首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TGF-β1 and VEGF, both angiogenesis inducers, have opposing effects on vascular endothelial cells. TGF-β1 induces apoptosis; VEGF induces survival. We have previously shown that TGF-β1 induces endothelial cell expression of VEGF, which mediates TGF-β1 induction of apoptosis through activation of p38 mitogen-activated protein kinase (MAPK). Because VEGF activates p38(MAPK) but protects the cells from apoptosis, this finding suggested that TGF-β1 converts p38(MAPK) signaling from prosurvival to proapoptotic. Four isoforms of p38(MAPK) -α, β, γ, and δ-have been identified. Therefore, we hypothesized that different p38(MAPK) isoforms control endothelial cell apoptosis or survival, and that TGF-β1 directs VEGF activation of p38(MAPK) from a prosurvival to a proapoptotic isoform. Here, we report that cultured endothelial cells express p38α, β, and γ. VEGF activates p38β, whereas TGF-β1 activates p38α. TGF-β1 treatment rapidly induces p38α activation and apoptosis. Subsequently, p38α activation is downregulated, p38β is activated, and the surviving cells become refractory to TGF-β1 induction of apoptosis and proliferate. Gene silencing of p38α blocks TGF-β1 induction of apoptosis, whereas downregulation of p38β or p38γ expression results in massive apoptosis. Thus, in endothelial cells p38α mediates apoptotic signaling, whereas p38β and p38γ transduce survival signaling. TGF-β1 activation of p38α is mediated by VEGF, which in the absence of TGF-β1 activates p38β. Therefore, these results show that TGF-β1 induces endothelial cell apoptosis by shifting VEGF signaling from the prosurvival p38β to the proapoptotic p38α.  相似文献   

2.
Vasculopathy including endothelial cell (EC) apoptosis and inflammation contributes to the high incidence of stroke and myocardial infarction in diabetic patients. The aim of the present study was to investigate the effect of calycosin-7-O-β-D-glucopyranoside (CG), a phytoestrogen, on advanced glycation end products (AGEs)-induced HUVEC damage. We observed that CG can significantly ameliorate AGEs-induced HUVEC oxidative stress and apoptosis. The ratio of SOD/MDA was significantly increased to the normal level by CG pretreatment. CG preincubation dramatically increased anti-apoptotic Bcl-2 while decreased pro-apoptotic Bax and Bad expressions as detected by immunocytochemistry. Moreover, CG ameliorated macrophage migration and adhesion to HUVEC; the monocyte chemotactic protein-1 and interleukin-6 levels in the culture supernatant were dramatically reduced by CG as determined by ELISA; the expressions of inflammatory proteins including ICAM-1, TGF-β1, and RAGE in both protein and mRNA levels were significantly reduced to the normal level by CG pretreatment as determined by immunocytochemistry and real-time RT-PCR. The intracellular investigation suggests that CG can reverse AGEs-activated ERK1/2 and NF-κB phosphorylation, in which estrogen receptors were involved in. Our results strongly indicate that CG can modulate EC dysfunction by ameliorating AGEs-induced cell apoptosis and inflammation.  相似文献   

3.
Abnormal apoptosis of vascular endothelial cells is an important feature of arteriosclerosis (AS). Here, we induced apoptosis in human umbilical vein endothelial cells (HUVECs) using transforming growth factor-β (TGF-β), and investigated the role of antiapoptotic E3 ubiquitin ligase (AREL1) in the apoptosis of vascular endothelial cells. We proved that AREL1 is downregulated in TGF-β treated HUVECs. The overexpression of AREL1 inhibits the activation of Caspase-3 and Caspase-9 and attenuates cell apoptosis induced by TGF-β. According to the result of coimmunoprecipitation, AREL1 interacts with the proapoptotic proteins the second mitochondria-derived activator of caspases (SMAC) in TGF-β treated HUVECs. In addition, miR-320b inhibits the expression of AREL1, and the overexpression of AREL1 attenuates the apoptosis induced by miR-320b mimics in HUVECs. In conclusion, AREL1 is downregulated by miR-320b. AREL1 overexpression inhibits TGF-β induced apoptosis through downregulating SMAC in vascular endothelial cells. Our study explores pathogenesis regulation mechanism and new biological therapeutic targets for vascular disease.  相似文献   

4.
Florian M  Magder S 《Steroids》2008,73(1):47-58
Apoptosis induced by oxidized low-density lipoproteins (oxLDL) and tumor necrosis factor-alpha (TNF-alpha) is believed to contribute to atherosclerosis and vascular dysfunction. Estrogen treatment reduces apoptosis due to TNF-alpha and we hypothesized that it would also reduce apoptosis due to oxLDL. We also explored the anti-apoptotic mechanisms. We used early passage human umbilical vein endothelial cells (HUVEC) grown in steroid-depleted, red phenol-free medium. Cells were synchronized by starvation for 6h and then treated with oxLDL (75microg/ml) or TNF-alpha (20ng/ml) in the presence of 17-beta-estradiol (E2) (20nM). Apoptosis was analyzed by flow cytometry and caspase-3 cleavage. We also assessed expression of Bcl-2 and Bcl-xL and phosphorylation of BAD. At 6h TNF-alpha induced apoptosis but oxLDL did not; E2 did not affect this TNF-alpha induced apoptosis and there was no change in Bcl-2 or Bcl-xL expression. At 24h both TNF-alpha and oxLDL increased apoptosis and E2 reduced the increase. E2 also increased expression of the anti-apoptotic Bcl-2 and Bcl-xL and increased phosphorylation of proapoptotic BAD which reduces its proapoptotic activity at 1h. However at 24h there was also an increase in total BAD so that the proportion of phosphorylation of BAD decreased. oxLDL induced apoptosis occurs later than that of TNF-alpha. E2 decreased this late phase apoptosis and this likely requires the production of anti-apoptotic proteins.  相似文献   

5.
Integrin αvβ3 is most likely the foremost modulator of angiogenesis among all known integrins. Recombinant disintegrin DisBa-01, originally obtained from snake venom glands, binds to αvβ3, thereby significantly inhibiting adhesion and generating in vivo anti-metastatic ability. However, its function in mediator production is not clear. Here, we observed that the mediators VEGF-A, IL-8, and TGF-β are not produced by human umbilical vein endothelial cells (HUVEC cell line) or monocyte/macrophage cells (SC cell line) when cells adhered to vitronectin. However, when exposed to DisBa-01, HUVECs produced higher levels of TGF-β, and SC cells produced higher levels of VEGF-A. Nonetheless, HUVECs also showed an enhancement of apoptosis after losing adherence when exposed to disintegrin, which is a characteristic of anoikis. We propose that disintegrin DisBa-01 could be used to modulate integrin αvβ3 functions.  相似文献   

6.
7.
Prostacyclin (PGI2) production by thrombin- and bradykinin-stimulated bovine aortic endothelial cells (BAEC) and human umbilical vein endothelial cells (HUVEC) was related to the receptor-linked activation of inositide hydrolysis. Bradykinin caused a rapid and transient 3-fold increase in the formation of inositol polyphosphates in BAEC. The increase in InsP3 reflected changes mainly in the Ins(1,4,5)P3 isomer. Thrombin was less effective than bradykinin in increasing InsP3 levels and appeared to only minimally stimulate the production of PGI2 in BAEC. In HUVEC, thrombin caused a 5-fold elevation of Ins(1,4,5)P3, closely related to a rise in PGI2 production. However, bradykinin did not affect inositol phosphates and PGI2 production in HUVEC. Other inositol phosphates were also assessed to obtain information on putative metabolism of Ins(1,4,5)P3. The present study supports the notion that formation of Ins(1,4,5)P3 is linked to an increase in PGI2 production in endothelial cells and furthermore provides evidence for a large degree of heterogeneity in the responses of BAEC and HUVEC to thrombin and bradykinin.  相似文献   

8.
Although TGF-β acts as a tumor suppressor in normal tissues and in early carcinogenesis, these tumor suppressor effects are lost in advanced malignancies. Single cell migration and epithelial-mesenchymal transition (EMT), both of which are regulated by TGF-β, are critical steps in mediating cancer progression. Here, we sought to identify novel direct targets of TGF-β signaling in lung cancer cells and have indentified the zyxin gene as a target of Smad3-mediated TGF-β1 signaling. Zyxin concentrates at focal adhesions and along the actin cytoskeleton; as such, we hypothesized that cytoskeletal organization, motility, and EMT in response to TGF-β1 might be regulated by zyxin expression. We show that TGF-β1 treatment of lung cancer cells caused rapid phospho-Smad3-dependent expression of zyxin. Zyxin expression was critical for the formation and integrity of cell adherens junctions. Silencing of zyxin decreased expression of the focal adhesion protein vasodilator-activated phospho-protein (VASP), although the formation and morphology of focal adhesions remained unchanged. Zyxin-depleted cells displayed significantly increased integrin α5β1 levels, accompanied by enhanced adhesion to fibronectin and acquisition of a mesenchymal phenotype in response to TGF-β1. Zyxin silencing led to elevated integrin α5β1-dependent single cell motility. Importantly, these features are mirrored in the K-ras-driven mouse model of lung cancer. Here, lung tumors revealed decreased levels of both zyxin and phospho-Smad3 when compared with normal tissues. Our data thus demonstrate that zyxin is a novel functional target and effector of TGF-β signaling in lung cancer. By regulating cell-cell junctions, integrin α5β1 expression, and cell-extracellular matrix adhesion, zyxin may regulate cancer cell motility and EMT during lung cancer development and progression.  相似文献   

9.
Integrins, transmembrane glycoprotein receptors, play vital roles in pathological angiogenesis, but their precise regulatory functions are not completely understood and remain controversial. This study aims to assess the regulatory functions of individual beta subunits of endothelial integrins in angiogenic responses induced by vascular endothelial growth factor (VEGF). Inhibition of expression of β1, β3, or β5 integrins in endothelial cells resulted in down regulation of EC adhesion and migration on the primary ligand for the corresponding integrin receptor, while no effects on the recognition of other ligands were detected. Although inhibition of expression of each subunit substantially affected capillary growth stimulated by VEGF, the loss of β3 integrin was the most inhibitory. EC stimulation by VEGF induced formation of the high affinity (activated) state of αVβ3 in a monolayer and activated αVβ3 was co-localized with VEGF receptor-2 (VEGFR-2). Inhibition of expression of β1, β3, or β5 did not affect expression levels of VEGFR-2 in EC. However, inhibition of β3, but not β1 or β5, resulted in substantial inhibition of VEGFR-2 phosphorylation stimulated by VEGF. Exogenous stimulation of αVβ3 integrin with activating antibodies augmented VEGF-dependent phosphorylation of VEGFR-2, whereas integrin blockade suppressed this response. Most importantly, activated αVβ3 was detected on endothelial cells of tumor vasculature. Activation of αVβ3 was substantially increased in highly-vascularized tumors as compared to normal tissues. Moreover, activated αVβ3 was co-localized with VEGFR-2 on endothelial cells of proliferating blood vessels. Together, these results show the unique role of αVβ3 integrin in cross-talk with VEGFR-2 in the context of pathological angiogenesis.  相似文献   

10.
Human leukocyte endothelial adhesion and transmigration occur in the early stage of the pathogenesis of atherosclerosis. Vascular endothelial cells are targeted by pro-inflammatory cytokines modulating many gene proteins responsible for cell adhesion, thrombosis and inflammatory responses. This study examined the potential of compound K to inhibit the pro-inflammatory cytokine TNF-α induction of monocyte adhesion onto TNF-α-activated human umbilical vein endothelial cells (HUVEC). HUVEC were cultured with 10 ng/ml TNF-α with individual ginsenosides of Rb1, Rc, Re, Rh1 and compound K (CK). Ginsenosides at doses of ?50 μM did not show any cytotoxicity. TNF-α induced THP-1 monocyte adhesion to HUVEC, and such induction was attenuated by Rh1 and CK. Consistently, CK suppressed TNF-α-induced expression of HUVEC adhesion molecules of VCAM-1, ICAM-1 and E-selectin, and also Rh1 showed a substantial inhibition. Rh1 and CK dampened induction of counter-receptors, α4/β1 integrin VLA-4 and αL/β2 integrin LFA-1 in TNF-α-treated THP-1 cells. Additionally, CK diminished THP-1 secretion of MMP-9 required during transmigration, inhibiting transendothelial migration of THP-1 cells. CK blunted TNF-α-promoted IL-8 secretion of HUVEC and CXCR1 expression of THP-1 monocytes. Furthermore, TNF-α-activated endothelial IκB phosphorylation and NF-κB nuclear translocation were disturbed by CK, and TNF-α induction of α4/β1 integrin was abrogated by the NF-κB inhibitor SN50. These results demonstrate that CK exerts anti-atherogenic activity with blocking leukocyte endothelial interaction and transmigration through negatively mediating NF-κB signaling.  相似文献   

11.
Physiological and pathological turnover of basement membranes liberates biologically active cryptic molecules. Several collagen-derived fragments possess anti-angiogenic activity. Arresten is the 26-kDa non-collagenous domain of type IV collagen α1 chain. It functions as an efficient inhibitor of angiogenesis and tumor growth in mouse models, but its anti-angiogenic mechanism is not completely known. Here we show that arresten significantly increases apoptosis of endothelial cells in vitro by decreasing the amount of anti-apoptotic molecules of the Bcl-family; Bcl-2 and Bcl-xL. Although the pro-apoptotic effect of arresten is endothelial cell specific in vitro, in mouse tumors arresten induced apoptosis both in endothelial and tumor cells. The tumor cell apoptosis is likely an indirect effect due to the inhibition of blood vessel growth into the tumor. The active site of arresten was localized by deletion mutagenesis within the C-terminal half of the molecule. We have previously shown that arresten binds to α1β1 integrin on human umbilical vein endothelial cells. However, the microvascular endothelial cells (MLECs) are more important in the context of tumor vasculature. We show here that arresten binds also to the microvascular endothelial cells via α1β1 integrin. Furthermore, it has no effect on Matrigel neovascularization or the viability of integrin α1 null MLECs. Tumors implanted on integrin α1 deficient mice show no integrin α1 expression in the host-derived vascular endothelium, and thus arresten does not inhibit the tumor growth. Collectively, this data sheds more light into the anti-angiogenic mechanism of arresten.  相似文献   

12.
We demonstrate that human umbilical vein endothelial cells (HUVEC) grown in co-culture (CC) with U87 glioblastoma cells transfected with green fluorescent protein (GFP-U87) exhibit resistance to radiation-mediated apoptosis. cDNA macroarray analysis reveals increases in the accumulation of RNAs for HUVEC genes encoding cell adhesion molecules, growth factor-related proteins, and cell cycle regulatory/DNA repair proteins. An increase in protein expression of integrin alphav, integrin beta1, MAPK(p42), Rad51, DNA-PK(CS), and ataxia telangiectasia gene (ATM) was detected in HUVEC grown in CC with GFP-U87 cells compared with HUVEC grown in mono-culture. Treatment with anti-VEGF antibody decreases the expression of integrin alphav, integrin beta1, DNA-PK(CS) and ATM with a corresponding increase in ionizing radiation (IR)-induced apoptosis. These data support the concept that endothelial cells growing in the tumor microenvironment may develop resistance to cytotoxic therapies due to the up-regulation by tumor cells of endothelial cells genes associated with survival.  相似文献   

13.
14.
Connective tissue growth factor (CCN2) is a multifunctional matricellular protein, which is frequently overexpressed during organ fibrosis. CCN2 is a mediator of the pro-fibrotic effects of TGF-β in cultured cells, but the specific function of CCN2 in the fibrotic process has not been elucidated. In this study we characterized the CCN2-dependent signaling pathways that are required for the TGF-β induced fibrogenic response. By depleting endogenous CCN2 we show that CCN2 is indispensable for the TGF-β-induced phosphorylation of Smad1 and Erk1/2, but it is unnecessary for the activation of Smad3. TGF-β stimulation triggered formation of the CCN2/β(3) integrin protein complexes and activation of Src signaling. Furthermore, we demonstrated that signaling through the α(v)β(3) integrin receptor and Src was required for the TGF-β induced Smad1 phosphorylation. Recombinant CCN2 activated Src and Erk1/2 signaling, and induced phosphorylation of Fli1, but was unable to stimulate Smad1 or Smad3 phosphorylation. Additional experiments were performed to investigate the role of CCN2 in collagen production. Consistent with the previous studies, blockade of CCN2 abrogated TGF-β-induced collagen mRNA and protein levels. Recombinant CCN2 potently stimulated collagen mRNA levels and upregulated activity of the COL1A2 promoter, however CCN2 was a weak inducer of collagen protein levels. CCN2 stimulation of collagen was dose-dependent with the lower doses (<50 ng/ml) having a stimulatory effect and higher doses having an inhibitory effect on collagen gene expression. In conclusion, our study defines a novel CCN2/α(v)β(3) integrin/Src/Smad1 axis that contributes to the pro-fibrotic TGF-β signaling and suggests that blockade of this pathway may be beneficial for the treatment of fibrosis.  相似文献   

15.
Pericytes migrate to nascent vessels and promote vessel stability. Recently, we reported that secreted protein acidic and rich in cysteine (SPARC)-deficient mice exhibited decreased pericyte-associated vessels in an orthotopic model of pancreatic cancer, suggesting that SPARC influences pericyte behavior. In this paper, we report that SPARC promotes pericyte migration by regulating the function of endoglin, a TGF-β1 accessory receptor. Primary SPARC-deficient pericytes exhibited increased basal TGF-β1 activity and decreased cell migration, an effect blocked by inhibiting TGF-β1. Furthermore, TGF-β-mediated inhibition of pericyte migration was dependent on endoglin and αV integrin. SPARC interacted directly with endoglin and reduced endoglin interaction with αV integrin. SPARC deficiency resulted in endoglin-mediated blockade of pericyte migration, aberrant association of endoglin in focal complexes, an increase in αV integrins present in endoglin immunoprecipitates, and enhanced αV integrin-mediated activation of TGF-β. These results demonstrate that SPARC promotes pericyte migration by diminishing TGF-β activity and identify a novel function for endoglin in controlling pericyte behavior.  相似文献   

16.
Hemodynamic forces exerted by blood flow (cyclic strain, shear stress) affect the initiation and progression of angiogenesis; however, the precise signaling mechanism(s) involved are unknown. In this study, we examine the role of cyclic strain in regulating bovine aortic endothelial cell (BAEC) migration and tube formation, indices of angiogenesis. Considering their well-documented mechanosensitivity, functional inter-dependence, and involvement in angiogenesis, we hypothesized roles for matrix metalloproteinases (MMP-2/9), RGD-dependent integrins, and urokinase plasminogen activator (uPA) in this process. BAECs were exposed to equibiaxial cyclic strain (5% strain, 1Hz for 24h) before their migration and tube formation was assessed by transwell migration and collagen gel tube formation assays, respectively. In response to strain, both migration and tube formation were increased by 1.83+/-0.1- and 1.84+/-0.1-fold, respectively. Pertussis toxin, a Gi-protein inhibitor, decreased strain-induced migration by 45.7+/-32% and tube formation by 69.8+/-13%, whilst protein tyrosine kinase (PTK) inhibition with genistein had no effect. siRNA-directed attenuation of endothelial MMP-9 (but not MMP-2) expression/activity decreased strain-induced migration and tube formation by 98.6+/-41% and 40.7+/-31%, respectively. Finally, integrin blockade with cRGD peptide and siRNA-directed attenuation of uPA expression reduced strain-induced tube formation by 85.7+/-15% and 84.7+/-31%, respectively, whilst having no effect on migration. CONCLUSIONS: Cyclic strain promotes BAEC migration and tube formation in a Gi-protein-dependent PTK-independent manner. Moreover, we demonstrate for the first time a putative role for MMP-9 in both strain-induced events, whilst RGD-dependent integrins and uPA appear only to be involved in strain-induced tube formation.  相似文献   

17.
Sphingosine 1-phosphate (SPP) has been shown to inhibit chemotaxis of a variety of cells, in some cases through intracellular actions, while in others through receptor-mediated effects. Surprisingly, we found that low concentrations of SPP (10-100 nM) increased chemotaxis of HEK293 cells overexpressing the G protein-coupled SPP receptor EDG-1. In agreement with previous findings in human breast cancer cells (Wang, F., Nohara, K., Olivera, O., Thompson, E. W., and Spiegel, S. (1999) Exp. Cell Res. 247, 17-28), SPP, at micromolar concentrations, inhibited chemotaxis of both vector- and EDG-1-overexpressing HEK293 cells. Nanomolar concentrations of SPP also induced a marked increase in chemotaxis of human umbilical vein endothelial cells (HUVEC) and bovine aortic endothelial cells (BAEC), which express the SPP receptors EDG-1 and EDG-3, while higher concentrations of SPP were less effective. Treatment with pertussis toxin, which ADP-ribosylates and inactivates G(i)-coupled receptors, blocked SPP-induced chemotaxis. Checkerboard analysis indicated that SPP stimulates both chemotaxis and chemokinesis. Taken together, these data suggest that SPP stimulates cell migration by binding to EDG-1. Similar to SPP, sphinganine 1-phosphate (dihydro-SPP), which also binds to this family of SPP receptors, enhanced chemotaxis; whereas, another structurally related lysophospholipid, lysophosphatidic acid, did not compete with SPP for binding nor did it have significant effects on chemotaxis of endothelial cells. Furthermore, SPP increased proliferation of HUVEC and BAEC in a pertussis toxin-sensitive manner. SPP and dihydro-SPP also stimulated tube formation of BAEC grown on collagen gels (in vitro angiogenesis), and potentiated tube formation induced by basic fibroblast growth factor. Pertussis toxin treatment blocked SPP-, but not bFGF-stimulated in vitro angiogenesis. Our results suggest that SPP may play a role in angiogenesis through binding to endothelial cell G(i)-coupled SPP receptors.  相似文献   

18.
19.
Malignant gliomas are one of the most devastating and incurable tumors. Sustained excessive angiogenesis by glioma cells is the major reason for their uncontrolled growth and resistance toward conventional therapies resulting in high mortality. Therefore, targeting angiogenesis should be a logical strategy to prevent or control glioma cell growth. Earlier studies have shown that Asiatic Acid (AsA), a pentacyclic triterpenoid, is effective against glioma and other cancer cells; however, its efficacy against angiogenesis remains unknown. In the present study, we examined the anti-angiogenic efficacy of AsA using human umbilical vein endothelial cells (HUVEC) and human brain microvascular endothelial cells (HBMEC). Our results showed that AsA (5-20 μM) inhibits HUVEC growth and induces apoptotic cell death by activating caspases (3 and 9) and modulating the expression of apoptosis regulators Bad, survivin and pAkt-ser473. Further, AsA showed a dose-dependent inhibition of HUVEC migration, invasion and capillary tube formation, and disintegrated preformed capillary network. AsA also inhibited the VEGF-stimulated growth and capillary tube formation by HUVEC and HBMEC. Next, we analyzed the angiogenic potential of conditioned media collected from human glioma LN18 and U87-MG cells treated with either DMSO (control conditioned media, CCM) or AsA 20 μM (AsA20 conditioned media, AsA20CM). CCM from glioma cells significantly enhanced the capillary tube formation in both HUVEC and HBMEC, while capillary tube formation in both endothelial cell lines was greatly compromised in the presence of AsA20CM. Consistent with these results, VEGF expression was lesser in AsA20CM compared to CCM, and indeed AsA strongly inhibited VEGF level (both cellular and secreted) in glioma cells. AsA also showed dose-dependent anti-angiogenic efficacy in Matrigel plug assay, and inhibited the glioma cells potential to attract HUVEC/HBMEC. Overall, the present study clearly showed the strong anti-angiogenic potential of AsA and suggests its usefulness against malignant gliomas.  相似文献   

20.
The aim of this study is to investigate the effect of evodiamine on fibroblast activation in cardiac fibroblasts and endothelial to mesenchymal transition (EndMT) in human umbilical vein endothelial cells (HUVECs). Neonatal rat cardiac fibroblasts were stimulated with transforming growth factor beta 1 (TGF-β1) to induce fibroblast activation. After co-cultured with evodiamine (5, 10 μM), the proliferation and pro-fibrotic proteins expression of cardiac fibroblasts were evaluated. HUVECs were also stimulated with TGF-β1 to induce EndMT and treated with evodiamine (5, 10 μM) at the same time. The EndMT response in the HUVECs was evaluated as well as the capacity of the transitioned endothelial cells migrating to surrounding tissue. As a result, Evodiamine-blunted TGF-β1 induced activation of cardiac fibroblast into myofibroblast as assessed by the decreased expressions of α-SMA. Furthermore, evodiamine reduced the increased protein expression of fibrosis markers in neonatal and adult rat cardiac fibroblasts induced by TGF-β1. HUVECs stimulated with TGF-β1 exhibited lower expression levels of CD31, CD34, and higher levels of α-SMA, vimentin than the control cells. This phenotype was eliminated in the HUVECs treated with both 5 and 10 μM evodiamine. Evodiamine significantly reduced the increase in migration ability that occurred in response to TGF-β1 in HUVECs. In addition, the activation of Smad2, Smad3, ERK1/2, and Akt, and the nuclear translocation of Smad4 in both cardiac fibroblasts and HUVEC were blocked by evodiamine treatment. Thus, evodiamine could prevent cardiac fibroblasts from activation into myofibroblast and protect HUVEC against EndMT. These effects may be mediated by inhibition of the TGFβ pathway in both cardiac fibroblasts and HUVECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号