首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endogenous retrovirus-like sequences homologous to intracisternal type-A particle (IAP) genes, which are present in the inbred mouse (Mus musculus) genome, were cloned from a Syrian hamster gene library. A typical hamster IAP gene was 7 kb long and segments homologous to long terminal repeat (IAP) sequences present in Mus musculus IAP genes were located at both ends of the gene. Contrary to the pattern found in the Mus musculus IAP genes, the organization of the cloned hamster IAP genes was not markedly polymorphic and deletion was not observed among these cloned genes. A sequence about 0.8 kb long and located close to the 3' end of the hamster IAP gene was well conserved in both IAP gene families, although they showed less overall homology with one another. The reiteration frequency of the hamster IAP genes was calculated to be 950 copies per haploid genome. Since such IAP genes with the above properties were not found in the genome of the Chinese hamster, whose progenitors diverged from those of the Syrian hamster about 7.5 Myr ago, the integration of a huge number of Syrian hamster IAP genes must have occurred subsequent to such divergence.  相似文献   

2.
Sequences related to mouse intracisternal A-particle (IAP) genes have been isolated from rat and Syrian hamster gene libraries as recombinants in lambda phage. The sequences are moderately reiterated in both these genomes but their sequence organization in the hamster genome is different from that in the rat genome. Restriction analysis and electron microscopy indicate that the Syrian hamster IAP sequences represent a family of relatively homogeneous well-conserved units; in this, they resemble the mouse IAP genes. The rat sequences, in contrast, are heterogeneous. Both the hamster and rat IAP sequences contain regions homologous to mouse IAP genes interspersed with regions of apparent non-homology. The interspersed regions range in size from 0.5-1.0 kilobases (Kb). The regions of homology among the mouse, rat and Syrian hamster IAP sequences have been mapped to a 5-6 Kb internal region on the mouse IAP genes. Mouse IAP long terminal repeat (LTR) sequences were not detected in the rat and Syrian hamster genomes. We used the thermal stability of hybrids between cloned and genomic IAP sequences to measure family homogeneity. Mouse and Syrian hamster IAP sequences are homogeneous by this criterion, but the rat IAP sequences are heterogeneous with a Tm 6 degrees C below the self-hybrid. The contrasting organization of IAP-related elements in the genomes of these rodents indicates that amplification or homogenization of this sequence family has occurred independently and at different periods of time during their evolution.  相似文献   

3.
4.
Ku proteins play an important role in DNA double-strand break (DSB) repair, chromosome maintenance, and growth regulation. To understand the fundamental characteristics of Ku proteins, we examined the electrophoretic mobility and expression of hamster Ku70 and Ku80 and determined the chromosome locations of their genes. The electrophoretic mobility of hamster Ku proteins are different from that of human Ku proteins. No significant changes in the quantity of Ku proteins were observed in CHO-K1 cells treated with 10 Gy of ionizing radiation, suggesting that both proteins are expressed constitutively in amounts adequate to repair DNA DSBs. The chromosome locations of the Ku genes were determined by direct R-banding fluorescence in situ hybridization. The Ku70 gene was localized to Syrian hamster chromosome 4qa4.1--> qa4.2 and Chinese hamster chromosome 2p3.1, and the Ku80 gene was localized to Syrian hamster chromosome 4qb5--> qb6.1 and Chinese hamster chromosome 2p3.5-->p3.6. These results provide clues to the biological functions of Ku, as well as useful information for constructing comparative chromosome maps between hamsters and other mammalian species, including human, mouse, and rat.  相似文献   

5.
Syrian hamsters express diverse MHC class I gene products   总被引:3,自引:0,他引:3  
MHC class I glycoproteins are highly diverse in most species. The Syrian hamster has long been thought to express monomorphic MHC class I molecules and thus be an exception to this rule. Here we show that Syrian hamsters express diverse MHC class I gene products. The nucleotide sequences of the alpha 1 and alpha-2 domains of classical Syrian hamster MHC class I molecules are highly variable and show evidence of having been under selective pressures at their Ag recognition sites. Interestingly, none of the Syrian hamster class I genes was closely related to their counterparts in the mouse. These observations suggest that Syrian hamsters in the wild may express diverse MHC class I molecules.  相似文献   

6.
Coding sequence and growth regulation of the human vimentin gene.   总被引:36,自引:7,他引:29       下载免费PDF全文
We have established the complete coding sequence of the human vimentin gene. It had 91% homology to the coding sequence of the Syrian hamster vimentin gene (Quax et al., Cell 35:215-223, 1983) and partial homology to several other sequences coding for intermediate filament proteins. The most striking difference between the Syrian hamster and human vimentin genes was in the 3' untranslated region, which was considerably longer in the Syrian hamster. Using RNA blots and a human vimentin cDNA clone from an Okayama-Berg library, we have established that expression of the vimentin gene was growth regulated. The steady-state levels of cytoplasmic vimentin mRNA in 3T3 cells were increased by serum and platelet-derived growth factor, but not by epidermal growth factor, insulin, or platelet-poor plasma. The increase in expression of the vimentin gene that occurred when G0-phase cells were stimulated to proliferate was detected in six different cell types from four different species. The expression of the vimentin gene was also increased when HL60 cells were induced to differentiate by phorbol esters; it decreased when differentiation was induced by retinoic acid.  相似文献   

7.
Complementary DNA clones for Armenian hamster female protein (FP) were isolated and the complete nucleotide sequence and derived amino acid sequence were determined and compared with relevant data for the closely related Syrian hamster. Although biosynthesis of preSAP is directed by a 1.0-kb mRNA in both genera and the molecular mass of the primary translation product of FP is identical, the FP gene structure and regulation of expression of FP are different in Syrian and Armenian hamsters. Whereas the direction of alteration in FP mRNA levels is divergent in Syrian hamsters during an acute phase reaction, hepatic FP mRNA levels increase in both male and female Armenian hamsters during inflammation. Regulation of expression of Armenian and Syrian hamster FP genes occurs at a pretranslational level.  相似文献   

8.
The class I gene products of the Syrian hamster major histocompatibility complex are unique in that they lack functionally detectable polymorphism. Mouse cDNA and hamster genomic probes were used to analyze the hamster class I gene family using genomic Southern hybridization. These studies revealed that the hamster possesses a complex class I multigene family and that it shares extensive sequence homology with the corresponding mouse sequences. Unlike the mouse, however, the Syrian hamster demonstrates only limited restriction endonuclease polymorphism in these genes. These results suggest that the lack of detectable polymorphism in this species is directly related to limited DNA polymorphism. The data presented here support the hypothesis that this species has undergone an evolutionary bottleneck, i. e., that all surviving members of the species arose from a limited number of progenitors.Abbreviations used in this paper MHC major histocompatibility complex - MLR mixed lymphocyte reactions - SSC saline sodium citrate - kbp kilobase pairs - SDS sodium dodecyl sulfate  相似文献   

9.
The objective of this study was to evaluate species differences in the hepatic effects of three potent rodent peroxisome proliferators, namely methylclofenapate (MCP), ciprofibrate (CIP) and Wy-14,643 (WY), particularly with respect to effects on replicative DNA synthesis and transforming growth factor-beta1 (TGF-beta1) gene expression. Male Sprague-Dawley rats, Syrian hamsters and Dunkin-Hartley guinea pigs were given daily oral doses of 0 (corn oil) and 75 mg/kg MCP for periods of 6 and 21 days. Syrian hamsters and guinea pigs were also treated with 25 mg/kg CIP and 25 mg/kg WY. Relative liver weights were significantly increased in peroxisome proliferator-treated rats and Syrian hamsters, but not in guinea pigs. Hepatic peroxisomal (palmitoyl-CoA oxidation) and microsomal (lauric acid 12-hydroxylase) fatty acid oxidising enzyme activities and CYP4A isoform mRNA levels were significantly increased in rats and Syrian hamsters, whereas only minor effects were observed in the guinea pig. Replicative DNA synthesis was studied by implanting 7-day osmotic pumps containing 5-bromo-2'-deoxyuridine during study days -1 to 6 and 14 to 21. Hepatocyte labelling index values were increased by MCP in the rat, but neither MCP, CIP nor WY produced any significant effect on replicative DNA synthesis in the Syrian hamster and guinea pig. MCP treatment increased TGF-beta1 and insulin-like growth factor II/mannose-6-phosphate (IGFII/Man6P) receptor gene expression in the rat. In the Syrian hamster, effects on TGF-beta1 and IGFII/Man6P receptor gene expression were also observed in some instances, whereas TGF-beta1 mRNA levels were essentially unchanged in the guinea pig. These results provide further evidence for marked species differences in response to rodent peroxisome proliferators. While peroxisome proliferators produce a wide spectrum of effects in rat liver, other species such as the Syrian hamster and guinea pig are less responsive and in the case of some endpoints (e.g., cell replication) may be refractory.  相似文献   

10.
A full length (25,000 base-pair) myosin heavy chain gene completely contained within a single cosmid clone was isolated from a Syrian hamster cosmid genomic library. Sequence comparison of the 3' untranslated region indicated the presence of a 75% homology with the rat embryonic myosin heavy chain gene. Extensive 5' flanking region regulatory element conservation was also found when the sequence was compared to the rat myosin heavy chain gene. S1 nuclease digestion analysis, however, indicated that the Syrian hamster myosin heavy chain gene exhibited expression in adult Syrian hamster ventricular tissue, as well as the adult vastus medialis, a fast twitch skeletal muscle. Expression also appears to be enhanced in myopathic relative to control hearts. This myosin heavy chain gene is neither the alpha nor beta cardiac myosin heavy chain gene, but is a unique, previously unrecognized, myosin heavy chain gene present in both myocardial and skeletal muscle tissues.  相似文献   

11.
The amplified CAD genes in N-(phosphonacetyl)-L-aspartate (PALA)-resistant Syrian hamster cells are located in an expanded chromosomal region emanating from the site of the wild-type gene at the tip of the short arm of chromosome B-9. The terminus of B-9 in PALA-sensitive cells contains a cluster of rRNA genes (i.e., a nucleolus organizer, rDNA). We have used a molecular clone containing sequences complementary to Syrian hamster 28S rRNA to investigate whether rDNA is coamplified with CAD genes in the PALA-resistant mutants. In situ hybridization of this probe to metaphase chromosomes demonstrates that rDNA and CAD genes do coamplify in two independently isolated PALA-resistant mutants. The tight linkage of CAD and rDNA genes was demonstrated by their coordinate translocation from B-9 to the end of the long arm of chromosome C-11 in one mutant. Blot hybridization studies substantiate the in situ hybridization results. Both types of analysis indicate that only one or two rDNA genes, on the average, are coamplified per CAD gene. The data are consistent with the model that unequal exchanges between rDNA genes mediate the amplification of CAD genes in the Syrian hamster mutants that were analyzed.  相似文献   

12.
13.
Analysis of the role of gene mutations in the multistep process of neoplastic transformation requires that the discrete steps in carcinogenesis first be dissected. Toward this end, we have isolated and characterized preneoplastic Syrian hamster cells which exhibit in vitro a trait highly correlated with neoplastic conversion in vivo. Previous findings (J. C. Barrett, Cancer Res. 40:91-94, 1980) indicate that spontaneous neoplastic transformation of Syrian hamster cells occurs in at least two steps. An intermediate stage, characterized by an aneuploid established cell line which has a propensity to become neoplastic spontaneously upon further growth in vitro, has been described. These preneoplastic cells differ from diploid early-passage Syrian hamster cells in becoming capable of anchorage-independent growth in semisolid agar, as well as becoming neoplastic in vivo when attached to a solid substrate. Evidence presented here demonstrates that anchorage-independent conversion in vitro is a reliable marker for neoplastic conversion in this cell system. Fluctuation analyses, patterned after those described by Luria and Delbruck for microbial genetics, demonstrate that anchorage-independent variants are generated randomly from clonally derived preneoplastic cells at the rate of 10(-8) to 10(-7) variants per cell per generation. These results establish a multistep stochastic process for transformation in vitro and indicate that conversion to anchorage independence may be necessary for Syrian hamster cells to become tumorigenic. The possible role of gene mutation in this step during neoplastic progression is discussed.  相似文献   

14.
15.
We report here the nucleotide sequence of a full-length Chinese hamster genomic proviral element, CHIAP34. CHIAP34 is 6,403 bp long with long terminal repeats of 311 bp at each end. The genetic organization of CHIAP34 was determined by comparison with intracisternal A particle (IAP) genetic elements from the mouse and Syrian hamster. Extensive homology at the nucleotide and deduced amino acid sequence levels was observed between CHIAP34 and the mouse and Syrian hamster IAP elements. CHIAP34 may represent a defective Chinese hamster IAP genetic element. The gag gene consists of 837 codons, of which 558 codons are in a single long open reading frame followed by several frameshifts. The pol gene begins with a -1 frameshift and consists of a long open reading frame of 753 codons followed by a short open reading frame of 103 codons. The putative env region contains multiple termination codons in all reading frames. CHIAP34 is representative of the predominant retroviral elements in the Chinese hamster ovary cell genome present at around 80 copies per haploid genome.  相似文献   

16.
17.
The collagen phenotype of a 4-nitroquinoline-1-oxide-transformed line of Syrian hamster embryo fibroblasts, NQT-SHE, was markedly altered from that of normal Syrian hamster embryo cells, which synthesized mainly type I procollagen [pro-alpha 1(I)]2 pro-alpha 2(I). Total collagen synthesis in the transformant was reduced to about 30% of the control level primarily because synthesis of the pro-alpha 1(I) subunit was completely suppressed. The major collagenous products synthesized consisted of two polypeptides, designated as N-33 and N-50, which could be completely separated by precipitation with ammonium sulfate at 33 and 50% saturation, respectively. N-33 migrated similarly to pro-alpha 2(I) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and N-50 migrated slightly more slowly. The collagenous regions of these chains were more sensitive to protease than the analogous region of procollagen I, but alpha-chains could be obtained by digestion for 2 h at 4 degrees C with high ratios of protein:pepsin. Staphylococcus V8 protease and cyanogen bromide peptide maps of N-33 alpha and N-50 alpha chains indicated that the chains were homologous with, but different than, alpha 2(I) chains and that they differed from each other. Considering their similarity to pro-alpha 2(I), it was surprising to find that the N-collagens were secreted to the same extent as was type I procollagen from Syrian hamster embryo cells and that there were no disulfide bonds between N-collagen chains. Intrachain disulfides were present. One possible explanation for the unusual collagen phenotype of NQT-SHE cells is that transformation induced one or more mutations in the pro-alpha 2(I) structural gene while suppression of synthesis of the pro-alpha 1(I) subunit may be due to a mutation in the regulatory region of its gene or in a general regulatory gene.  相似文献   

18.
The VAP21, a CD99-related 21-kDa transmembrane protein, was first detected in the enveloped virions that were grown in a Syrian hamster-derived cell line, BHK-21 (Sagara et al., 1997; Yamamoto et al., 1999). We further tried to elucidate the nature and properties of VAP21. The VAP21 was detected in various organs of the Syrian hamster as well as in the Syrian hamster-derived cell lines (BHK-21 and HmLu-1). We could not detect the VAP21 antigen in other cell lines derived from other animal species we examined, including a Chinese hamster (CHO-K1), mouse (neuroblastoma C1300, clone NA), dog (MDCK), monkey (COS-7), and human (HeLa, HepG2). We tried to introduce the VAP21 gene into VAP21-negative cell lines using a tetracycline-regulated gene expression system. All of our trials, however, resulted in failure to establish stably positive inducible cell lines. To the contrary, we could easily establish the VAP21-overexpressing cell lines from the Syrian hamster cell lines, which were successfully grown and maintained without any loss of VAP21 expression even under the induced culture conditions. In such VAP21-overexpressing cells, production of the vesicular stomatitis virus (VSV) was increased several-fold, while suppression of the VAP21 expression resulted in reducing the VSV yields. From these results, we conclude that the VAP21 is a physiologically active cell membrane component of some animal species including the Syrian hamster, and might positively be involved in the VSV replication.  相似文献   

19.
Pentraxins such as human serum amyloid P component (SAP) and C reactive protein (CRP) represent an ancient family of proteins that are ubiquitous in nature and have evolved with little change in structure or regulation. The pentraxin in the Syrian hamster (Mesocricetus auratus) is unique because it is preferentially expressed in the female at high constitutive levels and accordingly called female protein (FP) or FP(SAP) due to its close homology with human SAP. The high levels of FP in female serum (100-fold greater than male serum) suggested its role in hamster pregnancy, one of the shortest of any eutherian mammal. We determined the serum FP concentration in pregnant Syrian hamsters and found a marked decrease (>80%) at term with the nadir at parturition with subsequent increase. A similar downregulation of FP was found in the normal female Syrian hamster after injury (acute phase response), so in both cases the assumed beneficial effects were achieved with less, rather than more pentraxin, a paradoxical pentraxin response. The fall in serum FP concentration could represent a response to protect the fetus from the high and potentially toxic level of FP normally found in the female, that is harmful because of its association with amyloidosis. An FP that is 97.5% identical to Syrian hamster FP is found in the Turkish hamster (Mesocricetus brandti), although serum levels in females are much lower, and amyloid is very rare. During pregnancy/parturition of Turkish hamsters, the serum level of FP remained remarkably constant. In a more distantly related hamster, the Armenian hamster (Cricetulus migratorius), serum FP actually increased during pregnancy and at parturition in a manner similar to that found in the Armenian hamster during an acute phase response. The heterogeneity of FP kinetics during pregnancy in these three species of hamster indicates pleomorphic gene structure for regulation of their similar FPs, and suggests that this protein may have a different function in the pregnancy of each species.  相似文献   

20.
Cross-fertilization between Syrian and Chinese hamsters   总被引:2,自引:0,他引:2  
The role of the zona pellucida in the specificity of fertilization was studied by cross-inseminations between Syrian (Golden) and Chinese hamster gametes. Cumulus-enclosed eggs from both Syrian and Chinese hamsters were placed together in one dish and inseminated with spermatozoa from either one or the other species. Fertilization always took place between gametes of homologous species. Chinese hamster spermatozoa failed to bind to the zona pellucida of Syrian hamster eggs; hence, fertilization was never observed. However, Chinese hamster spermatozoa could fertilize zona-free Syrian hamster eggs. In the reciprocal cross, a large number of Syrian hamster spermatozoa could bind to and penetrate the zonae of Chinese hamster eggs. However, fusion of Syrian hamster spermatozoa with the vitellus of zona-intact Chinese hamster eggs was never observed. After removal of the zona pellucida, only a small percentage (31%) of Syrian hamster spermatozoa could fuse with Chinese hamster vitelli. Thus, in these species, the mechanisms of interspecific gamete recognition and the prevention of interspecies fertilization seem to differ according to the direction of the cross. In Syrian hamster eggs, the block to interspecies fertilization seems to exist at the level of the zona pellucida, while in Chinese hamster eggs the block is at the level of the egg plasma membrane. The implications of these results in analyses of the genetics of spermatozoa, the molecular basis of sperm-egg recognition, and mechanisms of reproductive isolation leading to speciation, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号