首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
α1-Antitrypsin (AAT) is a 52-kDa circulating serine protease inhibitor. Production of AAT by the liver maintains 0.9–1.75 mg/mL circulating levels. During acute-phase responses, circulating AAT levels increase more than fourfold. In individuals with one of several inherited mutations in AAT, low circulating levels increase the risk for lung, liver and pancreatic destructive diseases, particularly emphysema. These individuals are treated with lifelong weekly infusions of human plasma–derived AAT. An increasing amount of evidence appears to suggest that AAT possesses not only the ability to inhibit serine proteases, such as elastase and proteinase-3 (PR-3), but also to exert antiinflammatory and tissue-protective effects independent of protease inhibition. AAT modifies dendritic cell maturation and promotes T regulatory cell differentiation, induces interleukin (IL)-1 receptor antagonist and IL-10 release, protects various cell types from cell death, inhibits caspases-1 and -3 activity and inhibits IL-1 production and activity. Importantly, unlike classic immunosuppressants, AAT allows undeterred isolated T-lymphocyte responses. On the basis of preclinical and clinical studies, AAT therapy for nondeficient individuals may interfere with disease progression in type 1 and type 2 diabetes, acute myocardial infarction, rheumatoid arthritis, inflammatory bowel disease, cystic fibrosis, transplant rejection, graft versus host disease and multiple sclerosis. AAT also appears to be antibacterial and an inhibitor of viral infections, such as influenza and human immunodeficiency virus (HIV), and is currently evaluated in clinical trials for type 1 diabetes, cystic fibrosis and graft versus host disease. Thus, AAT therapy appears to have advanced from replacement therapy, to a safe and potential treatment for a broad spectrum of inflammatory and immune-mediated diseases.  相似文献   

2.
Follicular dendritic cells (FDCs) increase HIV replication and virus production in lymphocytes by increasing the activation of NF-κB in infected cells. Because α-1-antitrypsin (AAT) decreases HIV replication in PBMCs and monocytic cells and decreases NF-κB activity, we postulated that AAT might also block FDC-mediated HIV replication. Primary CD4(+) T cells were infected with HIV and cultured with FDCs or their supernatant with or without AAT, and ensuing viral RNA and p24 production were monitored. NF-κB activation in the infected cells was also assessed. Virus production was increased in the presence of FDC supernatant, but the addition of AAT at concentrations >0.5 mg/ml inhibited virus replication. AAT blocked the nuclear translocation of NF-κB p50/p65 despite an unexpected elevation in associated phosphorylated and ubiquitinated IκBα (Ub-IκBα). In the presence of AAT, degradation of cytoplasmic IκBα was dramatically inhibited compared with control cultures. AAT did not inhibit the proteasome; however, it altered the pattern of ubiquitination of IκBα. AAT decreased IκBα polyubiquitination linked through ubiquitin lysine residue 48 and increased ubiquitination linked through lysine residue 63. Moreover, lysine reside 63-linked Ub-IκBα degradation was substantially slower than lysine residue 48-linked Ub-IκBα in the presence of AAT, correlating altered ubiquitination with a prolonged IκBα t(1/2). Because AAT is naturally occurring and available clinically, examination of its use as an inhibitory agent in HIV-infected subjects may be informative and lead to the development of similar agents that inhibit HIV replication using a novel mechanism.  相似文献   

3.
4.
Studies were made of the relations of parsnip yellow fleck virus (PYFV) and its helper virus, anthriscus yellows (AYV), with their aphid vector, Cavariella aegopodii. Apterous insects were more efficient vectors than alates; apterous nymphs were as efficient as apterous adults. C. aegopodii never transmitted PYFV in the absence of AYV, but aphids carrying both viruses infected some test plants with one or other virus alone. C. aegopodii that fed first on a source of AYV and then on a source of PYFV transmitted both viruses to test plants, but aphids that fed on the sources in the reverse order transmitted only AYV. Test plants receiving some aphids from a source of AYV, and others from a source of PYFV, became infected only with AYV. C. aegopodii acquired AYV or the AYV/PYFV complex from plants in a minimum acquisition access time (AAT) of 10–15 mm and inoculated the viruses to test plants in a minimum inoculation access time (IAT) of 2 min. Increasing either AAT or IAT, or both, to 1 h or longer increased the frequency of transmission of each virus. Starving the insects before the acquisition feed on AYV or AYV/PFYV sources did not affect transmission. Aphids already carrying AYV acquired PYFV from plants in a minimum AAT of only 2 min; they acquired and inoculated PYFV in a minimum total time of 12 min. The data suggest that AYV is confined to deeply lying tissues whereas PYFV is distributed throughout the leaf. C. aegopodii transmitted both PYFV and AYV in a semi-persistent manner: the aphids retained both viruses for up to 4 days but lost them on moulting. Neither virus was passed to progeny of viruliferous adults. Earlier results suggesting that AYV is a persistent virus may have been caused by contamination of the AYV culture with carrot red leaf virus.  相似文献   

5.
A soybean leaf cDNA clone, pSAT2, was isolated by hybridization to a carrot aspartate aminotransferase (EC 2.6.1.1.; AAT) cDNA clone at low stringency. pSAT2 contained an open reading frame encoding a 47640 Da protein. The protein encoded by pSAT2 showed significant sequence similarity to AAT proteins from both plants and animals. It was most similar to two Panicum mitochondrial AATs, 81.5% and 82.0% identity. Alignment of the pSAT2-encoded protein with other mature AAT enzymes revealed a 25 amino acid N-terminal extension with characteristics of a mitochondrial transit peptide. A plasmid, pEXAT2, was constructed to encode the mature pSAT2 protein lacking the putative mitochondrial transit peptide. Escherichia coli containing the plasmid expressed a functional AAT isozyme which comigrated with the soybean AAT4 isozyme during agarose gel electrophoresis. Equilibrium sucrose gradient sedimentation of soybean extracts demonstrated that AAT4 specifically cofractionated with mitochondria. Antibodies raised against the pEXAT2-encoded AAT protein reacted with AAT4 of soybean and not with other AAT isozymes detected in soybean tissues, providing further evidence that clone pSAT2 encodes the soybean mitochondrial isozyme AAT4.  相似文献   

6.
Five aspartate aminotransferase (EC 2.6.1.1; AAT) isozymes were identified in soybean seedling extracts and designated AAT1 to AAT5 based on their rate of migration on non-denaturing electrophoretic gels. AAT1 was detected only in extracts of cotyledons from dark-grown seedlings. AAT3 and AAT4 were detected in crude extracts of leaves and in cotyledons of seedlings grown in the light. AAT2 and AAT5 were detected in all tissues examined. A soybean leaf cDNA clone, pSAT17, was identified by hybridization to a carrot AAT cDNA clone at low stringency. pSAT17 had an open reading frame which could encode a 50 581 Da protein. Alignment of the deduced amino acid sequence from the pSAT17 open reading frame with mature AAT protein sequences from rat disclosed a 60 amino acid N-terminal extension in the pSAT17 protein. This extension had characteristics of a plastid transit peptide.A plasmid, pEXAT17, was constructed which encoded the mature protein lacking the putative chloroplast transit polypeptide. Transformed Escherichia coli expressed a functional soybean AAT isozyme, which comigrated with the soybean AAT5 isozyme during agarose gel electrophoresis. Differential sucrose gradient sedimentation of soybean extracts indicated that AAT5 specifically cofractionated with chloroplasts. Antibodies raised against the pEXAT17-encoded AAT protein specifically reacted with the AAT5 isozyme of soybean and not with any of the other isozymes, indicating that the soybean cDNA clone, pSAT17, encodes the chloroplast isozyme, AAT5.  相似文献   

7.
Alpha 1 antitrypsin (AAT) is a serine proteinase inhibitor (serpin). One well-known function of this protein is to inactivate neutrophil elastase and other neutrophil-derived proteinases, and prevent the destruction of pulmonary extracellular matrix. Deficiency of AAT can cause emphysema due to degradation of interstitial elastin by elastase. The majority of circulating AAT is secreted from the liver. Muscle-directed gene therapy using recombinant adeno-associated virus 2 (rAAV2) vectors has been tested to increase the serum levels of AAT. However, inefficient transduction of rAAV2 vector makes it difficult to reach therapeutic levels of AAT in clinical trials and it remains unclear as to whether muscle-secreted AAT is functional. In the present study, we evaluated five serotypes (1, 2, 3, 4, and 5) of rAAV vectors for transduction efficiency in mouse muscle. Results from these studies showed that rAAV1 is the most efficient vector among these serotypes and mediated at least 100-fold higher levels of AAT secretion than the rAAV2 vector. Western blot analysis showed that this murine muscle-secreted human AAT (hAAT) formed a complex with human neutrophil elastase in a dose-dependent manner. An anti-elastase activity assay showed that murine muscle-secreted hAAT inhibited elastase with equal capacity as hAAT purified from plasma. These results provide strong support for the functionality of AAT in ongoing clinical studies of muscle-directed AAT gene therapy.  相似文献   

8.
9.
Biopharmaceuticals are of increasing importance in the treatment of a variety of diseases. A remaining concern associated with their production is the potential introduction of adventitious agents into their manufacturing process, which may compromise the pathogen safety of a product and potentially cause stock‐out situations for important medical supplies. To ensure the safety of biological therapeutics, regulatory guidance requires adventitious agent testing (AAT) of the bulk harvest. AAT is a deliberately promiscuous assay procedure which has been developed to indicate, ideally, the presence of any viral contaminant. One of the most important cell lines used in the production of biopharmaceuticals is Chinese hamster ovary (CHO) cells and while viral infections of CHO cells have occurred, a systematic screen of their virus susceptibility has never been published. We investigated the susceptibility of CHO cells to infection by 14 different viruses, including members of 12 families and representatives or the very species that were implicated in previously reported production cell infections. Based on our results, four different infection outcomes were distinguished, based on the possible combinations of the two factors (i) the induction, or not, of a cytopathic effect and (ii) the ability, or not, to replicate in CHO cells. Our results demonstrate that the current AAT is effective for the detection of viruses which are able to replicate in CHO cells. Due to the restricted virus susceptibility of CHO cells and the routine AAT of bulk harvests, our results provide re‐assurance for the very high safety margins of CHO cell‐derived biopharmaceuticals. Biotechnol. Bioeng. 2010;106: 598–607. © 2010 Wiley Periodicals, Inc.  相似文献   

10.
Neutrophils play a pathogenic role in COVID-19 by releasing Neutrophils Extracellular Traps (NETs) or human neutrophil elastase (HNE). Given that HNE is inhibited by α1-antitrypsin (AAT), we aimed to assess the content of HNE, α1-antitrypsin (AAT) and HNE–AAT complexes (the AAT/HNE balance) in 33 bronchoalveolar lavage fluid (BALf) samples from COVID-19 patients. These samples were submitted for Gel-Electrophoresis, Western Blot and ELISA, and proteins (bound to AAT or HNE) were identified by Liquid Chromatography-Mass Spectrometry. NETs’ release was analyzed by confocal microscopy. Both HNE and AAT were clearly detectable in BALf at high levels. Contrary to what was previously observed in other settings, the formation of HNE–AAT complex was not detected in COVID-19. Rather, HNE was found to be bound to acute phase proteins, histones and C3. Due to the relevant role of NETs, we assessed the ability of free AAT to bind to histones. While confirming this binding, AAT was not able to inhibit NET formation. In conclusion, despite the finding of a high burden of free and bound HNE, the lack of the HNE–AAT inhibitory complex in COVID-19 BALf demonstrates that AAT is not able to block HNE activity. Furthermore, while binding to histones, AAT does not prevent NET formation nor their noxious activity.  相似文献   

11.
A soybean cDNA clone, pSAT1, which encodes both the cytosolic and glyoxysomal isozymes of aspartate aminotransferase (AAT; EC 2.6.1.1) was isolated. Genomic Southern blots and analysis of genomic clones indicated pSAT1 was encoded by a single copy gene. pSAT1 contained an open reading frame with ca. 90% amino acid identity to alfalfa and lupin cytosolic AAT and two in-frame start codons, designated ATG1 and ATG2. Alignment of this protein with other plant cytosolic AAT isozymes revealed a 37 amino acid N-terminal extension with characteristics of a peroxisomal targeting signal, designated PTS2, including the modified consensus sequence RL-X5-HF. The second start codon ATG2 aligned with previously reported start codons for plant cytosolic AAT cDNAs. Plasmids constructed to express the open reading frame initiated by each of the putative start codons produced proteins with AAT activity in Escherichia coli. Immune serum raised against the pSAT1-encoded protein reacted with three soybean AAT isozymes, AAT1 (glyoxysomal), AAT2 (cytosolic), and AAT3 (subcellular location unknown). We propose the glyoxysomal isozyme AAT1 is produced by translational initiation from ATG1 and the cytosolic isozyme AAT2 is produced by translational initiation from ATG2. N-terminal sequencing of purified AAT1 revealed complete identity with the pSAT1-encoded protein and was consistent with the processing of the PTS2. Analysis of cytosolic AAT genomic sequences from several other plant species revealed conservation of the two in-frame start codons and the PTS2 sequence, suggesting that these other species may utilize a single gene to generate both cytosolic and glyoxysomal or peroxisomal forms of AAT.  相似文献   

12.
Aspartate aminotransferase (AAT) plays a key enzymatic role in the assimilation of symbiotically fixed nitrogen in legume root nodules. In alfalfa, two distinct genetic loci encode dimeric AAT enzymes: AAT1, which predominates in roots, and AAT2, which is expressed at high levels in nodules. Three allozymes of AAT2 (AAT2a, –2b and –2c), differing in net charge, result from the expression of two alleles, AAT2A and AAT2C, at this locus. Utilizing antiserum to alfalfa AAT2, we have previously isolated from an expression library one AAT2 cDNA clone. This clone was used as a hybridization probe to screen cDNA libraries for additional AAT2 cDNAs. Four different clones were obtained, two each that encode the AAT2a and AAT2c enyzme subunits. These two sets of cDNAs encode polypeptides that differ in net charge depending upon the amino acid at position 296 (valine or glutamic acid). Within each set of alleles, the two members differ from each other by the presence or absence of a 30 by (ten amino acid) sequence. The presence or absence of this ten amino acid sequence has no effect on the size or charge of the mature AAT2 protein because it is located within the region encoding the protein's transit peptide, which is proteolytically removed upon transport into plastids. The data suggest that a deletion event has occurred independently in two AAT2 progenitor alleles, resulting in the four allelic cDNA variants observed. The deletion of this ten amino acid sequence does not appear to impair the normal maturation of the enzyme.  相似文献   

13.
Genomic clones encoding two isozymes of aspartate aminotransferase (AAT) were isolated from an alfalfa genomic library and their DNA sequences were determined. The AAT1 gene contains 12 exons that encode a cytosolic protein expressed at similar levels in roots, stems and nodules. In nodules, the amount of AAT1 mRNA was similar at all stages of development, and was slightly reduced in nodules incapable of fixing nitrogen. The AAT1 mRNA is polyadenylated at multiple sites differing by more than 250 bp. The AAT2 gene contains 11 exons, with 5 introns located in positions identical to those found in animal AAT genes, and encodes a plastid-localized isozyme. The AAT2 mRNA is polyadenylated at a very limited range of sites. The transit peptide of AAT2 is encoded by the first two and part of the third exon. AAT2 mRNA is much more abundant in nodules than in other organs, and increases dramatically during the course of nodule development. Unlike AAT1, expression of AAT2 is significantly reduced in nodules incapable of fixing nitrogen. Phylogenetic analysis of deduced AAT proteins revealed 4 separate but related groups of AAT proteins; the animal cytosolic AATs, the plant cytosolic AATs, the plant plastid AATs, and the mitochondrial AATs.  相似文献   

14.
α(1)-Antitrypsin (AAT) is a 52-kDa circulating serine protease inhibitor. Production of AAT by the liver maintains 0.9-1.75 mg/mL circulating levels. During acute-phase responses, circulating AAT levels increase more than fourfold. In individuals with one of several inherited mutations in AAT, low circulating levels increase the risk for lung, liver and pancreatic destructive diseases, particularly emphysema. These individuals are treated with lifelong weekly infusions of human plasma-derived AAT. An increasing amount of evidence appears to suggest that AAT possesses not only the ability to inhibit serine proteases, such as elastase and proteinase-3 (PR-3), but also to exert antiinflammatory and tissue-protective effects independent of protease inhibition. AAT modifies dendritic cell maturation and promotes T regulatory cell differentiation, induces interleukin (IL)-1 receptor antagonist and IL-10 release, protects various cell types from cell death, inhibits caspases-1 and -3 activity and inhibits IL-1 production and activity. Importantly, unlike classic immunosuppressants, AAT allows undeterred isolated T-lymphocyte responses. On the basis of preclinical and clinical studies, AAT therapy for nondeficient individuals may interfere with disease progression in type 1 and type 2 diabetes, acute myocardial infarction, rheumatoid arthritis, inflammatory bowel disease, cystic fibrosis, transplant rejection, graft versus host disease and multiple sclerosis. AAT also appears to be antibacterial and an inhibitor of viral infections, such as influenza and human immunodeficiency virus (HIV), and is currently evaluated in clinical trials for type 1 diabetes, cystic fibrosis and graft versus host disease. Thus, AAT therapy appears to have advanced from replacement therapy, to a safe and potential treatment for a broad spectrum of inflammatory and immune-mediated diseases.  相似文献   

15.
Several isoenzymic forms of aspartate aminotransferase (AAT) have been identified in protein extracts from carrot (Daucus carota) cell suspension cultures. The cellular location of the major form (form I) of AAT in carrot suspension cultures was determined by heat inactivation, subcellular fractionation, and amino acid sequence analysis. In mammalian systems, there are two forms of AAT, a heat-stable cytoplasmic form and a heat-labile form in the mitochondria. The thermostability of three isoenzymes of carrot AAT was examined, and the results showed that form I was more thermostable than forms II or III. Organelles were separated in sucrose gradients by isopynic centrifugation. Activity for form I was identified in the soluble fractions and not in fractions containing peroxisomes, proplastids, or mitochondria. Form I was purified to homogeneity and endoproteolytically cleaved, and the peptide fragments were separated by reverse phase chromatography. Analysis of the sequence data from two of the polypeptides showed that the amino acid identity of form I is more conserved to the animal cytoplasmic AAT than to animal mitochondrial AAT sequences. These data strongly suggest that form I of AAT from carrot is the cytoplasmic isoenzyme. Additionally, a rapid purification scheme for form I of AAT from carrot is presented using selective heat denaturation and anion-exchange chromatography.  相似文献   

16.

Background

Severe alpha1-antitrypsin (AAT) deficiency associated with low AAT blood concentrations is an established genetic COPD risk factor. Less is known about the respiratory health impact of variation in AAT serum concentrations in the general population. We cross-sectionally investigated correlates of circulating AAT concentrations and its association with FEV1.

Methods

In 5187 adults (2669 females) with high-sensitive c-reactive protein (CRP) levels ≤ 10 mg/l from the population-based Swiss SAPALDIA cohort, blood was collected at the time of follow-up examination for measuring serum AAT and CRP.

Results

Female gender, hormone intake, systolic blood pressure, age in men and in postmenopausal women, as well as active and passive smoking were positively, whereas alcohol intake and BMI inversely correlated with serum AAT levels, independent of CRP adjustment. We observed an inverse association of AAT with FEV1 in the total study population (p < 0.001), that disappeared after adjustment for CRP (p = 0.28). In addition, the AAT and FEV1 association was modified by gender, menopausal status in women, and smoking.

Conclusion

The results of this population-based study reflect a complex interrelationship between tobacco exposure, gender related factors, circulating AAT, systemic inflammatory status and lung function.  相似文献   

17.
《Anthrozo?s》2013,26(4):396-408
Abstract

Animal-assisted therapy (AAT) has been shown to reduce the loneliness of residents in long-term care facilities (LTCFs). In this study, we determined the relative contribution of socialization (human–human bonding) and human–animal bonding as mechanisms by which AAT reduces loneliness. Residents in LTCFs volunteering for AAT were randomized to receive AAT as individuals (Individual) or in groups of two to four (Group). Individual AAT was used as a measure of animal–human bonding, and Group AAT was used as a measure of the combination of animal–human bonding and socialization. Any greater effect of Group AAT in comparison to Individual AAT would be ascribed to socialization. Thirty-seven residents of LTCFs, who were cognitively intact, volunteered for AAT, and scored as significantly lonely on the UCLA Loneliness Scale (Version 3), were studied. Six weeks of AAT, one 30-minute session per week, in an individual or group setting was performed, with posttesting during week five. Two residents dropped out of each group, giving us group sizes of 17 (Individual) and 16 (Group). A two-way ANOVA showed a statistically significant effect of pretest vs. posttest scores (F(1,31) = 25.3, p < 0.001), with no effect of Group vs. Individual or of interaction. Newman Keuls post-hoc tests showed that the pretest scores for Individual and Group participants did not differ. There was a significant difference between pretest and posttest scores for Individual participants (p < 0.05) but not for Group participants. There was no difference between the posttest values for Individual vs. Group. When the data from all 33 participants were combined, Delta scores (pretest minus posttest), correlated positively (p < 0.01) with pretest scores, showing that lonelier individuals benefited more from AAT. In conclusion, AAT was more effective in improving loneliness in residents of LTCFs when given individually than in a group situation. Therefore, the main effect of AAT was not mediated by socialization.  相似文献   

18.
Alpha-1-antitrypsin (AAT) is a hepatic stress protein with protease inhibitor activity. Recent evidence indicates that ischemic or toxic injury can evoke selective changes within kidney that resemble a hepatic phenotype. Hence, we tested the following: i) Does acute kidney injury (AKI) up-regulate the normally renal silent AAT gene? ii) Does rapid urinary AAT excretion result? And iii) Can AAT''s anti-protease/anti-neutrophil elastase (NE) activity protect injured proximal tubule cells? CD-1 mice were subjected to ischemic or nephrotoxic (glycerol, maleate, cisplatin) AKI. Renal functional and biochemical assessments were made 4–72 hrs later. Rapidly following injury, 5–10 fold renal cortical and isolated proximal tubule AAT mRNA and protein increases occurred. These were paralleled by rapid (>100 fold) increases in urinary AAT excretion. AKI also induced marked increases in renal cortical/isolated proximal tubule NE mRNA. However, sharp NE protein levels declines resulted, which strikingly correlated (r, −0.94) with rising AAT protein levels (reflecting NE complexing by AAT/destruction). NE addition to HK-2 cells evoked ∼95% cell death. AAT completely blocked this NE toxicity, as well as Fe induced oxidant HK-2 cell attack. Translational relevance of experimental AAT gene induction was indicated by ∼100–1000 fold urinary AAT increases in 22 AKI patients (matching urine NGAL increases). We conclude: i) AKI rapidly up-regulates the renal cortical/proximal tubule AAT gene; ii) NE gene induction also results; iii) AAT can confer cytoprotection, potentially by blocking/reducing cytotoxic NE accumulation; and iv) marked increases in urinary AAT excretion in AKI patients implies clinical relevance of the AKI- AAT induction pathway.  相似文献   

19.
Summary The enzyme aspartate aminotransferase (AAT) plays a key role in the assimilation of fixed-N in alfalfa (Medicago sativa L.) root nodules. AAT activity in alfalfa nodules is due to the activity of two dimeric isozymes, AAT-1 and AAT-2, that are products of two distinct genes. Three forms of AAT-2 (AAT-2a, -2b, and-2c) have been identified. It was hypothesized that two alleles occur at the AAT-2 locus, giving rise to the three AAT-2 enzymes. In a prior study bidirectional selection for root nodule AAT and asparagine synthetase (AS) activities on a nodule fresh weight basis in two diverse alfalfa germ plasms resulted in high nodule enzyme activity subpopulations with about 20% more nodule AAT activity than low enzyme activity subpopulations. The objectives of the study presented here were to determine the inheritance of nodule AAT-2 production and to evaluate the effect of bidirectional selection for AAT and AS on AAT-2 allelic frequencies, the relative contributions of AAT-1 and AAT-2 to total nodule activity, nodule enzyme concentration, and correlated traits. Two alleles at the AAT-2 locus were verified by evaluating segregation of isozyme phenotypes among F1 and S1 progeny of crosses or selfs. Characterization of subpopulations for responses associated with selection was conducted using immunoprecipitation of in vitro nodule AAT activity, quantification of AAT enzyme protein by ELISA, and AAT activity staining of native isozymes on PAGE. Results indicate that selection for total AAT activity specifically altered the expression of the nodule AAT-2 isozyme. AAT-2 activity was significantly greater in high compared to low activity subpopulations, and high AAT subpopulations from both germ plasms had about 18% more AAT-2 enzyme (on a nodule fresh weight basis). No significant or consistent changes in AAT-2 genotypic frequencies in subpopulations were caused by selection for AAT activity. Since changes in AAT activity were not associated with changes in AAT-2 genotype, selection must have affected a change(s) at another locus (or loci), which indirectly effects the expression of nodule AAT.Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture, and does not imply its approval to the exclusion of other products or vendors that might also be suitable  相似文献   

20.
While sulfur dioxide (SO2) has been previously known for its toxicological effects, it is now known to be produced endogenously in mammals from sulfur-containing amino acid l-cysteine. l-cysteine is catalyzed by cysteine dioxygenase (CDO) to l-cysteinesulfinate, which converts to β-sulfinylpyruvate through transamination by aspartate aminotransferase (AAT), and finally spontaneously decomposes to pyruvate and SO2. The present study explored endogenous SO2 production, and AAT and CDO distribution in different rat tissue. SO2 content was highest in stomach, followed by tissues in the right ventricle, left ventricle, cerebral gray matter, pancreas, lung, cerebral white matter, renal medulla, spleen, renal cortex and liver. AAT activity and AAT1 mRNA expression were highest in the left ventricle, while AAT1 protein expression was highest in the right ventricle. AAT2 and CDO mRNA expressions were both highest in liver tissue. AAT2 protein expression was highest in the renal medulla, but CDO protein expression was highest in liver tissue. In all tissues, AAT1 and AAT2 were mainly distributed in the cytoplasm rather than the nucleus. These observed differences among tissues endogenously generating SO2 and associated enzymes are important in implicating the discovery of SO2 as a novel endogenous signaling molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号