首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Treves A 《Animal behaviour》2000,60(6):711-722
Predation is considered one of the most important selective pressures on free-ranging animals. Our understanding of it derives mainly from studies of individual vigilance (visual scanning of the surroundings beyond the immediate vicinity) and aggregation in prey. Vigilance bears a direct relationship to aggregation, because animals in groups may rely on associates for early warning of danger. This review addresses the relationship between vigilance and aggregation with particular attention to the prediction that individual vigilance declines with increasing group size. Contrary to most other animals studied, primates do not support the prediction. Exploring this, I examined the assumptions underlying vigilance theory in the light of primate behaviour. First I tested whether manual harvesting and upright processing of food as seen among primates might permit them to feed and scan simultaneously. I found no support for this idea. Next I examined the targets of primate vigilance and found that one component (within-group vigilance) might explain the differences between primates and other animals. Finally, I evaluated whether individual primates in large groups face a lower risk of predation than those in small groups. A conclusion was impossible, but by separating group-level from individual-level risk, I was able to identify several common circumstances in which group size would not predict individual risk or vigilance. These circumstances arose for primates and nonprimates alike. I concluded that the relationship of vigilance to aggregation is not straightforward. The absence of a group-size effect on vigilance among primates is probably due to functional differences in vigilance behaviour or safety in groups, not to methodological differences. Furthermore, future work on animal vigilance and aggregation must fully consider both the targets of glances, and the assumption that larger groups are safer from predators. I predict that animals will not relax vigilance in larger groups if conspecific threat increases with group size. Group size will not predict individual risk of predation nor individual vigilance rates when predators do not rely on surprise, or when predators select a small subset of highly vulnerable group members. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

2.
Previous studies of vigilance behaviour have focused mainly on the influence of predation threat, whereas the influences of conspecific factors, such as within‐group threats, are relatively unstudied. To elucidate the influences of conspecific factors, this study examined vigilance behaviour in wild chimpanzees (Pan troglodytes schweinfurthii) in Mahale Mountains National Park, Tanzania. Vigilance level was lower during foraging than during resting, which indicated a conflict between vigilance and foraging activity. In addition, vigilance level was higher when chimpanzees were on the ground where an encounter with leopards (Panthera pardus) is likely than when the chimpanzees were in trees. Males, but not females, increased their level of vigilance as the number of individuals within 3 m increased. In both males and females, daily party size – an index of group cohesion – did not affect the vigilance level. The level of maternal vigilance was higher when a dependent infant was separated from its mother than when the offspring was in contact with its mother. Both males and females increased their vigilance when a less‐associated group member was nearby, when compared with when there was no less‐associated group member nearby. This finding suggests that variation in relationship quality influences the vigilance level and that individuals need to increase their level of vigilance when the level of within‐group threats is high. This study indicated that variation in vigilance cannot be understood unless conspecific factors, such as variation in the relationship quality with associates, are considered.  相似文献   

3.
Individuals of social and partially social species typically reduce their vigilance activity when foraging in groups. As a result, per capita risk of predation decreases and individuals allocate more time to foraging and other fitness rewarding activities. Reduction of per capita risk is hypothesized to occur because there are more individuals to detect potential predators. If so, collective (i.e. total) vigilance is expected to increase with foraging group size. Increased surveillance during group foraging may occur if group members scan independently of one another, or sequentially to avoid the overlapping of their vigilance bouts. Intriguingly, such coordinated vigilance assumes that individuals monitor not only the presence, but the vigilance behaviour of group mates. We used seasonal records on time budget and grouping patterns of individually marked degus (Octodon degus), a social rodent, to examine if (a) individual vigilance decreases and/or foraging increases with group size, (b) collective vigilance increases with group size and (c) foraging degus coordinate their vigilance. When foraging, degus decreased their individual vigilance and increased their foraging time when in larger groups. Despite this, degus in larger groups increased their collective vigilance, supporting the hypothesis that socially foraging degus decrease predation risk through an improved ability to detect and escape potential predators. Additionally, patterns of collective vigilance suggested that degus scan independently of each other and so, they do not coordinate their vigilance to prevent its temporal overlapping. This finding does not support that foraging degus monitor the vigilance activity of group mates.  相似文献   

4.
White‐faced saki monkeys (Pithecia pithecia) lack most of the behavioral and physical traits typical of primate monogamy [Fuentes, 1999 ]. In order to determine if social bonds in this species reflect patterns displayed by pair‐bonded groups or larger multimale–multifemale groups, we draw on 17 months of data collected on wild white‐faced sakis at Brownsberg Nature Park, Suriname. We analyzed within‐group social bonds for three habituated groups (one two‐adult and two multiadult groups) by measuring grooming, proximity, and approach/leave patterns between adult and subadult group members. We found that both two‐adult and multiadult groups showed significantly stronger social bonds between a single male–female dyad within each group (deemed “primary dyads”). In all three groups, primary dyads were composed of the oldest adult male and a breeding female. These pairs had significantly higher levels of grooming than other within‐group dyads and were also in close proximity (<1 m) more often than nonprimary dyads. Grooming in primary dyads was nonreciprocal, and consistently biased toward female investment. Grooming patterns in nonprimary dyads varied, but were often more reciprocal. Grooming and proximity of the primary dyad also changed in relation to infant development. Our results suggest that while white‐faced sakis do not show behavioral and physical traits typical of monogamy or pair‐bonding, social bonds are strongest between a single male–female pair. Pitheciine social systems range from small group monogamy in Callicebus to large multimale–multifemale groups in Chiropotes and Cacajao. As the middle taxon in this platyrrhine radiation, behavioral strategies of white‐faced sakis provide a model for how social bonds and affiliation could be influenced by and affect the evolution of larger group size in primates. Am. J. Primatol. 73:1051–1061, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

5.
Throughout many regions of the tropics, non‐primate animals – mainly birds and mammals – have been observed to follow primate groups and to exploit dropped food and flushed prey. The anecdotal nature of most of the numerous reports on these primate–non‐primate associations (PNPAs) may obscure the biological significance of such associations. We review the existing literature and test predictions concerning the influence of primate traits (body size, activity patterns, dietary strategies, habitat, group size) on the occurrence of PNPAs. Furthermore, we examine the influence of non‐primates' dietary strategies on the occurrence of PNPAs, and the distribution of benefits and costs. We detected a strong signal in the geographic distribution of PNPAs, with a larger number of such associations in the Neotropics compared to Africa and Asia. Madagascar lacks PNPAs altogether. Primate body size, activity patterns, habitat and dietary strategies as well as non‐primate dietary strategies affect the occurrence of PNPAs, while primate group size did not play a role. Benefits are asymmetrically distributed and mainly accrue to non‐primates. They consist of foraging benefits through the consumption of dropped leaves and fruits and flushed prey, and anti‐predation benefits through eavesdropping on primate alarm calls and vigilance. Where quantitative information is available, it has been shown that benefits for non‐primates can be substantial. The majority of PNPAs can thus be categorized as cases of commensalism, while mutualism is very rare. Our review provides evidence that the ecological function of primates extends beyond their manifold interactions with plants, but may remain underestimated.  相似文献   

6.
Predation is proposed to be one of the most important factors influencing the evolution of mammalian societies. Although predation risk is thought to influence both the behavior and grouping patterns of most diurnal primates, evidence supporting this hypothesis is still limited. The spatial and temporal patterns of mineral lick use by one group of white‐bellied spider monkeys (Ateles belzebuth) were evaluated, based on the growing evidence that mineral licks are perceived as areas of relative high predation risk by Neotropical primates. The area immediately surrounding the mineral lick was the most intensively used area within the home range of the study group, particularly by large subgroups of monkeys, and there were differences in mean subgroup size on days of mineral lick visitation versus days without lick visits. Additionally, on days of mineral lick visitation, subgroup size reached its maximum specifically during the period of lick visitation. Finally, on visit days subgroups showed a greater increase in size and higher fusion rates in the 2 hr before arriving at the lick in comparison with matched time windows on non‐visit days. Together, these results provide an example of how primates employ behavioral strategies that might reduce the effects of predation. This study also demonstrates how taxa characterized by a high degree of fission‐fusion dynamics can allow us to test hypotheses regarding the effects of socioecological variables on primate grouping patterns. Am J Phys Anthropol 150:579–590, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The group size effect states that animals living in groups gain anti‐predator benefits through reducing vigilance levels as group size increases. A basic assumption of group size effect is that all individuals are equally important for a focal individual, who may adjust its vigilance levels according to social information acquired from them. However, some studies have indicated that neighbors pose greater influences on an individual's vigilance decisions than other group members, especially in large aggregations. Vigilance has also been found to be directed to both predators (anti‐predation vigilance) and conspecifics (social vigilance). Central individuals might rely more on social vigilance than peripheral individuals. To test these hypotheses, we examined the effects of flock size, number of neighbors and position within a flock on vigilance and competition of greater white‐fronted goose Anser albifrons that form large foraging flocks in winter, controlling the effects of other variables (group identity, winter period and site). We found that individual vigilance levels were significantly affected by number of neighbors and position within a flock, whereas flock size showed no effect. Individuals devoted a large component of vigilance to nearby flock mates. Central individuals directed a relatively larger proportion of vigilance to monitor neighbors than peripheral ones, indicating that central individuals more relied on social information acquired from neighbors, possibly caused by the more blocked visual field of central individuals. Moreover, some social vigilance may function as conducting or preventing agonistic interactions since competition intensity was positively correlated with number of neighbors. Our study therefore demonstrate that the number of neighbors is more important than group size in determining individual vigilance in large animal groups. Further studies are still needed to unravel which neighbors pose greater influence on individual vigilance, and the factors that influence individuals to acquire information from their neighbors to adjust vigilance behaviors.  相似文献   

8.
Vigilance allows animals to monitor their surroundings for signs of danger associated with predators or rivals. As vigilance is costly, models predict that it should increase when the risk posed by predators or rivals increases. In addition, vigilance is expected to decrease in larger groups that provide more safety against predators. Risk and group size are thus two key determinants of vigilance. Together, they could have additive or interactive effects. If risk and group size interacted, the magnitude of the group‐size effect on vigilance would vary depending on the level of risk experienced, implying that the benefits of sociality in terms of vigilance vary with risk. Depending on the model, vigilance is predicted to decrease more rapidly with group size at low risk or at high risk. Little work has focused directly on the interaction between risk and group size, making it difficult to understand under which conditions particular interactive effects arise and whether interactive effects are common in natural systems. I review the vast literature on vigilance in birds and mammals to assess whether interactive effects between risk and group size are common, and if present, which pattern occurs more frequently. In studies involving predation risk, the greatest proportion reported no statistically significant interactive effects. In other cases, vigilance decreased with group size more rapidly at low or high risk in a similar proportion of studies. In studies involving risk posed by rivals (social risk), most documented a more rapid decrease in vigilance with group size at low than at high risk, as predicted if the need to monitor rivals increases in larger groups. Low statistical power to detect interactive effects might have been an issue in several studies. The absence of interactive effects, on the other hand, might suggest constraints or limits on the ability of animals to adjust vigilance to current risk or group sizes. Interactive effects on vigilance have implications for the evolution of sociality and for our understanding of the phenotypic plasticity of predator‐ and competitor‐induced defences and deserve more attention in future studies.  相似文献   

9.
We studied the effect of group size on the proportion of time that greater rheas, Rhea americana, allocated to vigilance and feeding during the non‐breeding season. We tested whether: (1) the proportion of time that one bird allocates to vigilance (individual vigilance) decreases with group size, and (2) the proportion of time that at least one bird of the group is vigilant (collective vigilance) increases with group size. We analyzed video‐recordings of birds that were foraging alone or in groups from two to 12 birds. The proportion of time allocated to individual vigilance decreased and the proportion of time spent feeding increased with group size. In both cases the main significant difference was between birds foraging alone and in groups. Collective vigilance did not vary with group size and it was lower than expected if vigilance bouts were random or sequential. Our results indicate that rheas foraging in large groups would not receive the benefit of an increase in collective vigilance, although they could still benefit from a reduction of predation risk by the dilution effect.  相似文献   

10.
Diurnal primates rely on visual monitoring behavior to collect various kinds of ecological and social information. Vigilance behavior is monitoring specifically to detect external threats. Previous studies of vigilance behavior were focused mainly on the influence of predation threats, whereas the influences of conspecific factors, such as intragroup threats, have been relatively unstudied. Individual vigilance is predicted to be inversely related to the group size or the number of individuals nearby if the main target of the vigilance is a predation threat and positively related if the main target of the vigilance is a conspecific threat. I studied wild chimpanzees (Pan troglodytes schweinfurthii) in Mahale Mountains National Park, Tanzania, and measured the vigilance duration when they are resting on the ground via 2-min focal observation. In both males and females, vigilance duration increased as the number of individuals nearby increased. This result agrees with the idea that the chimpanzees are vigilant toward other group members. In addition, maternal vigilance monitors and protects the safety of dependent offspring as the duration of maternal vigilance was longer when a dependent infant was separated from its mother than when the offspring was in contact with its mother. The results indicate that the vigilance behavior in wild chimpanzees was affected by conspecific factors.  相似文献   

11.
Light is the primary synchronizer of all biological rhythms, yet little is known about the role of the 24‐hour luminous environment on nonhuman primate circadian patterns, making it difficult to understand the photic niche of the ancestral primate. Here we present the first data on proximate light–dark exposure and activity–rest patterns in free‐ranging nonhuman primates. Four individuals each of five species of lemurs at the Duke Lemur Center (Eulemur mongoz, Lemur catta, Propithecus coquereli, Varecia rubra, and Varecia variegata variegata) were fitted with a Daysimeter‐D pendant that contained light and accelerometer sensors. Our results reveal common as well as species‐specific light exposure and behavior patterns. As expected, all five species were more active between sunrise and sunset. All five species demonstrated an anticipatory increase in their pre‐sunrise activity that peaked at sunrise with all but V. rubra showing a reduction within an hour. All five species reduced activity during mid‐day. Four of the five stayed active after sunset, but P. coquereli began reducing their activity about 2 hours before sunset. Other subtle differences in the recorded light exposure and activity patterns suggest species‐specific photic niches and behaviors. The eventual application of the Daysimeter‐D in the wild may help to better understand the adaptive evolution of ancestral primates. Am J Phys Anthropol 153:68–77, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Prey can obtain valuable benefits from associating with other species if heterospecifics help to detect predators or locate good food patches. In mixed‐species groups, how species respond to the presence of other species remains a poorly explored question although it might give crucial insights into mechanisms underlying the interspecific coexistence. We studied temporary mixed‐species groups of large herbivores in Hwange National Park (Zimbabwe) between the common impala (Aepyceros melampus), the focal species here, and bigger species including the plains zebra (Equus quagga), the greater kudu (Tragelaphus strepsiceros) or the blue wildebeest (Connochaetes taurinus). In the Hwange savanna, the focal and smaller species are exposed to a larger range of predators than the associated species. In this context, we investigated how impalas adjusted their vigilance with group size comparing impala‐only and mixed‐species groups and whether the identity of heterospecifics affected vigilance of impalas. Our study showed that the time impalas spent in vigilance significantly decreased with group size when they formed impala‐only groups, whereas it did not significantly vary with group size in mixed‐species groups. Moreover, in mixed‐species groups, impalas did not adjust their time spent in vigilance with the proportion of conspecifics and the identity of the associated species. Thus, the mechanism underlying the difference of impalas' behavioural adjustment of vigilance with group size between single‐ and mixed‐species groups seemed to be related to the presence but not to the number and the identity of heteropecifics. Finally, we discuss the concept that larger and dominant heterospecifics were likely to increase competition for food access, thereby forcing higher vigilance of impalas, outweighing any reduction from collective vigilance.  相似文献   

13.
Collective vigilance is considered a major advantage of group living in animals. We investigated vigilance behavior in wild mustached tamarins (Saguinus mystax), small, arboreal, cooperatively breeding New World primates that form stable mixed-species groups with saddleback tamarins (Saguinus fuscicollis). We aimed 1) to investigate whether vigilance patterns change according to individual activity and 2) to examine whether there is a social component of vigilance in their cooperative and nonaggressive society. We studied 11 factors that may influence vigilance and used this data to interpret the possible functions of vigilance. We observed 44 individuals in 3 mixed-species and 2 single-species groups of 2 populations that differed in population density and home range sizes. Vigilance changed greatly when individuals were engaged in different activities and individual vigilance was affected by different sets of factors depending on the activity. As vigilance decreased in proximity of conspecifics and heterospecifics when feeding, and in larger mixed-species groups when resting, we conclude that the predominant function of vigilance in mustached tamarins is predator related. However, the absence of the group size effect in very large single-species groups suggests that it may also function to maintain group cohesion. In the population with higher density and smaller home ranges individuals also increased their vigilance in home range overlap areas. We found no evidence that mustached tamarins monitor group mates to avoid food stealing or aggression. The effect of heterospecifics on individual vigilance suggests that collective vigilance might have been an important incentive in the evolution of tamarin mixed-species groups.  相似文献   

14.
Vigilance is thought to have evolved as an antipredator defense but, in primates, conspecific threat often better explains this behavior. We examined vigilance in one group of Colobus vellerosus inhabiting the Boabeng‐Fiema Monkey Sanctuary in Ghana. We aimed to (1) describe factors affecting vigilance in this population, and (2) examine the importance of predation avoidance and conspecific threat in explaining vigilance patterns. Because of a male takeover preceding the study, our focal group (B2) consisted of six adult males and three adult females. We collected 490 10‐min focal samples (82 hr) from all adults in the group (N=9) from July to November, 2001. To avoid predators, individuals should be more vigilant (i) with fewer neighbors, and (ii) in areas of the canopy with higher predation risks. Conspecific threats can be divided into extra‐ and intra‐group threats. Extra‐group threats should lead to higher vigilance levels (iii) during intergroup encounters, and (iv) in areas where the home range overlaps with other groups of colobus. Intra‐group threats should lead to greater vigilance (v) in the presence of neighbors and (vi) while feeding or occupying food patches (if resources are limiting). Our results best support the hypothesis that vigilance functions primarily to detect extra‐group, conspecific threats. Individuals were most vigilant during intergroup encounters and in areas of range overlap, and monthly vigilance rates were associated with monthly encounter rates. Individuals tended to scan less in proximity to familiar vs. unfamiliar group mates, suggesting that relationship quality may affect colobus vigilance. Finally, predation pressures or anthropogenic disturbances might have influenced vigilance, as individuals were more vigilant low in the canopy. However, this last result could also be due to the lower visibility because of dense foliage or to the fact that the monkeys have access to fewer escape routes when ranging lower in the canopy. Am. J. Primatol. 71:919–927, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The amount of non-maternal care (allocare) found in primates varies greatly from species to species. Our paper examines this variation and focuses on possible reasons why mothers in some anthropoid primate species are prepared to relinquish their infants to other carers whereas others are not. We use data collected from the literature to test a number of hypotheses that attempt to explain the observed variation in non-maternal care. Analyses were carried out using comparative methods that control for the influence of both body size and phylogeny on life-history and ecological variation. The results support previous studies of both primates and other mammals in finding a clear link between the amount of allocare provided and female reproductive rates. Species with high allocare levels grow rapidly post-natally and wean their infants at a younger age (but at the same relative size) than species of the same body size with lower allocare levels. This early weaning allows high allocare species to support higher birth rates than low allocare species but does not result in earlier maturation. Our results, therefore, suggest that mothers allow non-maternal care of their infants in order to increase their own reproductive output. It is not clear whether such a strategy also benefits the infant, as we could find no link between the presence of allocare and early maturation (which would increase the infant's reproductive output) or between allocare levels and infant survival (as measured by vulnerability to infanticide). This suggests that mothers and infants might come into conflict over transfer to other carers, as the benefits to the mother may not be accompanied by benefits to the infant. However, although mothers may benefit from allocare in some circumstances, they will not be expected to allow allocare if the costs are high (e.g. if there is a high risk to the infant).  相似文献   

16.
Interspecific aggression amongst nonhuman primates is rarely observed and has been mostly related to scenarios of resource competition. Interspecific infanticide is even rarer, and both the ultimate and proximate socio‐ecological factors explaining this behavior are still unclear. We report two cases of interspecific infanticide and five cases of interspecific infant‐directed aggression occurring in a well‐habituated primate community living in a fragmented landscape in Colombia. All cases were initiated by male brown spider monkeys (Ateles hybridus) and were directed toward infants of either red howler monkeys (Alouatta seniculus: n = 6 cases) or white‐fronted capuchins (Cebus albifrons: n = 1 case). One individual, a subadult spider monkey male, was involved in all but one case of interspecific infanticide or aggression. Other adult spider monkeys participated in interspecific aggression that did not escalate into potentially lethal encounters. We suggest that competition for food resources and space in a primate community living in high population densities and restricted to a forest fragment of ca. 65 ha might partly be driving the observed patterns of interspecific aggression. On the other hand, the fact that all but one case of interspecific infanticide and aggression involved the only subadult male spider monkey suggests this behavior might either be pathological or constitute a particular case of redirected aggression. Even if the underlying principles behind interspecific aggression and infanticide are poorly understood, they represent an important factor influencing the demographic trends of the primate community at this study site. Am. J. Primatol. 74:990‐997, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Primates are facing an impending extinction crisis, driven by extensive habitat loss, land use change and hunting. Climate change is an additional threat, which alone or in combination with other drivers, may severely impact those taxa unable to track suitable environmental conditions. Here, we investigate the extent of climate and land use/cover (LUC) change‐related risks for primates. We employed an analytical approach to objectively select a subset of climate scenarios, for which we then calculated changes in climatic and LUC conditions for 2050 across primate ranges (N = 426 species) under a best‐case scenario and a worst‐case scenario. Generalized linear models were used to examine whether these changes varied according to region, conservation status, range extent and dominant habitat. Finally, we reclassified primate ranges based on different magnitudes of maximum temperature change, and quantified the proportion of ranges overall and of primate hotspots in particular that are likely to be exposed to extreme temperature increases. We found that, under the worst‐case scenario, 74% of Neotropical forest‐dwelling primates are likely to be exposed to maximum temperature increases up to 7°C. In contrast, 38% of Malagasy savanna primates will experience less pronounced warming of up to 3.5°C. About one quarter of Asian and African primates will face up to 50% crop expansion within their range. Primary land (undisturbed habitat) is expected to disappear across species' ranges, whereas secondary land (disturbed habitat) will increase by up to 98%. With 86% of primate ranges likely to be exposed to maximum temperature increases >3°C, primate hotspots in the Neotropics are expected to be particularly vulnerable. Our study highlights the fundamental exposure risk of a large percentage of primate ranges to predicted climate and LUC changes. Importantly, our findings underscore the urgency with which climate change mitigation measures need to be implemented to avert primate extinctions on an unprecedented scale.  相似文献   

18.
Many previous studies have found that as group size increases, individual vigilance levels decrease and forage intake increases (group‐size effect), but few such studies have considered the impact of within‐group interactions and other confounding factors on the direction of group‐size effects. A free‐ranging population of feral goats (Capra hircus), with little predation threat, was studied on the Isle of Rum (northwest Scotland), from Jun. to Nov. 2000, to investigate the effects of group size on individual vigilance levels and foraging efficiency after taking into account the effect of confounding factors (e.g. sex, season, time of day, habitat, predation risk) and within‐group interactions (via changes in movement rates while feeding). Our results show that, while group size exerted a negative influence on individual vigilance levels and a positive effect on movement rate, foraging efficiency never increased with group size and even decreased at certain times of day. There was no sex difference in individual vigilance in feral goats, but foraging efficiency was higher in females than in males. Goats were more vigilant in fall than in summer. The results imply that the benefits for foraging obtained from the reduced vigilance level in larger groups may be constrained or offset by increased interaction (or competition) within larger groups even in a population that faces negligible predation risk.  相似文献   

19.
The bacterial population of the primate vaginal canal is an infant primate's first exposure to the microbial population inhabiting the outside world. Yet, little is known about this population and the effect it might have on the development and survival of the infant primate. As a first step toward characterizing the vaginal microbiota of a nonhuman primate, we used denaturing gradient gel electrophoresis to evaluate variations in the vaginal microbiota of a group of 35 baboons (Papio hamadryas), which were housed in a facility where they shared the same diet and the same environmental conditions. We found that, despite the uniform environment, there were appreciable differences in the composition of the microbiota from one individual to another. Our results also indicate that a simple swab test is sufficient for sampling the vaginal microbiota in the field, a finding that should help make more detailed characterization of the microbiota of wild primates feasible in the future. Am. J. Primatol. 72:467–474, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Many studies in primate and human evolution focus on aspects of cranial morphology to address issues of systematics, phylogeny, and functional anatomy. However, broad analyses of cranial diversity within Primates as an Order are notably absent. In this study, we present a 3D geometric morphometric analysis of primate cranial morphology, providing a multivariate comparison of the major patterns of cranial shape change during primate evolution and quantitative assessments of cranial diversity among different clades. We digitized a set of 18 landmarks designed to capture overall cranial shape on male and female crania representing 66 genera of living primates. The landmark data were aligned using a Generalized Procrustes Analysis and then subjected to a principal components analysis to identify the major axes of cranial variation. Cranial diversity among clades was compared using multivariate measurements of variance. The first principal component axis reflects differences in cranial flexion, orbit size and orientation, and relative neurocranial volume. In general, it separates strepsirrhines from anthropoids. The second axis reflects differences in relative cranial height and snout length and primarily describes differences among anthropoids. Eulemur, Mandrillus, Pongo, and Homo are among the extremes in cranial shape. Anthropoids, catarrhines, and haplorhines show a higher variance than prosimians or strepsirrhines. Hominoids show the highest variance in cranial shape among extant primate clades, and much of this diversity is driven by the unique cranium of Homo sapiens. Am J Phys Anthropol 142:565–578, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号