disulfide bonds and it was cleaved by pepsin to collagenous fragments similar in size to those obtained from the fully hydroxylated molecule, but at a faster rate. Kinetic experiments and monensin treatment suggested that completely unhydroxylated type IV collagen was degraded intracellularly in the endoplasmic reticulum or cis Golgi. These studies indicate that partial hydroxylation of type IV collagen confers sufficient helical structure to allow interchain disulfide bond formation and resistance to pepsin and intracellular degradation, but not sufficient for optimal secretion. J Cell. Biochem. 67:338–352, 1997. Published 1997 Wiley-Liss, Inc.  相似文献   

12.
The membrane type (MT)-matrix metalloproteinases (MMPs) constitute a subgroup of membrane-anchored MMPs that are major mediators of pericellular proteolysis and physiological activators of pro-MMP-2. The MT-MMPs also exhibit differential inhibition by members of the tissue inhibitor of metalloproteinase (TIMP) family. Here we investigated the processing, catalytic activity, and TIMP inhibition of MT3-MMP (MMP-16). Inhibitor profile and mutant enzyme studies indicated that MT3-MMP is regulated on the cell surface by autocatalytic processing and ectodomain shedding. Inhibition kinetic studies showed that TIMP-3 is a high affinity inhibitor of MT3-MMP when compared with MT1-MMP (K(i) = 0.008 nm for MT3-MMP versus K(i) = 0.16 nm for MT1-MMP). In contrast, TIMP-2 is a better inhibitor of MT1-MMP. MT3-MMP requires TIMP-2 to accomplish full pro-MMP-2 activation and this process is enhanced in marimastatpretreated cells, consistent with regulation of active enzyme turnover by synthetic MMP inhibitors. TIMP-3 also enhances the activation of pro-MMP-2 by MT3-MMP but not by MT1-MMP. TIMP-4, in contrast, cannot support pro-MMP-2 activation with either enzyme. Affinity chromatography experiments demonstrated that pro-MMP-2 can assemble trimolecular complexes with a catalytic domain of MT3-MMP and TIMP-2 or TIMP-3 suggesting that pro-MMP-2 activation by MT3-MMP involves ternary complex formation on the cell surface. These results demonstrate that TIMP-3 is a major regulator of MT3-MMP activity and further underscores the unique interactions of TIMPs with MT-MMPs in the control of pericellular proteolysis.  相似文献   

13.
Our previous reports showed that cultured human cells secrete non-disulfide-bonded non-helical alpha1(IV) and alpha2(IV) chains under physiological conditions. In the present report we show that the alpha(IV) chains in non-helical form were reactive to lectin ABA (Agaricus bisporus agglutinin), whereas the alpha(IV) chains secreted in triple-helical form were not. These results indicate that ABA could be used to distinguish the two conformational isomers of type IV collagen polypeptides. An alpha1(IV) chain isolated from human placenta with an antibody-coupled column showed a positive reaction to ABA, indicating that gelatin form of the type IV collagen alpha1(IV) chain is produced and retained in the tissue in vivo. A possible significance of the gelatin form is discussed from the finding that the non-helical alpha1(IV) chain purified with EDTA-free buffer contained degraded polypeptides including NC1-size domain and showed an apparent inhibition against activated pro-MMP-9. This is the first report to show that a gelatin form of protein exists in vivo.  相似文献   

14.
A chiroptical method of conformational analysis is applied to linear (1 → 3)-β-D -glucans and the dimeric analogues β- and α-laminaribioside. The method is based on a recently developed semiempirical calculational model for saccharide optical activity. We conclude that disaccharide conformational energy maps in the literature represent the effective potential energy surface in aqueous solution well. The positive optical rotation observed with long chains in dilute alkaline solution is not characteristic of any single–chain conformation, and must reflect chain association.  相似文献   

15.
Goodpasture's (GP) disease is caused by autoantibodies that target the alpha3(IV) collagen chain in the glomerular basement membrane (GBM). Goodpasture autoantibodies bind two conformational epitopes (E(A) and E(B)) located within the non-collagenous (NC1) domain of this chain, which are sequestered within the NC1 hexamer of the type IV collagen network containing the alpha3(IV), alpha4(IV), and alpha5(IV) chains. In this study, the quaternary organization of these chains and the molecular basis for the sequestration of the epitopes were investigated. This was accomplished by physicochemical and immunochemical characterization of the NC1 hexamers using chain-specific antibodies. The hexamers were found to have a molecular composition of (alpha3)(2)(alpha4)(2)(alpha5)(2) and to contain cross-linked alpha3-alpha5 heterodimers and alpha4-alpha4 homodimers. Together with association studies of individual NC1 domains, these findings indicate that the alpha3, alpha4, and alpha5 chains occur together in the same triple-helical protomer. In the GBM, this protomer dimerizes through NC1-NC1 domain interactions such that the alpha3, alpha4, and alpha5 chains of one protomer connect with the alpha5, alpha4, and alpha3 chains of the opposite protomer, respectively. The immunodominant Goodpasture autoepitope, located within the E(A) region, is sequestered within the alpha3alpha4alpha5 protomer near the triple-helical junction, at the interface between the alpha3NC1 and alpha5NC1 domains, whereas the E(B) epitope is sequestered at the interface between the alpha3NC1 and alpha4NC1 domains. The results also reveal the network distribution of the six chains of collagen IV in the renal glomerulus and provide a molecular explanation for the absence of the alpha3, alpha4, alpha5, and alpha6 chains in Alport syndrome.  相似文献   

16.
We first completed the primary structure of the mouse alpha5(IV) and alpha6(IV) chains, from which synthetic peptides were produced and a chain-specific monoclonal antibodies were raised. Expression of collagen IV genes in various basement membranes underlying specific organ epithelia was analyzed by immunohistochemical staining using these monoclonal antibodies and other antibodies from human and bovine sequences. It was possible to predict the presence of the three collagen IV molecules: [alpha1(IV)](2) alpha2(IV), alpha3(IV)alpha4(IV)alpha5(IV), and [alpha5(IV)](2)alpha6(IV). In skin basement membrane two of the three forms, [alpha1(IV)](2)alpha2(IV) and [alpha5(IV)](2)alpha6(IV), were detected. The alpha3(IV)alpha4(IV)alpha5(IV) molecule was observed as the major form in glomerulus, alveolus, and choroid plexus, where basement membranes function as filtering units. The molecular form [alpha5(IV)](2)alpha6(IV) was present in basement membranes in tubular organs such as the epididymis, where the tubes need to expand in diameter. Thus, the distribution of the basement membranes with different molecular composition is consistent with tissue-specific function.  相似文献   

17.
Laminins assemble into trimers composed of α, β, and γ chains which posttranslationally are glycosylated and sometimes proteolytically cleaved. In the current paper we set out to characterize posttranslational modifications and the laminin isoforms formed by laminin α1 and α5 chains. Comparative pulse–chase experiments and deglycosylation studies in JAR cells established that the Mr 360,000 laminin α1 chain is glycosylated into a mature Mr 400,000 band while the Mr 370,000 laminin α5 chain is glycosylated into a Mr 390,000 form that upon secretion is further processed into a Mr 380,000 form. Hence, despite the shorter peptide length of α1 chain in comparison with the α5 chain, secreted α1 assumes a larger size in SDS–PAGE due to a higher degree of N-linked glycosylation and due to the lack of proteolytic processing. Immunoprecipitations and Western blotting of JAR laminins identified laminin α1 and laminin α5 chains in laminin-1 and laminin-10. In placenta laminin α1 chain (Mr 400,000) and laminin α5 chain (Mr 380,000/370,000 doublet) were found in laminin-1/-3 and laminin-10/-11. Immunohistochemically we could establish that the laminin α1 chain in placenta is deposited in the developing villous and trophoblast basement membrane, also found to contain laminin β2 chains. Surprisingly, a fraction of the laminin α1 chain from JAR cells and placenta could not be precipitated by antibodies to laminin β1–β3 chains, possibly pointing to an unexpected complexity in the chain composition of α1-containing laminin isoforms.  相似文献   

18.
Our previous report showed that human fetal lung fibroblasts secreted non-disulfide-bonded, non-helical collagenous polypeptides of alpha1(IV) and alpha2(IV) chains depending on culture conditions [Connective Tissue (1999) 31, 161-168]. The secretion of non-helical collagenous polypeptides is unexpected from the current consensus that such polypeptides are not secreted under physiological conditions. The absence of interchain disulfide bonds among alpha1(IV) and alpha2(IV) chains was always correlated with the absence of triple-helical structure of the type IV collagen. The finding corresponds with the fact that the interchain disulfide bonds are formed at or close to the completion of the type IV collagen triple-helix formation. The present report shows that ascorbate is the primary factor for the triple-helix formation of the type IV collagen. When human mesangial cells were cultured with ascorbate, only the triple-helical type IV collagen was secreted. However, when the cells were cultured without ascorbate, the non-helical alpha1(IV) and alpha2(IV) chains were secreted. Relative amounts of the secreted products were unchanged with or without ascorbate, suggesting that ascorbate is required for the step of the triple-helix formation. The ascorbate-dependency of the triple-helix formation of the type IV collagen was observed in all the human cells examined. The non-helical alpha1(IV) chain produced by the ascorbate-free culture contained about 80% less hydroxyproline than the alpha1(IV) chain from the triple-helical type IV collagen. The evidence for the non-association of the non-helical alpha1(IV) and alpha2(IV) chains in the conditioned medium was obtained by an anti-alpha1(IV) antibody-coupled affinity column chromatography for the conditioned medium. Although all the non-helical alpha1(IV) chains were found in the bound fraction, all the non-helical alpha2(IV) chains were recovered in the flow-through fraction. The present findings suggest that ascorbate plays a key role in the trimerization step of three alpha chains and/or in the subsequent triple-helix formation of the type IV collagen.  相似文献   

19.
 Smooth muscle is composed of cigar-shaped, non-striated cells, each of which is encapsulated by a basement membrane and forms the contractile portion of tubular organs such as the gastrointestinal tract, pulmonary tract, genitourinary tract, and vasculature, in which slow and sustained contractions are needed. We examined basement membranes produced by smooth muscle cells and, using α(IV) chain-specific monoclonal antibodies, analyzed type IV collagens in these organs. Detailed distribution analysis of the α chains in normal and Alport cases by use of specific antibodies indicated that there are at least three molecular forms of type IV collagen, [α1(IV)]2α2(IV), α3(IV)α4(IV)α5(IV), and α5(IV)/α6(IV). Smooth muscle cells in the urinary bladder and uterus were enclosed by basement membranes composed of α1, α2, α5, and α6 chains. The same α chains were present around smooth muscle cells in the muscular layer of the fundus of the stomach, whereas those in the antrum and further distal side of the gastrointestinal tract expressed mostly α1 and α2 chains. In addition, immunostaining analysis of the vasculature also showed that most of the smooth muscle cells were positive for α1 and α2 chains; however, α5 and α6 chains were also expressed by smooth muscle cells in the aorta and some arteries where blood pressure changes significantly. These results suggest that the smooth muscle cells enclosed by α5/α6-containing basement membranes might have some particular function related to mechanical stress or tensile strength during the characteristic contractile activity of tubular organs. Accepted: 23 March 1998  相似文献   

20.
17β-hydroxysteroid dehydrogenases (17β-HSD) catalyze the conversion of estrogens and androgens at the C17 position. The 17β-HSD type I, II, III and IV share less than 25% amino acid similarity. The human and porcine 17β-HSD IV reveal a three-domain structure unknown among other dehydrogenases. The N-terminal domains resemble the short chain alcohol dehydrogenase family while the central parts are related to the C-terminal parts of enzymes involved in peroxisomal β-oxidation of fatty acids and the C-terminal domains are similar to sterol carrier protein 2. We describe the cloning of the mouse 17β-HSD IV cDNA and the expression of its mRNA. A probe derived from the human 17β-HSD IV was used to isolate a 2.5 kb mouse cDNA encoding for a protein of 735 amino acids showing 85 and 81% similarity with human and porcine 17β-HSD IV, respectively. The calculated molecular mass of the mouse enzyme amounts to 79,524 Da. The mRNA for 17β-HSD IV is a single species of about 3 kb, present in a multitude of tissues and expressed at high levels in liver and kidney, and at low levels in brain and spleen. The cloning and molecular characterization of murine, human and porcine 17β-HSD IV adds to the complexity of steroid synthesis and metabolism. The multitude of enzymes acting at C17 might be necessary for a precise control of hormone levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号