首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mammalian eggs are surrounded by two egg coats: the cumulus oophorus and the zona pellucida, which is an extracellular matrix composed of sulfated glycoproteins. The first association of the spermatozoon with the zona pellucida occurs between the zona glycoprotein, ZP3 and sperm receptors, located at the sperm plasma membrane, such as the 95kDa tyrosine kinase-protein. This association induces the acrosome reaction and exposes the proacrosin/acrosin system. Proacrosin transforms itself, by autoactivation, into the proteolytical active form: acrosin. This is a serine protease that has been shown to be involved in secondary binding of spermatozoa to the zona pellucida and in the penetration of mammalian spermatozoa through it. The zona pellucida is a specific and natural substrate for acrosin and its hydrolysis and fertilization can be inhibited by antiacrosin monoclonal antibodies. Moreover, inin vitrofertilization experiments, trypsin inhibitors significantly inhibits fertilization. The use of the silver-enhanced immunogold technique has allowed immunolocalization of the proacrosin/acrosin system in spermatozoa after the occurrence of the acrosome reaction. This system remains associated to the surface of the inner acrosomal membrane for several hours in human, rabbit and guinea-pig spermatozoa while in the hamster it is rapidly lost. In the hamster, the loss of acrosin parallels the capability of the sperm to cross the zona pellucida. Rabbit perivitelline spermatozoa can fertilize freshly ovulated rabbit eggs and retain acrosin in the equatorial and postacrosomal region. These spermatozoa also show digestion halos on gelatin plates that can be inhibited by trypsin inhibitors. This evidence strongly suggests the involvement of acrosin in sperm penetration through the mammalian zona. Recently it was shown, however, that acrosin would not be essential for fertilization. It is likely, then, that such an important phenomenon in the mammalian reproductive cycle would be ensured though several alternative mechanisms.  相似文献   

2.
We have previously indicated that at least in mouse, sperm serine protease(s) other than acrosin probably act on the limited proteolysis of egg zona pellucida to create a penetration pathway for motile sperm, although the participation of acrosin cannot be ruled out completely. A 42-kDa gelatin-hydrolyzing serine protease present in mouse sperm is a candidate enzyme involved in the sperm penetration of the zona pellucida. In this study, we have PCR-amplified an EST clone encoding a testicular serine protease, termed TESP5, and then screened a mouse genomic DNA library using the DNA fragment as a probe. The DNA sequence of the isolated genomic clones indicated that the TESP5 gene is identical to the genes coding for testicular testisin and eosinophilic esp-1. Immunochemical analysis using affinity-purified anti-TESP5 antibody revealed that 42- and 41-kDa forms of TESP5 with the isoelectric points of 5.0 to 5.5 are localized in the head, cytoplasmic droplet, and midpiece of cauda epididymal sperm probably as a membranous protein. Moreover, these two forms of TESP5 were selectively included into Triton X-100-insoluble microdomains, lipid rafts, of the sperm membranes. These results show the identity between TESP5/testisin/esp-1 and the 42-kDa sperm serine protease. When HEK293 cells were transformed by an expression plasmid carrying the entire protein-coding region of TESP5, the recombinant protein produced was released from the cell membrane by treatment with Bacillus cereus phosphatidylinositol-specific phospholipase C, indicating that TESP5 is glycosylphosphatidylinositol-anchored on the cell surface. Enzymatic properties of recombinant TESP5 was similar to but distinguished from those of rat acrosin and pancreatic trypsin by the substrate specificity and inhibitory effects of serine protease inhibitors.  相似文献   

3.
Mammalian sperm acrosomes contain a trypsin-like protease called acrosin which causes limited and specific hydrolysis of the extracellular matrix of the mammalian egg, the zona pellucida. Acrosin was localized on hamster, guinea-pig and human sperm using monoclonal and polyclonal antibodies to human acrosin labelled with colloidal gold. This was visualized directly with transmission electron microscopy, and with light and scanning microscopy after silver enhancement of the colloidal gold probe. Four distinct labelling patterns were found during capacitation and the acrosome reaction in hamster and guinea-pig spermatozoa, and three patterns were found in human spermatozoa. In the hamster, acrosin was not detected on the inner acrosomal surface after the completion of the acrosome reaction, thus correlating with the observation that hamster spermatozoa lose the ability to penetrate the zona after the acrosome reaction. With guinea-pig and human spermatozoa, acrosin was still detected after the completion of the acrosome reaction, thus correlating with the observation that acrosome reacted guinea-pig spermatozoa bind to and penetrate the zona pellucida.  相似文献   

4.
In this study, we investigated the functions of PH‐20 and acrosin during the interaction of macaque sperm with the zona pellucida. Both of these sperm enzymes have been reported to be present on the inner acrosomal membrane of acrosome reacted sperm, and have been suggested to play a role during secondary sperm‐zona binding in other species. Anti‐macaque PH‐20 IgG, anti‐pig acrosin IgG and soybean trypsin inhibitor (SBTI) were used as probes for immunolocalization of the two proteins at the ultrastructural level, and as reagents for blocking sperm penetration of the macaque zona pellucida in vitro. As a control, we performed similar studies with antibodies to CD‐46, which is also located on the inner acrosomal membrane, but has no known function in sperm‐zona pellucida interaction. After labeling with anti‐acrosin IgG, gold label was not present on the sperm surface before the acrosome reaction, but was detected over the entire head of sperm that were induced to acrosome react with calcium ionophore A23187. In contrast, when sperm were induced to acrosome react by binding to intact zona pellucida, acrosin was present in the acrosomal shroud but not on the inner acrosomal membrane. Similar results were obtained when SBTI was used as a probe for enzyme localization. PH‐20 and CD‐46 were demonstrated on the inner acrosomal membrane of sperm induced to acrosome react by ionophore treatment and by zona binding. Neither anti‐acrosin IgG nor anti‐CD‐46 IgG affected sperm penetration of the zona at concentrations up to 300 μg/ml, but zona penetration was blocked completely when anti‐PH‐20 IgG (100 μg/ml) was present during sperm‐oocyte interaction. Ultrastructural observations of oocytes incubated with anti‐PH‐20 IgG showed that acrosomal shrouds were present on the zona surface but no sperm had begun to penetrate into the zona substance. We conclude that anti‐PH‐20 IgG prevented sperm penetration of the macaque zona pellucida by interference with secondary sperm‐zona binding, rather than primary sperm‐zona binding or the zona‐induced acrosome reaction. Acrosin was not detected on the inner acrosomal membrane of sperm that are induced to acrosome react after zona binding, and acrosin does not appear to be critical for sperm penetration of the macaque zona pellucida. Mol. Reprod. Dev. 53:350–362, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
Mammalian fertilization is a complex process that involves gamete recognition, penetration, and fusion. Biochemical studies that identified the role of acrosome components during sperm–ova interaction especially the zona pellucida (ZP) provided major advances in sperm cell biology. Acrosin (a typical serine protease) functions during fertilization in several significant ways which include: a) activation of acrosome components, b) secondary binding with the ZP, and c) hydrolysis of the ZP. However, studies using knockout (KO) acrosin-deficient mice cast doubt on the traditional role of acrosin in fertilization. The KO acrosin-deficient mice exhibit normal fecundity except for delayed fertilization. Despite the doubt cast on the traditional role of acrosin by the KO acrosin-deficient mouse studies, acrosin still remains a major protease involved in multiple processes of fertilization. In this review, we assess the functional profile of acrosin and briefly summarize recent findings on proteases involved in fertilization. We propose a refined scheme for the functional role of acrosin in fertilization. We particularly emphasize the role of acrosin in acrosome exocytosis and activation of other acrosome components based on advanced technology like structural X-ray analysis.  相似文献   

6.
Sperm with a large acrosome such as that of guinea pigs and hamsters have a subdomain structure in the anterior acrosome, but the mouse acrosome looks homogeneous and its matrix has not been precisely analyzed. The intra-acrosomal protein MC41 is localized in the cortical region of the mouse anterior acrosome, suggesting a subdomain structure in the mouse acrosome. Thus, the present study was undertaken to analyze the mouse acrosomal matrix using an anti-MC41 antibody. When mouse sperm were treated with 2% Triton X-100, Triton-insoluble matrix components remained in the acrosomal cortical region. Immunogold for MC41 labeled the Triton X-100 and high-salt-insoluble matrix components, demonstrating that MC41 is a subdomain-specific acrosomal matrix protein. We further examined interactions of MC41 with acrosomal proteases and zona proteins. A serine protease of 75 kDa was associated with MC41 under low-salt conditions, presumably forming a complex. Far Western blotting technique indicated that MC41 bound to both ZP2 and ZP2(f) in the presence of high-salt-soluble sperm proteins. In acrosome-reacting sperm, MC41 was present on the hybrid vesicles formed by the fusion of the plasma and outer acrosomal membranes. Presumably, MC41 has a significant role in secondary sperm-zona binding during the acrosomal reaction.  相似文献   

7.
Acrosin is a serine protease located within mammalian acrosome as inactive proacrosin. Sulphated polymers bind to proacrosin and acrosin, to a domain different from the active site. Upon binding, these polymers induce proacrosin activation and some of them, such as fucoidan, inhibit sperm binding to the zona pellucida. In this work we have studied the interaction of solubilised zona pellucida glycoproteins (ZPGs), heparin and ARIS (Acrosome Reaction Inducing Substance of Starfish) with boar and human acrosin. We have found that ARIS, solubilised ZPGs and fucoidan, but not heparin, inhibit the binding of the monoclonal antibody against human acrosin C5F10 to boar or human proacrosin. These results suggest that fucoidan, solubilised ZPGs and ARIS bind to a related domain on the proacrosin surface. Moreover, ARIS was able to induce human proacrosin activation. On the other hand, neither ARIS nor heparin from porcine intestinal mucosa or bovine lung induced hamster sperm acrosome reaction or sperm motility. Recent data showed that acrosin is involved in dispersal of the acrosomal matrix after acrosome reaction. Thus, the control of the ZPG glycan chains over proacrosin activation may regulate both sperm penetration rate and limited proteolysis of zona pellucida proteins.  相似文献   

8.
Studies of three major proteases associated with guinea pig sperm acrosomes   总被引:1,自引:0,他引:1  
The major proteases associated with guinea pig sperm were investigated by using immunological and electrophoretic techniques. Three major proteases were detected following sodium dodecyl sulfate-polyacryl-amide gel electrophoresis in gels containing 0.1% gelatin. These enzymes had molecular weights of 47,000, 34,000, and 32,000 relative to reduced protein standards and 58,500, 40,000, and 37,500 relative to unreduced standards. All three protease activities were present in acid extracts of sperm, detergent extracts of sperm, and the soluble acrosomal components of sperm released following induction of the acrosome reaction with the Ca2+-ionophore A23187. As determined by indirect immunofluorescence, an antibody to purified boar acrosin specifically cross-reacted with the acrosomes of guinea pig sperm. Decreased fluorescence was associated with sperm that had lost their acrosomes. Immunoblot analysis demonstrated that this antibody reacted with the 47,000 Mr protease but not the 32,000 and 34,000 Mr proteases. All three proteases were maximally active in the pH 7.0-8.5 region and were inhibited by classical inhibitors of acrosin activity. During a 3-hour incubation period, MgCl2 (10 mM) inhibited the activities of the 32,000 and 34,000 Mr proteases while the 47,000 Mr protease was stimulated. Although these proteases shared properties that would classify them as trypsin-like proteases, only the 47,000 Mr protease could be definitely classified as a member of the proacrosin-acrosin family based upon cross-reaction with an antibody to purified boar acrosin.  相似文献   

9.
To investigate the molecular basis of gamete interaction in mammals, monoclonal antibodies (mAbs) have been generated by syngeneic immunization with mouse testis. Previous work has described two particular mAbs, M41 and M42, which localize indistinguishably to the plasma membrane overlying a restricted portion of the acrosome, but recognize different antigens. One of the mAbs, M42, inhibits mouse fertilization in vitro significantly, but only in the presence of the zona pellucida, whereas M41 has no apparent effect upon any assayable event in the fertilization process. The experiments described here were performed to identify the precise event of sperm-zona interaction (sperm-zona binding, induction of the acrosome reaction, or penetration through the zona) that is affected by M42 mAb. Capacitated mouse sperm binding to the zona pellucida was undiminished following pretreatment with M42 mAb, when compared to levels achieved using either no mAb- or to M41 mAb-treated control sperm. When the effect of mAbs on the zona-induced AR was examined, the percentage of acrosome reacted (AR) sperm at the zona surface increased with time, plateauing at approximately 90 min post-insemination, with 78% of the bound cells AR in the control and the M41 mAb-treated groups. M42-treated sperm never achieved greater than 23% AR cells over the 120-min interval assayed. To quantitate this effect, capacitated sperm were exposed to increasing concentrations of acid-solubilized zonae. Increased proportions of AR sperm were found in the control and M41 mAb-treated groups, up to a maximum of 70-76% AR cells with 8 or 12 zonae/microliter. In contrast, M42-treated sperm displayed only 21-28% AR cells over the entire range of zonae concentrations tested. An entirely different result emerged when acrosome reactions were induced with A23187: M42 was no longer able to prevent the AR. This ability of A23187 to override M42 mAb's inhibitory effect on the AR permitted specific examination of the possible effect of M42 mAb on sperm penetration through the zona pellucida. In the presence of A23187, zona penetration levels for M42 mAb-treated sperm were equivalent, both qualitatively and quantitatively, to control and to M41 mAb-treated sperm under the same conditions. It appears, therefore, that M42 mAb identifies a high molecular weight doublet (220-240 kDa) of mouse sperm that participates specifically in the induction of the sperm's acrosome reaction as it occurs under physiological conditions.  相似文献   

10.
The effects of trypsin inhibitors and phospholipase inhibitors on the acrosome reaction of washed cauda epididymal sperm of golden hamsters were studied using two different incubation systems. One incubation system, a non-synchronous acrosome reaction inducing system, included the use of a highly purified BSA and a protein-free motility factor preparation from hamster adrenal gland. The other system was a relatively synchronous acrosome reaction-inducing-system utilizing the calcium ionophore A23187. Acrosome reactions were inhibited by three low molecular weight synthetic trypsin inhibitors, benzamidine, NPGB and TLCK, when they were added five minutes prior to the initial occurrence of acrosome reactions in the non-synchronous system or five minutes prior to induction of acrosome reactions by A23187 in the synchronous system. Two phospholipase A inhibitors, p-bromophenacyl bromide and mepacrine, were also effective in inhibiting hamster sperm acrosome reactions in both incubation systems. TPCK, an inhibitor of several non-trypsin-like proteases, indomethacin, a prostaglandin synthetase inhibitor, and soybean trypsin inhibitor, a large molecular weight polypeptide, did not inhibit acrosome reactions. The inhibition of those acrosome reactions induced by A23187 provides further indirect evidence that the effective inhibitors were functioning at a site within the sperm. The overall results provide: (1) further support for our earlier work suggesting the involvement of an internal trypsin-like enzyme (presumably acrosin) rather than an exogenous trypsin-like enzyme in the hamster sperm acrosome reaction and (2) the first evidence suggesting the possibility that a sperm phospholipase may also be involved in the mammalian acrosome reaction.  相似文献   

11.
12.
Limited and specific proteolysis of the zona pellucida by acrosin   总被引:1,自引:0,他引:1  
The proteolytic action of boar sperm acrosin on its natural substrate, the zona pellucida, was investigated. Acrosin exhibited substrate specificity for the zona pellucida and differentially hydrolyzed the glycoprotein families composing the zona pellucida. In contrast to acrosin, trypsin was a less-specific protease in terms of zona pellucida hydrolysis.  相似文献   

13.
The interaction between acrosome-reacted sperm and zona pellucida proteins is not yet fully understood. Serine protease acrosin and its zymogen proacrosin have been proposed to fulfill this function due to their capacity to bind zona pellucida glycoproteins. However, the molecular mechanism underlying this interaction has been merely speculative. Here we show that fucoidan (a sulfated polysaccharide) and solubilized zona pellucida glycoproteins, but not soybean trypsin inhibitor, are able to detach bound spermatozoa, which suggests that live sperm binds to the zona pellucida in a non-enzymatical way. Interestingly, mild proteolytic digestion with acrosin or trypsin does not modify the structure of the zona pellucida, but rather results in fewer spermatozoa binding to the zona. These results agree with a model where the active site of acrosin digests the zona pellucida and binds through the polysulfate-binding domain through a three-dimensional zona structure rather than a single ligand.  相似文献   

14.
Mammalian fertilization involves various steps in which the participation of specific enzymes has been demonstrated by numerous studies. Acrosin is one of the most widely acrosomal protease in mammalian spermatozoa studied, including bovine; however, other proteases have also been described. A new trypsin-like serine protease named bovine serine protease of 120 kDa (BSp120) and its pre-cursor BSp66 (66 kDa) were identified in bovine spermatozoa. Cytological and ultrastructural immunolocalization studies on BSp120 were performed in live and fixed cells. Immunoflorescence assays with specific polyclonal antibodies revealed localization of BSp120 on the sperm head, with a signal homogeneously distributed over the acrosome resembling a horseshoe. After the acrosome reaction, sperm showed a patchy pattern in the acrosomal cap. Immune electron microscopy analysis indicated that BSp120 is located over the head plasma membrane of capacitated spermatozoa and acrosome reacting spermatozoa. To assess BSp120 function in sperm-oocyte interaction, in vitro fertilization studies were conducted. Oocytes were incubated with spermatozoa pre-treated with anti-BSp120, anti-guinea pig acrosin, and anti-BSp120 plus anti-guinea pig acrosin. Pre-treatment of bovine spermatozoa with antibodies towards each protein did not significantly modify fertilization rates. However, when both anti-acrosin and anti-BSp120 antibodies were simultaneously added, there was a significant decrease in the fertilization rate, suggesting that both enzymes may be required for fertilization. Altogether, the results from the present study described the localization of BSp120 over the acrosome of bovine sperm, and suggest its involvement in fertilization.  相似文献   

15.
Dramatic inhibition of trypsin activity by rat caltrin and guinea pig caltrin I was spectrophotometrically demonstrated using the artificial substrate benzoylarginyl ethyl ester. Approximately 6% and 21% of residual proteolytic activity was recorded after preincubating the enzyme with 0.22 and 0.27 microM rat caltrin and guinea pig caltrin I, respectively. Reduction and carboxymethylation of the cysteine residues abolished the inhibitor activity of both caltrin proteins. Rat caltrin and guinea pig caltrin I show structural homology with secretory trypsin/acrosin inhibitor proteins isolated from boar and human seminal plasma and mouse seminal vesicle secretion and share a fragment of 13 amino acids of almost identical sequence (DPVCGTDGH/K/ITYG/AN), which is also present in the structure of Kazal-type trypsin inhibitor proteins from different mammalian tissues. Bovine, mouse, and guinea pig caltrin II, three caltrin proteins that have no structural homology with rat caltrin or guinea pig caltrin I, lack trypsin inhibitor activity. Rat caltrin, guinea pig caltrin I, and the mouse seminal vesicle trypsin inhibitor protein P12, which also inhibits Ca(2+) uptake into epididymal spermatozoa (mouse caltrin I), bound specifically to the sperm head, on the acrosomal region, as detected by indirect immunofluorescence. They also inhibited the acrosin activity in the gelatin film assay. Caltrin I may play an important role in the control of sperm functions such as Ca(2+) influx in the acrosome reaction and activation of acrosin and other serine-proteases at the proper site and proper time to ensure successful fertilization.  相似文献   

16.
The effect of various proteases (kallikrein, plasmin, and trypsin) on sperm phospholipase A2 activity (PA2: EC 3.1.1.4) has been studied. The addition of trypsin to spermatozoa, isolated and washed in the presence of the protease inhibitor benzamidine, increased PA2 activity optimally with trypsin concentrations of 1.0–1.5 units/assay. In kinetic studies, all of the above proteases stimulated the deacylation of phosphatidylcholine (PC); in fresh spermatozoa, trypsin showed a higher activation potential than kallikrein or plasmin. In the presence of benzamidine, the activity remained at basal levels. Endogenous protease activity due to acrosin (control) resulted in an increase in PC deacylation compared to the basal level. The maximum activation time of PA2 activity by proteases was 30 min. Natural protease inhibitors (soybean trypsin inhibitor and aprotinin) kept the PA2 activity at basal levels and a by-product of kallikrein, bradykinin, did not significantly affect the control level. Protein extracts of fresh spermatozoa exhibited the same pattern of PA2 activation upon the addition of proteases, thus indicating that the increase in PA2 activity was not merely due to the release of the enzyme from the acrosome. All of these findings suggest the presence of a precursor form of phospholipase A2 that can be activated by endogenous proteases (acrosin) as well by exogenous proteases present in seminal plasma and in follicular fluid (plasmin, kallikrein). Thus, this interrelationship of proteases and prophospholipase A2 could activate a dormant fusogenic system: the resulting effect would lead to membrane fusion by lysolipids, key components in the acrosome reaction.  相似文献   

17.
Acrosome reactions occurring in vitro in hamster sperm capacitated by bovine follicular fluid were severly inhibited by four synthetic trypsin inhibitors and by Zn2+. Three polypeptide trypsin inhibitors and a synthetic chymotrypsin inhibitor did not inhibit the acrosome reaction, and Ca2+ overcame the inhibition by Zn2+. These results suggest that a trypsin-like enzyme (possibly acrosin) plays a role in the acrosome reaction.  相似文献   

18.
Recent studies of mouse fertilization have identified two complementary gamete receptors that mediate sperm-egg binding. Sperm surface β1,4-galactosyltransferase (GalTase) binds to specific oligosaccharides of the egg coat (zona pellucida) glycoprotein ZP3. Evidence suggests that these same molecules may stimulate the acrosome reaction in sperm. After the acrosome reaction, it is thought that sperm remain adherent to the zona by binding another glycoprotein, ZP2. The acrosome-reacted sperm releases hydrolytic enzymes, including acrosin and N-acetylglucosaminidase, enabling it to penetrate the zona pellucida. After the penetrating sperm binds to the egg membrane and activates development, N-acetylglucosaminidase is exocytosed from egg cortical granules and, as part of the zona block to polyspermy, globally removes the sperm GalTase binding site from ZP3 oligosaccharides.  相似文献   

19.
Boar sperm acrosin is an acrosomal protease with trypsin-like specificity, and it functions in fertilization by assisting sperm passage through the zona pellucida by limited hydrolysis of this extracellular matrix. In addition to a proteolytic active site domain, acrosin binds the zona pellucida at a separate binding domain that is lost during proacrosin autolysis. In this study, we quantitate the binding of proacrosin to the physiological substrate for acrosin, the zona pellucida, and to a non-substrate, the polysulfated polysaccharide fucoidan. Binding was analogous to sea urchin sperm bindin that binds egg jelly fucan and the vitelline envelope of sea urchin eggs. Proacrosin was found to bind to fucoidan and to the zona pellucida with binding affinities similar to bindin interaction with egg jelly fucan. These interactions were competitively inhibited by similar relative molecular mass polysulfated polymers. Since bindin and proacrosin have distinctly different amino acid sequences, their interaction with acidic sulfate esters demonstrates an example of convergent evolution wherein different macromolecules localized in analogous sperm compartments have the same biological function. From cDNA sequence analysis of proacrosin, this binding may be mediated through a consensus sequence for binding sulfated glycoconjugates. Proacrosin binding to the zona pellucida may serve as both a recognition or primary sperm receptor, as well as maintaining the sperm on the zona pellucida once the acrosome reaction has occurred.  相似文献   

20.
When denuded ram spermatozoa were suspended in weakly buffered 0.25M sucrose, the acrosin remained bound to the acrosomal membranes of the sperm heads. Media containing CaCl2 caused complete solubilization of the enzyme. Effects of acrosin inhibitors on soluble and bound enzyme were studied in Tris HCl(pH 8.2) containing sucrose. Denuded spermatozoa were used as a preparation of bound acrosin. Trasylol (Kunitz basic pancreatic trypsin inhibitor) acted more strongly on bound scrosin than on soluble acrosin, but soya-bean trypsin inhibitor acted more strongly on soluble acrosin. At concentrations 0.5 - 2.0muM, the inhibitors isolated from ram acrosomes and from ram seminal plasma inhibited soluble acrosin but had negligible effects on bound acrosin. However, bound acrosin was sensitive to high concentrations of the acrosomal inhibitor. The two forms of acrosin were inhibited to about the same degree by p-aminobenzamidine and also by Tos-Lys-CH2Cl. It is proposed that membrane-bound acrosin is the form that functions in penetration of the zona pellucida, and that a role for acrosin inhibitors is suppression of an antifertility effect of soluble acrosin on mammalian eggs. This hypothesis is supported by 1) the results of work on the impaired fertilizing capacity of rabbit spermatozoa that have been treated with acrosin inhibitors, 2) the anti-fertility effects on hamster eggs of solutions of acrosin and of bovine trypsin, and 3) the results in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号