首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrombopoietin: a pan-hematopoietic cytokine.   总被引:9,自引:0,他引:9  
The recent discovery of thrombopoietin has enhanced our understanding of both hematopoiesis and platelet production. Thrombopoietin supports hematopoietic stem cell survival and expansion as well as promoting all aspects of megakaryocyte development. The hormone displays many structural similarities to other members of the hematopoietic cytokine family and some notable differences, and regulation of its expression requires both receptor-mediated removal and other mechanisms. Thrombopoietin induces receptor dimerization and tyrosine phosphorylation, and a series of signaling events including activation of JAK/STAT, Shc/Ras/MAPK and PI3K/Akt; these pathways overlap with those induced by other cytokines, but the differences that lead to the unique biological effects of the hormone are gradually being uncovered. Our growing appreciation of how cytokine signaling pathways are translated into megakaryocyte development is discussed.  相似文献   

2.
Thrombopoietin and its receptor (Mpl) support survival and proliferation in megakaryocyte progenitors and in BaF3 cells engineered to stably express Mpl (BaF3/Mpl). The binding of thrombopoietin to Mpl activates multiple kinase pathways, including the Jak/STAT, Ras/Raf/MAPK, and phosphatidylinositol 3-kinase pathways, but it is not clear how these kinases promote cell cycling. Here, we show that thrombopoietin induces phosphatidylinositol 3-kinase and that phosphatidylinositol 3-kinase is required for thrombopoietin-induced cell cycling in BaF3/Mpl cells and in primary megakaryocyte progenitors. Treatment of BaF3/Mpl cells and megakaryocytes with the phosphatidylinositol 3-kinase inhibitor LY294002 inhibited mitotic and endomitotic cell cycl-ing. BaF3/Mpl cells treated with thrombopoietin and LY294002 were blocked in G(1), whereas megakaryocyte progenitors treated with thrombopoietin and LY294002 showed both a G(1) and a G(2) cell cycle block. Expression of constitutively active Akt in BaF3/Mpl cells restored the ability of thrombopoietin to promote cell cycling in the presence of LY294002. Constitutively active Akt was not sufficient to drive proliferation of BaF3/Mpl cells in the absence of thrombopoietin. We conclude that in BaF3/Mpl cells and megakaryocyte progenitors, thrombopoietin-induced phosphatidylinositol 3-kinase activity is necessary but not sufficient for thrombopoietin-induced cell cycle progression. Phosphatidylinositol 3-kinase activity is likely to be involved in regulating the G(1)/S transition.  相似文献   

3.
Thrombopoietin (TPO) and its receptor Mpl support all of the developmental step necessary for megakaryocytopoiesis. In the past few years, the signaling pathways utilized by this member of the cytokine receptor family have been extensively studied, especially JAK/STAT, Ras/MAP kinase, Shc, and other adapter molecules. Many if not most of the secondary signaling pathways activated by thrombopoietin have also been identified upon binding of other hematopoietic growth factors to their cognate receptors, making the study of Mpl signaling representative of the field in general. However, identifying unique molecules or combinations of signals that direct megakaryocyte development has been an elusive goal and has led some investigators to conclude that there is little specificity during Mpl signal transduction. In this article we review the data regarding Mpl signaling with particular attention to the methods employed and critical interpretation of the data generated. Future studies will have to focus on primary bone marrow cells and intact animal models rather than transformed cell lines. Furthermore, it is likely that a comprehensive, integrative analysis of the many pathways activated by ligand binding will be necessary to understand the physiology of cytokine signaling.  相似文献   

4.
The binding of human thrombopoietin to the extracellular domain of its receptor MPL prompts a cascade transduction of intracellular signals, leading to the development of megakaryocyte precursors and the production of circulating platelets. We have used a yeast two-hybrid system to reveal, via in vivo interactions between different deletion constructs of MPL and thrombopoietin, that the extracellular subunit 1 of MPL is the ligand binding site and the N-terminal domain of thrombopoietin alone is sufficient for the binding. The extracellular portion of MPL was heterologously expressed in E. coli and its specific affinity with thrombopoietin was visualized in vitro by resonance mirror biosensor technique.  相似文献   

5.
Ligand binding to the thrombopoietin receptor is thought to stabilize an active receptor dimer that regulates megakaryocyte differentiation and platelet formation, as well as haematopoietic stem cell renewal. By fusing a dimeric coiled coil in all seven possible orientations to the thrombopoietin receptor transmembrane (TM)-cytoplasmic domains, we show that specific biological effects and in vivo phenotypes are imparted by distinct dimeric orientations, which can be visualized by cysteine mutagenesis and crosslinking. Using functional assays and computational searches, we identify one orientation that represents the inactive dimeric state and another similar to a physiologically activated receptor. Several other dimeric orientations are identified that induce proliferation and in vivo myeloproliferative and myelodysplastic disorders, indicating the receptor can signal from several dimeric interfaces. The set of dimeric thrombopoietin receptors with different TM orientations may offer new insights into the activation of distinct signalling pathways by a single receptor and suggests that subtle differences in cytokine receptor dimerization provide a new layer of signalling regulation that is relevant for disease.  相似文献   

6.
Thrombopoietin (TPO) promotes megakaryocyte growth and development. Its receptor, c-MPL, is restricted to cells of megakaryocytic lineage and stem cells. We have previously shown that activation of c-MPL by thrombopoietin rapidly activates at least two cytoplasmic tyrosine kinases, JAK2 and TYK2, after ligand binding. Phosphatidylinositol-3′ kinase (PI3K) has been shown to play an important role in downstream signaling for many receptors. Thrombopoietin was found to also rapidly activate phosphatidylinositol-3′ kinase, and the phosphatidylinositol-3′ kinase inhibitor wortmannin decreased proliferation of thrombopoietin-stimulated cells, implying that phosphatidylinositol-3′ kinase may have a regulatory role in thrombopoietin signaling. In immunoprecipitation studies, the regulatory subunit of phosphatidylinositol-3′ kinase, p85PI3K, associated with several tyrosine phosphoproteins, and the major phosphoprotein was a 120 kDa protein identified as p120CBL. The phosphatidylinositol-3′ kinase-enzyme activity in p120CBL immunoprecipitates was elevated in thrombopoietin-stimulated cells as compared to immunoprecipitates from unstimulated cells. p120CBL may be involved in signaling pathways activated by c-MPL which involve phosphatidylinositol-3′ kinase. J. Cell. Physiol. 171:28–33, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Thrombopoietin (THPO), also known as megakaryocyte growth and development factor (MGDF), is a cytokine involved in the production of platelets. THPO is a glycoprotein produced by liver and kidney. It regulates the production of platelets by stimulating the differentiation and maturation of megakaryocyte progenitors. It acts as a ligand for MPL receptor, a member of the hematopoietic cytokine receptor superfamily and is essential for megakaryocyte maturation. THPO binding induces homodimerization of the receptor which results in activation of JAKSTAT and MAPK signaling cascades that subsequently control cellular proliferation, differentiation and other signaling events. Despite the importance of THPO signaling in various diseases and biological processes, a detailed signaling network of THPO is not available in any publicly available database. Therefore, in this study, we present a resource of signaling events induced by THPO that was manually curated from published literature on THPO. Our manual curation of thrombopoietin pathway resulted in identification of 48 molecular associations, 66 catalytic reactions, 100 gene regulation events, 19 protein translocation events and 43 activation/inhibition reactions that occur upon activation of thrombopoietin receptor by THPO. THPO signaling pathway is made available on NetPath, a freely available human signaling pathway resource developed previously by our group. We believe this resource will provide a platform for scientific community to accelerate further research in this area on potential therapeutic interventions.  相似文献   

8.
9.
Human skin may be considered as a target organ for androgens, as are male sex accessory organs, since all events involved in testosterone action have been observed in this tissue. As a corollary, the mechanism of androgen action can be studiedin vitro in cultured skin fibroblasts. The advantages of this system are that studies can be performed with intact human cells under carefully controlled conditions, differentiated genetic and biochemical characteristics of the cells are faithfully preserved and the biological material is renewable from a single biopsy specimen. The metabolism of androgens, in particular the 5α-reduction of testosterone to the active metabolite, dihydrotestosterone, the intracellular binding of androgen to its specific receptor protein and its subsequent translocation to the nucleus have been studied in skin fibroblasts. The intracellular androgen receptor content of genital skin fibroblasts is higher than that from nongenital skin sites. In addition, the androgen receptor has been characterized as a specific macromolecule with properties of high affinity and low capacity similar to that of other steroid hormone receptors. The pathophysiology of three genetic mutations which alter normal male sexual development and differentiation has been identified in the human skin fibroblast system. In 5α-reductase deficiency, an autosomal recessive disorder in which dihydrotestosterone formation is impaired, virilization of the Wolffian ducts is normal but the external genitalia and urogenital sinus derivatives are female in character. At least two types of X-linked disorders of the androgen receptor exist such that the actions of both testosterone and dihydrotestosterone are impaired and developmental abnormalities may involve both Wolffian derivatives and the external genitalia as well. These two forms of androgen insensitivity result from either the absence of androgen receptor binding activity (receptor(−)form) or apparently normal androgen receptor binding with absence of an appropriate biological response (receptor (+) form). In addition, studies with human skin fibroblasts may also be of value in defining the cellular mechanisms underlying the broad spectrum of partial defects in virilization. In summary, we have correlated our studies of the molecular mechanism of androgen action in human genital skin fibroblasts with those of other investigators as these studies contribute to our understanding of male sexual development and differentiation.  相似文献   

10.
The receptor function of galactosyltransferase during cellular interactions   总被引:1,自引:0,他引:1  
Summary The molecular mechanisms that underly cellular interactions during development are still poorly understood. There is reason to believe that complex glycoconjugates participate in cellular interactions by binding to specific cell surface receptors. One class of carbohydrate binding proteins that could serve as receptors during cellular interactions are the glycosyltransferases. Glycosyltransferases have been detected on a variety of cell surfaces, and evidence suggests that they may participate during cellular interactions by binding their specific carbohydrate substrates on adjacent cells or in extracellular matrix (see Refs. 1–4 for review).This review will focus on the receptor function of galactosyltransferase, in particular, during fertilization, embryonic cell adhesion and migration, limb bud morphogenesis, immune recognition and growth control. In many of these systems, the galactosyltransferase substrate has been characterized as a novel, large molecular weight glycoconjugate composed of repeating N-acetyllactosamine residues. The function of surface galactosyl-transferase during cellular interactions has been examined with genetic and biochemical probes, including the T/t-complex morphogenetic mutants, enzyme inhibitors, enzyme modifiers, and competitive substrates. Collectively, these studies suggest that in the mouse, surface galactosyltransferase is under the genetic control of the T/t-complex, and participates in multiple cellular interactions during development by binding to its specific lactosaminoglycan substrate.  相似文献   

11.
Steroid receptors are a subfamily of nuclear receptors found throughout all metazoans. They are highly important in the regulation of development, inflammation, and reproduction and their misregulation has been implicated in hormone insensitivity syndromes and cancer. Steroid binding to SRs drives a conformational change in the ligand binding domain that promotes nuclear localization and subsequent interaction with coregulator proteins to affect gene regulation. SRs are important pharmaceutical targets, yet most SR-targeting drugs have off-target pharmacology leading to unwanted side effects. A better understanding of the structural mechanisms dictating ligand specificity and the evolution of the forces that created the SR-hormone pairs will enable the design of better pharmaceutical ligands. In order to investigate this relationship, we attempted to crystallize the ancestral 3-ketosteroid receptor (ancSR2) with mifepristone, a SR antagonist. Here, we present the x-ray crystal structure of the ancestral 3-keto steroid receptor (ancSR2)-progesterone complex at a resolution of 2.05 Å. This improves upon our previously reported structure of the ancSR2-progesterone complex, permitting unambiguous assignment of the ligand conformation within the binding pocket. Surprisingly, we find mifepristone, fortuitously docked at the protein surface, poised to interfere with coregulator binding. Recent attention has been given to generating pharmaceuticals that block the coregulator binding site in order to obstruct coregulator binding and achieve tissue-specific SR regulation independent of hormone binding. Mifepristone’s interaction with the coactivator cleft of this SR suggests that it may be a useful molecular scaffold for further coactivator binding inhibitor development.  相似文献   

12.
Human NUDC (hNUDC) was initially characterized as a nuclear migration protein based on the similarity of its C-terminus to that of fungal NUDC from Aspergillus nidulans. However, hNUDC is a 331 amino acid protein whereas fungal NUDC is 198 amino acids in length. The extra N-terminal portion of hNUDC has no known function or homology to other proteins. In this study, we report the binding of hNUDC to the extracellular domain of the thrombopoietin receptor (Mpl) as detected by the yeast two-hybrid system, GST pull-down, and co-immunoprecipitation. Our deletion analysis demonstrated that amino acids between positions 100 and 238 as the critical domain mediating the hNUDC and Mpl interactions as detected by the two-hybrid system and GST pull-down assay. Immunofluorescence staining of human megakaryocyte cells indicated that hNUDC and Mpl colocalized at all stages of megakaryocyte development. Substantial colocalization of hNUDC with microtubules was also detected around nuclei and elongated microtubular structures, especially in proplatelet extensions.  相似文献   

13.
Li J  Sabath DF  Kuter DJ 《Cytokine》2000,12(7):835-844
The thrombopoietin receptor, c-mpl, is a crucial element not only in thrombopoietin (TPO)-initiated signaling pathways but also in the regulation of the circulating amount of TPO. We have identified a new c-mpl isoform, called c-mpl-del, that lacks 72 bp (24 amino acids) in the extracellular region of c-mpl and arises as a consequence of alternative RNA splicing between exons 8 and 9. c-mpl-del is expressed along with c-mpl-wt in blood mononuclear cells, CD34(+)cells, megakaryocytes, and platelets prepared from either normal donors or ET patients, although its relative expression appears to increase with megakaryocyte differentiation. The c-mpl-del-transfected cells expressed greater amounts of c-mpl-del RNA and protein than the comparable c-mpl-wt-transfected cells, however flow cytometry analysis could not detect any c-mpl receptor on the surface of the c-mpl-del-transfected cells. Further evidence for the absence of surface c-mpl-del was that in contrast to cells transfected with c-mpl-wt, those transfected with c-mpl-del did not grow in response to TPO, failed to undergo tyrosine phosphorylation of TPO-specific signal molecules, and did not bind(125)I-rHuTPO. Taken together, these results demonstrate that c-mpl-del, a naturally occurring variant of c-mpl, fails to be incorporated into the cell membrane but might serve as a mechanism to decrease the overall expression of functional c-mpl late in megakaryocyte differentiation.  相似文献   

14.
The presence of specific nuclear receptors to thyroid hormones, described in prepubertal Sertoli cells, implies the existence of an early and critical influence of these hormones on testis development. Although the mechanism of action thyroid hormones has been classically established as a genomic action regulating testis development, our research group has demonstrated that these hormones exert several effects in Sertoli cells lacking nuclear receptor activation. These findings led to the identification of non-classical thyroid hormone binding elements in the plasma membrane of testicular cells. Through binding to these sites, thyroid hormones could exert nongenomic effects, including those on ion fluxes at the plasma membrane, on signal transduction via kinase pathways, on amino acid accumulation, on modulation of extracellular nucleotide levels and on vimentin cytoskeleton. The evidence of the participation of different K(+), Ca(2+) and Cl(-) channels in the mechanism of action of thyroid hormones, characterizes the plasma membrane as an important microenvironment able to coordinate strategic signal transduction pathways in rat testis. The physiological responses of the Sertoli cells to hormones are dependent on continuous cross-talking of different signal transduction pathways. Apparently, the choice of the signaling pathways to be activated after the interaction of the hormone with cell surface binding sites is directly related to the physiological action to be accomplished. Yet, the enormous complexity of the nongenomic actions of thyroid hormones implies that different specific binding sites located on the plasma membrane or in the cytosol are believed to initiate specific cell responses.  相似文献   

15.
Glucocorticoid receptor regulation   总被引:5,自引:0,他引:5  
F Svec 《Life sciences》1985,36(25):2359-2366
Glucocorticoids, like other classes of steroid hormones, must bind to cellular receptors in order to exert their effects. Because of this central role in mediating hormone action, it is important to elucidate those factors that control receptor content. The purpose of this minireview is to summarize the recent work that explores the mechanisms through which cells modulate their glucocorticoid receptor binding capacity.  相似文献   

16.
Obesity represents a major risk factor for the development of insulin and leptin resistance, ultimately leading to a pleiotropic spectrum of metabolic alterations. However, resistance to both hormones does not uniformly affect all target cells and intracellular signaling pathways. In contrast, numerous clinical phenotypes arise from selective hormone resistance, leading to inhibition of defined intracellular signaling pathways in some tissues, while in other cell types hormone action is maintained or even overactivated. Here, we review the molecular mechanisms and clinical outcomes resulting from selective insulin and leptin resistance, which should ultimately guide future strategies for the treatment of obesity-associated diseases.  相似文献   

17.

Background

Thyroid hormones regulate skeletal development, acquisition of peak bone mass and adult bone maintenance. Abnormal thyroid status during childhood disrupts bone maturation and linear growth, while in adulthood it results in altered bone remodeling and an increased risk of fracture

Scope of Review

This review considers the cellular effects and molecular mechanisms of thyroid hormone action in the skeleton. Human clinical and population data are discussed in relation to the skeletal phenotypes of a series of genetically modified mouse models of disrupted thyroid hormone signaling.

Major Conclusions

Euthyroid status is essential for normal bone development and maintenance. Major thyroid hormone actions in skeletal cells are mediated by thyroid hormone receptor α (TRα) and result in anabolic responses during growth and development but catabolic effects in adulthood. These homeostatic responses to thyroid hormone are locally regulated in individual skeletal cell types by the relative activities of the type 2 and 3 iodothyronine deiodinases, which control the supply of the active thyroid hormone 3,5,3’-L-triiodothyronine (T3) to its receptor.

General Significance

Population studies indicate that both thyroid hormone deficiency and excess are associated with an increased risk of fracture. Understanding the cellular and molecular basis of T3 action in skeletal cells will lead to the identification of new targets to regulate bone turnover and mineralization in the prevention and treatment of osteoporosis. This article is part of a Special Issue entitled Thyroid hormone signaling.  相似文献   

18.
The cytokine thrombopoietin (TPO) controls the formation of megakaryocytes and platelets from hematopoietic stem cells. TPO exerts its effect through activation of the c-Mpl receptor and of multiple downstream signal transduction pathways. While the membrane-proximal half of the cytoplasmic domain appears to be required for the activation of signaling molecules that drive proliferation, the distal half and activation of the mitogen-activated protein kinase pathway have been implicated in mediating megakaryocyte maturation in vitro. To investigate the contribution of these two regions of c-Mpl and the signaling pathways they direct in mediating the function of TPO in vivo, we used a knock-in (KI) approach to delete the carboxy-terminal 60 amino acids of the c-Mpl receptor intracellular domain. Mice lacking the C-terminal 60 amino acids of c-Mpl (Delta60 mice) have normal platelet and megakaryocyte counts compared to wild-type mice. Furthermore, platelets in the KI mice are functionally normal, indicating that activation of signaling pathways connected to the C-terminal half of the receptor is not required for megakaryocyte differentiation or platelet production. However, Delta60 mice have an impaired response to exogenous TPO stimulation and display slower recovery from myelosuppressive treatment, suggesting that combinatorial signaling by both ends of the receptor intracellular domain is necessary for an appropriate acute response to TPO.  相似文献   

19.
A number of vanadium compounds (vanadate, vanadyl sulfate, metavanadate) have insulin-mimicking actions bothin vitro andin vivo. They have multiple biological effects in cultured cells and interact directly with various enzymes. The inhibitory action on phosphoprotein tyrosine phosphatases (PTPs) and enhancement of cellular tyrosine phosphorylation appear to be the most relevant to explain the ability to mimic insulin. We demonstrated that in rat adipocytes both acute insulin effects, e.g. stimulation of IGF-II and transferrin binding and a chronic effect, insulin receptor downregulation, were stimulated by vanadate. Vanadate also enhanced insulin binding, particularly at very low insulin concentrations, associated with increased receptor affinity. This resulted in increased adipocyte insulin sensitivity. Finally vanadate augmented the extent of activation of the insulin receptor kinase by submaximal insulin concentrations. This was associated with a prolongation of the insulin biological response, lipogenesis, after removal of hormone.In conclusion: in rat adipocytes vanadate promotes insulin action by three mechanisms, 1) a direct insulin-mimetic action, 2) an enhancement of insulin sensitivity and 3) a prolongation of insulin biological response. These data suggest that PTP inhibitors have potential as useful therapeutic agents in insulin-resistant and relatively insulin-deficient forms of diabetes mellitus.  相似文献   

20.
Spatial compartmentalization of signal transduction in insulin action   总被引:5,自引:0,他引:5  
Insulin resistance is thought to be the primary defect in the pathophysiology of type 2 diabetes. Thus, understanding the cellular mechanisms of insulin action may contribute significantly to developing new treatments for this disease. Although the effects of insulin on glucose and lipid metabolism are well documented, gaps remain in our understanding of the precise molecular mechanisms of signal transduction for the hormone. One potential clue to understanding the unique cellular effects of insulin may lie in the compartmentalization of signaling molecules and metabolic enzymes. We review this evidence, and speculate on how PI-3 kinase-independent and -dependent signaling pathways both diverge from the insulin receptor and converge at discrete targets to insure the specificity of insulin action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号