首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ascenzi R  Gantt JS 《Chromosoma》1999,108(6):345-355
Linker histones (e.g. H1, H5, H1°) are thought to exert control on chromatin function by restricting nucleosomal dynamics. All higher eukaryotes possess a diverse family of linker histones, which may exhibit functional specialization. Arabidopsis thaliana apparently contains a minimal complement of linker histone structural variants and therefore is an ideal model for investigating functional differentiation among linker histones. Histones H1-1 and H1-2 are relatively similar proteins that are expressed in a wide variety of tissues and make up the majority of linker histone while H1-3 is a highly divergent minor variant protein that is induced by drought stress. We are interested in determining whether the in vivo distribution of each of these proteins also differs. To this end, we have produced subtype-specific antibodies and have localized each of the three proteins at the intranuclear and DNA sequence levels by indirect immunofluorescence and immunoprecipitation, respectively. Antibodies against linker histones H1-1 and H1-2 decorate nuclei in patterns very similar to 4’,6-diamidino-2-phenylindole (DAPI) staining, but different than the staining pattern of total histones. In contrast, antibodies made against two regions of H1-3 bind to chromatin in a diffuse pattern distinct from the DAPI-staining pattern. We also describe a technique to determine the localization of plant linker histone variants along regions of chromatin, employing in vivo chemical DNA-protein cross-linking to preserve native associations followed by immunoprecipitation with subtype-specific antibodies. We use this technique to demonstrate that, in contrast to the major linker histones, H1-3 does not bind the repetitive sequences pAL1 and 5S rDNA. In addition, we show that linker histones are bound to the compacted nucleosomal arrays at the telomere but with reduced stoichiometry. Taken together, our results suggest that plants, as has been shown for animals, possess a variant linker histone that is differentially localized. Received: 15 April 1999 / Accepted: 1 Mai 1999  相似文献   

2.
Nucleoplasmin (NP), a histone chaperone, acts as a reservoir for histones H2A-H2B in Xenopus laevis eggs and can displace sperm nuclear basic proteins and linker histones from the chromatin fiber of sperm and quiescent somatic nuclei. NP has been proposed to mediate the dynamic exchange of histones during the expression of certain genes and assists the assembly of nucleosomes by modulating the interaction between histones and DNA. Here, solution structural models of full-length NP and NP complexes with the functionally distinct nucleosomal core and linker histones are presented for the first time, providing a picture of the physical interactions between the nucleosomal and linker histones with NP core and tail domains. Small-angle X-ray scattering and isothermal titration calorimetry reveal that NP pentamer can accommodate five histones, either H2A-H2B dimers or H5, and that NP core and tail domains are intimately involved in the association with histones. The analysis of the binding events, employing a site-specific cooperative model, reveals a negative cooperativity-based regulatory mechanism for the linker histone/nucleosomal histone exchange. The two histone types bind with drastically different intrinsic affinity, and the strongest affinity is observed for the NP variant that mimicks the hyperphosphorylated active protein. The different “affinity windows” for H5 and H2A-H2B might allow NP to fulfill its histone chaperone role, simultaneously acting as a reservoir for the core histones and a chromatin decondensing factor. Our data are compatible with the previously proposed model where NP facilitates nucleosome assembly by removing the linker histones and depositing H2A-H2B dimers onto DNA.  相似文献   

3.
Origin of H1 linker histones.   总被引:2,自引:0,他引:2  
In which taxa did H1 linker histones appear in the course of evolution? Detailed comparative analysis of the histone H1 and histone H1-related sequences available to date suggests that the origin of histone H1 can be traced to bacteria. The data also reveal that the sequence corresponding to the 'winged helix' motif of the globular structural domain, a domain characteristic of all metazoan histone H1 molecules, is evolutionarily conserved and appears separately in several divergent lines of protists. Some protists, however, appear to have only a lysine-rich basic protein, which has compositional similarity to some of the histone H1-like proteins from eubacteria and to the carboxy-terminal domain of the H1 linker histones from animals and plants. No lysine-rich basic proteins have been described in archaebacteria. The data presented in this review provide the surprising conclusion that whereas DNA-condensing H1-related histones may have arisen early in evolution in eubacteria, the appearance of the sequence motif corresponding to the globular domain of metazoan H1s occurred much later in the protists, after and independently of the appearance of the chromosomal core histones in archaebacteria.  相似文献   

4.
Binding of linker histones to the core nucleosome   总被引:1,自引:0,他引:1  
Binding of chicken erythrocyte linker histones H1/H5 to the core nucleosome has been studied. Histones H1/H5 bind very efficiently to the isolated core nucleosome in vitro. The binding of linker histones to the core nucleosome is associated with aggregation of the particles. Approximately one molecule of linker histone binds per core nucleosome in the aggregates, irrespective of the concentration of the linker histones and the salt used. Histone H5 shows greater binding affinity to the core nucleosome as compared to H1. The carboxyl-terminal fragment of the linker histones binds strongly to the core nucleosome while the binding of the central globular domain is weak. Each core nucleosome is capable of binding two molecules of carboxyl-terminal fragment of linker histone. The core nucleosome containing one molecule of carboxyl-terminal fragment of linker histone requires higher salt concentration for aggregation while the core nucleosome containing two molecules of carboxyl-terminal fragment of linker histone can self-associate even at lower salt concentrations. On the basis of these results we are proposing a novel mechanism for the condensation of chromatin by linker histones and other related phenomena.  相似文献   

5.
6.
Crosslinking of histones in mouse liver nuclei and extended chromatin with a bifunctional reagent leads to the formation of H1H1° heterodimers as well as H1°H1° homodimers. H1° can be also crosslinked to the core histones. Thus, the location of histone H1° within the basic repeating chromatin structure seems to be analogous to that of H1 histone.  相似文献   

7.
8.
We investigated the evolutionary history of the divergent vertebrate linker histones H10, H5, and HIM. We observed that the sequence of the central conserved domain of these vertebrate proteins shares characteristic features with histone H1 proteins of plants and invertebrate animals which otherwise never appear in any vertebrate histone H1 protein. A quantitative analysis of 58 linker histone sequences also reveals that these proteins are more similar to invertebrate and plant histone H1 than to histone H1 of vertebrates. A phylogenetic tree deduced from an alignment of the central domain of all known linker histones places H10, H5, and HIM in close vicinity to invertebrate sperm histone H1 proteins and to invertebrate histone H1 proteins encoded by polyadenylated mRNAs. We therefore conclude that the ancestors of the vertebrate linker histones H10, H5, and HIM diverged from the main group of histone H1 proteins before the vertebrate type of histone H1 was established in evolution. We discuss this observation in the general context of linker histone evolution. Correspondence to: B. and E. Schulze  相似文献   

9.
The effect of chromatin organization on EGFP-tagged histone protein dynamics within the cell nucleus has been probed using fluorescence correlation and recovery measurements on single living HeLa cells. Our studies reveal that free fraction of core-particle histones exist as multimers within the cell nucleus whereas the linker histones exist in monomeric forms. The multimeric state of core histones is found to be invariant across mammalian and polytene chromosomes and this is ATP dependent. In contrast, the dynamics of the linker histones exhibits two distinct diffusion timescales corresponding to its transient binding and unbinding to chromatin governed by the tail domain residues. Under conditions of chromatin condensation induced by apoptosis, the free multimeric fraction of core histones is found to become immobile, while the monomeric linker histone mobility is partially reduced. In addition, we observe differences in nuclear colocalization of linker and core particle histones. These results are validated through Brownian dynamics simulation of core and linker histone mobility. Our findings provide a framework to understand the coupling between the state of chromatin assembly and histone protein dynamics that is central to accessing regulatory sites on the genome.  相似文献   

10.
Somatic nuclear autoantigenic sperm protein (sNASP) is a human homolog of the N1/N2 family of histone chaperones. sNASP contains the domain structure characteristic of this family, which includes a large acidic patch flanked by several tetratricopeptide repeat (TPR) motifs. sNASP possesses a unique binding specificity in that it forms specific complexes with both histone H1 and histones H3/H4. Based on the binding affinities of sNASP variants to histones H1, H3.3, H4 and H3.3/H4 complexes, sNASP uses distinct structural domains to interact with linker and core histones. For example, one of the acidic patches of sNASP was essential for linker histone binding but not for core histone interactions. The fourth TPR of sNASP played a critical role in interactions with histone H3/H4 complexes, but did not influence histone H1 binding. Finally, analysis of cellular proteins demonstrated that sNASP existed in distinct complexes that contained either linker or core histones.  相似文献   

11.
The relationships between the core histone N termini and linker histones during chromatin assembly and salt-dependent chromatin condensation were investigated using defined chromatin model systems reconstituted from tandemly repeated 5 S rDNA, histone H5, and either native "intact" core histone octamers or "tailless" histone octamers lacking their N-terminal domains. Nuclease digestion and sedimentation studies indicate that H5 binding and the resulting constraint of entering and exiting nucleosomal DNA occur to the same extent in both tailless and intact chromatin arrays. However, despite possessing a normal chromatosomal structure, tailless chromatin arrays can neither condense into extensively folded structures nor cooperatively oligomerize in MgCl(2). Tailless nucleosomal arrays lacking linker histones also are unable to either fold extensively or oligomerize, demonstrating that the core histone N termini perform the same functions during salt-dependent condensation regardless of whether linker histones are components of the array. Our results further indicate that disruption of core histone N termini function in vitro allows a linker histone-containing chromatin fiber to exist in a decondensed state under conditions that normally would promote extensive fiber condensation. These findings have key implications for both the mechanism of chromatin condensation, and the regulation of genomic function by chromatin.  相似文献   

12.
13.
We investigated the relationship between linker histone stoichiometry and the acetylation of core histones in vivo. Exponentially growing cell lines induced to overproduce either of two H1 variants, H1(0) or H1c, displayed significantly reduced rates of incorporation of [(3)H]acetate into all four core histones. Pulse-chase experiments indicated that the rates of histone deacetylation were similar in all cell lines. These effects were also observed in nuclei isolated from these cells upon labeling with [(3)H]acetyl-CoA. Nuclear extracts prepared from control and H1-overexpressing cell lines displayed similar levels of histone acetylation activity on chromatin templates prepared from control cells. In contrast, extracts prepared from control cells were significantly less active on chromatin templates prepared from H1-overexpressing cells than on templates prepared from control cells. Reduced levels of acetylation in H1-overproducing cell lines do not appear to depend on higher order chromatin structure, because it persists even after digestion of the chromatin with micrococcal nuclease. The results suggest that alterations in chromatin structure, resulting from changes in linker histone stoichiometry may modulate the levels or rates of core histone acetylation in vivo.  相似文献   

14.
Recent studies, using cytometric techniques based on fluorescence microscopy, have provided new information on how linker histones interact with chromatin in vivo or in situ. In particular, the use of green fluorescent proteins (GFPs) has enabled detailed studies of how individual H1 subtypes, and specific motifs in them, interact with chromatin in vivo. Furthermore, the development of cytochemical methods to study the interaction between linker histones and chromatin using DNA-binding fluorochromes as indirect probes for linker histone affinity in situ, in combination with highly sensitive and specific analytical methods, has provided additional information on the interactions between linker histones and chromatin in several cell systems. Such results verified that linker histones have a substantially higher affinity for chromatin in mature chicken erythrocytes than in frog erythrocytes, and they also indicated that the affinity decreased during differentiation of the frog erythrocytes. Furthermore, in cultured human fibroblasts, the linker histones showed a relatively high affinity for chromatin in interphase, whereas it showed a significantly lower affinity in highly condensed metaphase chromosomes. This method also enables the analysis of linker histone affinity for chromatin in H1-depleted fibroblasts reconstituted with purified linker histones. No consistent correlation between linker histone affinity and chromatin condensation has so far been detected.  相似文献   

15.
Histone linker proteins H1 and H5 were purified from chicken erythrocyte cell nuclei under nondenaturing conditions. The purified linker histones were analyzed using in-solution enzymatic digestions followed by nanoflow reverse-phase high-performance liquid chromatography tandem mass spectrometry. We have identified all six major isoforms of the chicken histone H1 (H101, H102, H103, H110, H11R and H11L) and, in addition, the specialist avian isoform H5. In all the histone variants, both the acetylated and nonacetylated N (alpha)-terminal peptides were identified. Mass spectrometry analysis also enabled the identification of a wide range of post-translational modifications including acetylation, methylation, phosphorylation and deamidation. Furthermore, a number of amino acids were identified that were modified with both acetylation and methylation. These results highlight the extensive modifications that are present on the linker histone proteins, indicating that, similar to the core histones, post-translational modifications of the linker histones may play a role in chromatin remodelling and gene regulation.  相似文献   

16.
17.
18.
19.
Tóth K  Brun N  Langowski J 《Biochemistry》2006,45(6):1591-1598
Using a previously described FRET technique, we measured the distance between the ends of DNA fragments on which nucleosomes were reconstituted from recombinant and native histones. This distance was analyzed in its dependence on the DNA fragment length, concentration of mono- and divalent counterions, presence of linker histone H1, and histone modifications. We found that the linker DNA arms do not cross under all conditions studied but diverge slightly as they leave the histone core surface. Histone H1 leads to a global approach of the linker DNA arms, confirming the notion of a "stem structure". Increasing salt concentration also leads to an approach of the linker DNAs. To study the effect of acetylation, we compared chemically acetylated recombinant histones with histones prepared from HeLa cells, characterizing the sites of acetylation by mass spectroscopy. Nucleosomes from chemically acetylated histones have few modifications in the core domain and form nucleosomes normally. Acetylating all histones or selectively only H3 causes an opening of the nucleosome structure, indicated by the larger distances between the linker DNA ends. Selective acetylation of H4 distances the linker ends for short fragments but causes them to approach each other for fragments longer than 180 bp.  相似文献   

20.
The incubation in vitro of rat liver nuclei in the presence of S-adenosyl[methyl-3H]methionine ([3H] SAM) leads to the incorporation of a radioactive label not only into core histones H3 and H4, but also into linker histone H1. The addition of distamycin A to the incubation medium stimulates label incorporation into histone H1 by approximately six times and into histone H3 by around two times. The presence of distamycin facilitates histone H1 extraction by polyglutamic acid (poly(Glu)) and decreases UV-induced DNA—histone cross-link formation. These effects give evidence that the weakening H1—chromatin interaction by distamycin may be the result of a histone H1 position change relative toward the nucleosome and (or) a disturbance of the histone H1–H3 interactions, as these histones are exposed to additional methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号