首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The most dramatic gradient in global biodiversity is between marine and terrestrial environments. Terrestrial environments contain approximately 75-85% of all estimated species, but occupy only 30 per cent of the Earth's surface (and only approx. 1-10% by volume), whereas marine environments occupy a larger area and volume, but have a smaller fraction of Earth's estimated diversity. Many hypotheses have been proposed to explain this disparity, but there have been few large-scale quantitative tests. Here, we analyse patterns of diversity in actinopterygian (ray-finned) fishes, the most species-rich clade of marine vertebrates, containing 96 per cent of fish species. Despite the much greater area and productivity of marine environments, actinopterygian richness is similar in freshwater and marine habitats (15 150 versus 14 740 species). Net diversification rates (speciation-extinction) are similar in predominantly freshwater and saltwater clades. Both habitats are dominated by two hyperdiverse but relatively recent clades (Ostariophysi and Percomorpha). Remarkably, trait reconstructions (for both living and fossil taxa) suggest that all extant marine actinopterygians were derived from a freshwater ancestor, indicating a role for ancient extinction in explaining low marine richness. Finally, by analysing an entirely aquatic group, we are able to better sort among potential hypotheses for explaining the paradoxically low diversity of marine environments.  相似文献   

4.
Vast numbers of malaria parasites exist in a population: perhaps 10(10) in just one vertebrate host. Yet gametocytes, the only stage capable of transmission, usually constitute just a few percent or even less of the circulating parasites. Why? Parasite fitness should be intimately linked with transmission probability and infectiousness rises with gametocyte density. Here, Louise Taylor and Andrew Read propose several testable hypotheses that might explain why natural selection has not favoured variants producing more transmission stages.  相似文献   

5.
How do so few control so many?   总被引:15,自引:0,他引:15  
Nasmyth K 《Cell》2005,120(6):739-746
The separation of sister chromatids at the metaphase-to-anaphase transition is triggered by a protease called separase that is activated by the destruction of an inhibitory chaperone (securin). This process is mediated by a ubiquitin protein ligase called the anaphase-promoting complex or cyclosome (APC/C), along with a protein called Cdc20. It is vital that separase not be activated before every single chromosome has been aligned on the mitotic spindle. Kinetochores that have not yet attached to microtubules catalyze the sequestration of Cdc20 by an inhibitor called Mad2. Recent experiments shed important insight into how Mad2 molecules bound to centromeres through their association with a protein called Mad1 might be transferred to Cdc20 and thereby inhibit securin's destruction.  相似文献   

6.
The RNA world scenario posits the existence of catalytic and genetic networks whose reactions are catalyzed by RNAs. Substantial progress has been made in recent years in the selection of RNA catalysts by SELEX, thus verifying one prediction of the model. However, many selected catalysts are long molecules, leading to a question of whether they could have been synthesized by a primitive replicator. It is proposed that the efficiency of some small ribozymes may have been augmented by other RNAs acting as transactivators.  相似文献   

7.
Synopsis Although they are the oldest and most diverse members of the subphylum, the fishes have relatively few nematode parasites in comparison with other vertebrate classes. It is hypothesized that this paucity of parasite species has occurred because nematode parasites first evolved in terrestrial hosts and only a few lines of these parasites were able to transfer to fish after the appearance of heteroxeny (use of intermediate hosts) and paratenesis (use of transport hosts). The inability of nematodes to initiate parasitism in aquatic ecosystems restricted fish parasites mainly to forms first adapted to terrestrial vertebrates and at the same time deprived large groups of aquatic invertebrates such as the crustaceans, annelids and molluscs of a nematode parasite fauna.Invited editorial  相似文献   

8.
The genes encoding the three major targets of conventional insecticides are: Rdl, which encodes a gamma-aminobutyric acid receptor subunit (RDL); para, which encodes a voltage-gated sodium channel (PARA); and Ace, which encodes insect acetylcholinesterase (AChE). Interestingly, despite the complexity of the encoded receptors or enzymes, very few amino acid residues are replaced in different resistant insects: one within RDL, two within PARA and three or more within AChE. Here we examine the possible reasons underlying this extreme conservation by looking at the aspects of receptor and/or enzyme function that may constrain replacements to such a limited number of residues.  相似文献   

9.
The freshwater fish assemblage in most estuaries is not as species rich as the marine assemblage in the same systems. Coupled with this differential richness is an apparent inability by most freshwater fish species to penetrate estuarine zones that are mesohaline (salinity: 5·0–17·9), polyhaline (salinity: 18·0–29·9) or euhaline (salinity: 30·0–39·9). The reason why mesohaline waters are avoided by most freshwater fishes is difficult to explain from a physiological perspective as many of these species would be isosmotic within this salinity range. Perhaps, a key to the poor penetration of estuarine waters by freshwater taxa is an inability to develop chloride cells in gill filament epithelia, as well as a lack of other osmoregulatory adaptations present in euryhaline fishes. Only a few freshwater fish species, especially some of those belonging to the family Cichlidae, have become fully euryhaline and have successfully occupied a wide range of estuaries, sometimes even dominating in hyperhaline systems (salinity 40+). Indeed, this review found that there are few fish species that can be termed holohaline (i.e. capable of occupying waters with a salinity range of 0–100+) and, of these taxa, there is a disproportionally high number of freshwater species (e.g. Cyprinodon variegatus, Oreochromis mossambicus and Sarotherodon melanotheron). Factors such as increased competition for food and higher predation rates by piscivorous fishes and birds may also play an important role in the low species richness and abundance of freshwater taxa in estuaries. Added to this is the relatively low species richness of freshwater fishes in river catchments when compared with the normally higher diversity of marine fish species for potential estuarine colonization from the adjacent coastal waters. The almost complete absence of freshwater fish larvae from the estuarine ichthyoplankton further reinforces the poor representation of this guild within these systems. An explanation as to why more freshwater fish species have not become euryhaline and occupied a wide range of estuaries similar to their marine counterparts is probably due to a combination of the above described factors, with physiological restrictions pertaining to limited salinity tolerances probably playing the most important role.  相似文献   

10.
11.
12.
Insects and flowering plants have rarely invaded the sea. Explanations for this have traditionally centered on the unique shortcomings of these groups in the marine environment. We show, however, that transitions among terrestrial, freshwater, and marine environments are infrequent in all major plant and animal clades except tetrapod vertebrates. In general, well-adapted incumbents are at a competitive advantage over would-be invaders from a physically different habitat. Data on the times and places of transition are consistent with our contention that evolutionary transitions among physically different environments are most likely when incumbents in the recipient environment exist in a regime of low-intensity competition and prcdation, as in terrestrial communities of the middle Paleozoic or the land biotas of oceanic islands. Freshwater environments, in which inferred intensities of predation are lower than in most marine and terrestrial environments, offer less biotic resistance to invaders than do communities in the sea or on land. Most invaders respond to novel physical circumstances by shutting down their metabolic machinery, and therefore add to their subordinate status as competitors with active incumbents. Only active tetrapods, particularly those with high and endothermically driven rates of metabolism, have successfully overcome this limitation.  相似文献   

13.
The expensive brain hypothesis predicts an interspecific link between relative brain size and life-history pace. Indeed, animals with relatively large brains have reduced rates of growth and reproduction. However, they also have increased total lifespan. Here we show that the reduction in production with increasing brain size is not fully compensated by the increase in lifespan. Consequently, the maximum rate of population increase (rmax) is negatively correlated with brain mass. This result is not due to a confounding effect of body size, indicating that the well-known correlation between rmax and body size is driven by brain size, at least among homeothermic vertebrates. Thus, each lineage faces a 'grey ceiling', i.e. a maximum viable brain size, beyond which rmax is so low that the risk of local or species extinction is very high. We found that the steep decline in rmax with brain size is absent in taxa with allomaternal offspring provisioning, such as cooperatively breeding mammals and most altricial birds. These taxa thus do not face a lineage-specific grey ceiling, which explains the far greater number of independent origins of large brain size in birds than mammals. We also predict that (absolute and relative) brain size is an important predictor of macroevolutionary extinction patterns.  相似文献   

14.
Finding fundamental organizing principles is the current intellectual front end of systems biology. From a hydrogen atom to the whole cell level, organisms manage massively parallel and massively interactive processes over several orders of magnitude of size. To manage this scale of informational complexity it is natural to expect organizing principles that determine higher order behavior. Currently, there are only hints of such organizing principles but no absolute evidences. Here, we present an approach as old as Mendel that could help uncover fundamental organizing principles in biology. Our approach essentially consists of identifying constants at various levels and weaving them into a hierarchical chassis. As we identify and organize constants, from pair-wise interactions to networks, our understanding of the fundamental principles in biology will improve, leading to a theory in biology.  相似文献   

15.
For entomopathogenic fungi (EPF), it may be particularly advantageous to manipulate host behavior in order to increase conspecific encounters that facilitate transmission of conidia. To achieve this, some EPF apparently alter the chemical communication and signaling of insect sexual behavior, but there are very few documented examples. Here, we identify and discuss the few known examples and propose two categories of EPF-induced alterations in insect sexual behavior. First, EPF may induce changes in how healthy conspecifics of the opposite sex perceive and respond to the infected individual via chemical or visual cues, which promote the display of sexual behaviors towards the infected individual. Second, EPF may directly change sexual behavior of the infected individual to promote conspecific encounters. We conclude that the scarcity of observed examples is likely caused by the difficulty of detecting subtle changes in insect sexual behavior, but also because manipulation of host sexual behavior is a trait primarily present in understudied host-specific EPF.  相似文献   

16.
17.
18.
Malignant melanoma is one of the most aggressive cancers and can disseminate from a relatively small primary tumor and metastasize to multiple sites, including the lung, liver, brain, bone, and lymph nodes. Elucidating the molecular and genetic changes that take place during the metastatic process has led to a better understanding of why melanoma is so metastatic. Herein, we describe the unique features that distinguish melanoma from other solid tumors and contribute to the malignant phenotype of melanoma cells. For example, although melanoma cells are highly antigenic, they are extremely efficient at evading host immune response. Melanoma cells share numerous cell surface molecules with vascular cells, are highly angiogenic, are mesenchymal in nature, and possess a higher degree of ‘stemness’ than do other solid tumors. Finally, analysis of melanoma mutations has revealed that the gene expression profile of malignant melanoma is different from that of other cancers. Elucidating these molecular and genetic processes in highly metastatic melanoma can lead to the development of improved treatment and individualized therapy options.  相似文献   

19.
  1. Nerites (Gastropoda: Neritidae) are prominent members of tropical marine and freshwater gastropod faunas and rich assemblages can be found in many streams of islands in the Indo‐Pacific. For example, the streams of Fiji and New Guinea each support at least 23 species of freshwater neritimorphs, with representatives in the genera: Clithon, Neripteron, Neritilia, Neritina, Neritona, Neritodryas, Septaria, and Vittina.
  2. The striking diversity of this group in the small coastal streams of Pacific Islands contrast with a paucity of taxa in tropical Australia, despite northern Australia occupying a similar latitude. Just four taxa have been reported from Australia and only two can be considered common. These patterns are in marked contrast to the wide distribution of many marine nerites in the Pacific and conflicts with Island Biogeography Theory.
  3. Strikingly, many of these stream taxa have adopted an amphidromous lifestyle; adult gastropods feed and reproduce in freshwater, whereas larvae are swept to the ocean and undergo a marine dispersive phase before settling near the entrance to creeks and re‐entering these freshwater systems as crawling juveniles.
  4. Rapid transit of larvae to the ocean via short, steep, fast‐flowing streams may offer an explanation for this biogeographic conundrum. Larvae that do not reach the ocean within a few days may starve or exhibit poor survival. Hence, the disruption of stream–ocean connectivity may explain the low diversity of these taxa in northern Australia. Sea level rise in northern Australia in the current interglacial has further weakened stream–ocean connectivity with the development of vast flood plains and slow‐moving rivers.
  5. We contend that: (1) poor stream–ocean connectivity is not conducive to the maintenance of populations of nerites in northern Australia; and (2) new records of freshwater nerites may be revealed by surveys in short, steep coastal streams of northern Australia.
  相似文献   

20.
In many living trees, much of the interior of the trunk can be rotten or even hollowed out. Previously, this has been suggested to be adaptive, with microbial or animal consumption of interior wood producing a rain of nutrients to the soil beneath the tree that allows recycling of those nutrients into new growth via the trees roots. Here I propose an alternative (non-exclusive) explanation: such loss of wood comes at very little cost to the tree and so investment in costly chemical defence of this wood is not economic. I discuss how this theory can be tested empirically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号