首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vancomycin resistance in Enterococcus faecium BM4147 is mediated by vancomycin resistance proteins VanA and VanH. VanA is a D-alanine:D-alanine ligase of altered substrate specificity [Bugg, T. D. H., Dutka-Malen, S., Arthur, M., Courvalin, P., & Walsh, C. T. (1991) Biochemistry 30, 2017-2021], while the sequence of VanH is related to those of alpha-keto acid dehydrogenases [Arthur, M., Molinas, C., Dutka-Malen, S., & Courvalin, P. (1991) Gene (submitted)]. We report purification of VanH to homogeneity, characterization as a D-specific alpha-keto acid dehydrogenase, and comparison with D-lactate dehydrogenases from Leuconostoc mesenteroides and Lactobacillus leichmanii. VanA was found to catalyze ester bond formation between D-alanine and the D-hydroxy acid products of VanH, the best substrate being D-2-hydroxybutyrate (Km = 0.60 mM). The VanA product D-alanyl-D-2-hydroxybutyrate could then be incorporated into the UDPMurNAc-pentapeptide peptidoglycan precursor by D-Ala-D-Ala adding enzyme from Escherichia coli or by crude extract from E. faecium BM4147. The vancomycin binding constant of a synthetic modified peptidoglycan analogue N-acetyl-D-alanyl-D-2-hydroxybutyrate (Kd greater than 73 mM) was greater than 1000-fold higher than the binding constant for N-acetyl-D-alanyl-D-alanine (Kd = 54 microM), partly due to the disruption of a hydrogen bond in the vancomycin-target complex, thus providing a molecular rationale for high-level vancomycin resistance.  相似文献   

2.
Abstract Bacitracin and other antibiotics that inhibit late stages in peptidoglycan biosynthesis induce vancomycin resistance in a high-level, inducibly vancomycin-resistant strain of Enterococcus faecium . Exposure to bacitracin led to synthesis of the lactate-containing UDP-MurNAc-pentadepsipeptide precursor required for vancomycin resistance. These findings indicate that inhibition of peptidoglycan biosynthesis can lead to induction of vancomycin resistance and raise the possibility that multiple signals may serve to induce resistance.  相似文献   

3.
Vancomycin resistance has recently been recognized among clinical isolates of enterococci. Resistance is inducible, and associated with production of a novel 39 kDa membrane protein. The mechanism by which exposure to vancomycin, which does not penetrate the cell membrane, induces resistance is unknown. In the vancomycin resistant strain Enterococcus faecium 228, resistance was also inducible by moenomycin, suggesting that inhibition of the transglycosylation step in peptidoglycan synthesis may be required for induction of resistance. Cytoplasmic pools of peptidoglycan precursors were increased after exposure to vancomycin or moenomycin, representing a potential means for regulation of induction.  相似文献   

4.
It has been shown that the mercury in dental amalgam and other environmental sources can select for mercury resistant bacteria and that this can lead to an increase in resistance to antibiotics. To understand more about this linkage we have investigated the genetic basis for mercury and antibiotic resistance in a variety of oral bacteria. In this study we have cloned and sequenced the mer operon from an Enterococcus faecium strain which was resistant to mercury, tetracycline, and streptomycin. This strain was isolated, in a previous investigation, from a cynomolgus monkey post-installation of amalgam fillings. The mer operon was contained within a putative transposon (Tnmer1) of the ISL3 family. This element was located on a streptomycin resistant plasmid, pPPM1000, which shares homology with pRE25.  相似文献   

5.
粪肠球菌和屎肠球菌耐药性分析   总被引:2,自引:0,他引:2  
目的 监测我院肠球菌中粪肠球菌株和屎肠球菌株的耐药性,为临床合理应用抗菌药物提供依据。方法 采用法国生物梅里埃公司的GPI板进行细菌鉴定及药敏试验,应用whonet5软件统计粪肠球菌和屎肠球菌的耐药率。结果 粪肠球菌和屎肠球菌对氯霉素、呋喃妥因、万古霉素有较好体外抗菌活性,耐药率都在50%以下,对万古霉素的耐药率在1%以下。粪肠球菌对青霉素、高水平庆大霉素、环丙沙星、利福平、红霉素等大部分抗菌素的耐药率有逐年下降趋势,而屎肠球菌对环丙沙星、利福平、呋喃妥因等抗菌素的耐药率则有上升趋势,屎肠球菌对大多数抗菌素耐药率都高于粪肠球菌。结论 粪肠球菌和屎肠球菌呈多重耐药,临床用药应结合药敏试验结果合理选择抗菌药物。  相似文献   

6.
7.
目的 探讨屎肠球菌的万古霉素替考拉宁A型抗性蛋白/D-丙氨酸-D-丙氨酸连接酶(Vancomycin Teicoplanin A-type resistance protein D-alanine-D-alanine ligase,vanA)调控人正常结直肠黏膜细胞FHC凋亡的机制。方法 在人正常结直肠黏膜细胞FHC中使用屎肠球菌感染,Annxin-V染色检测细胞凋亡情况。使用屎肠球菌的VanA蛋白刺激,检测FHC细胞凋亡情况、ROS水平以及ROS标志蛋白MDA、GSH和SOD的表达水平。ROS抑制Acetylcysteine处理VanA刺激的FHC细胞后,检测细胞凋亡相关蛋白的表达水平。结果 屎肠球菌与人正常结直肠黏膜细胞FHC共培养后,人正常结直肠黏膜细胞FHC的凋亡水平明显升高(t=2.876,P=0.045 2),并且VanA蛋白能促进FHC凋亡水平(t=5.579,P=0.005 1),同时细胞凋亡相关蛋白CLEAVED-CAS9、BAK的表达量上升,BCL-2的表达量下降。屎肠球菌的VanA蛋白刺激后,发现正常结直肠黏膜细胞FHC的ROS水平上升(t=10.190,P=0.000 5),ROS标志蛋白MDA(t=4.315,P=0.012 5)和SOD(t=5.751,P=0.004 5)的表达水平上升,GSH(t=5.225,P=0.006 4)的表达水平下降,但是,ROS抑制剂Acetylcysteine能够抑制这种现象。结论 屎肠球菌的VanA通过提高细胞内ROS水平来促进人正常结直肠黏膜细胞FHC凋亡。  相似文献   

8.
A vancomycin-resistant Enterococcus (VRE) was isolated from a blood culture of a patient in a Brazilian hospital who had a treatment history of a bone marrow transplant in the USA. The organism was identified as Enterococcus faecium, which exhibited an MIC (minimum inhibitory concentration) >or= 256 microg/mL for vancomycin. This was confirmed by E-test and the vanA gene was detected by PCR. Overlapping PCR revealed a left IR deletion and an additional 1.5 kb fragment between vanSH genes. DdeI digestion of vanRSHAX genes showed the determinant to be a T type variant, and the element was cloned and sequenced. These results revealed an IS1251 downstream of nucleotide 5820 of the VanA element. Insertions like this have not been reported previously in Brazil, but have been detected in the USA. The genotype and association with a patient previously treated in the USA suggest that this VRE was introduced from abroad, probably through inter-hospital strain spread.  相似文献   

9.
Aim: To determine the virulence genes, antibiotic resistance and plasmid profiles of 16 Enterococcus faecium and 68 Enterococcus faecalis strains isolated from various naturally fermented foods. Methods and Results: The presence of virulence genes (agg2, gelE, cylM, cylB, cylA, espfs, espfm, efaAfs, efaAfm, cpd, cop, ccf, cad) and also the genes vanA and vanB were investigated by polymerase chain reaction (PCR). Antibiotic resistance of the isolates was determined by disc diffusion method. Most of the tested isolates were positive for virulence genes and resistant to some antibiotics. One of the Ent. faecalis strains isolated from a cheese sample carried the vanA gene and was intermediately resistant to vancomycin. The strains usually contained large plasmids, which might harbour acquired antibiotic resistance. Conclusion: The study showed that Ent. faecium and Ent. faecalis strains isolated from naturally fermented Turkish foods may be potential risk factors for consumer health in terms of virulence genes and acquired antibiotic resistance. Significance and Impact of the Study: The results indicate the importance of enterococcal contamination in terms of the safety of some fermented Turkish foods.  相似文献   

10.
目的了解医院屎肠球菌的临床分布和耐药情况,为临床抗感染的预防与治疗提供参考。方法回顾性分析1999年1月至2011年12月临床标本中分离的1161株屎肠球菌;用WHONET5.6软件分析耐药率变迁。结果临床分离的1161株屎肠球菌,在同期分离的1944株肠球菌属中占59.72%。主要分离自尿液和血液,分别占40.91%和26.87%;主要分离自外科病区、内科病区、ICU和儿科病区的菌株,分别占29.37%、25.15%、13.95%和13.53%;屎肠球菌对多种抗菌药物耐药,对万古霉素、替考拉宁和利奈唑胺的耐药率较低,分别为1.04%、0.94%和1.85%。结论屎肠球菌在临床的分离率逐年增加,已成为医院内感染的主要病原菌之一,其多药耐药和高耐药现象相当严重,目前万古霉素、替考拉宁和利奈唑胺仍然是治疗肠球菌属引起感染的有效药物。  相似文献   

11.
Enterococcus sp. strains are believed as important reason of serious nosocomial infections currently. These infections are cured by using combination of beta-lactams and aminoglycosides for their treatment. Enterococcus sp. resistant to high-level doses of aminoglycosides, beta-lactams and vancomycin are responsible for therapeutic failure. The aim of our study was to evaluate the incidence of isolation and susceptibility to antibiotics of HLAR Enterococcus sp. strains isolated between 2007 and 2010 from the patients of University Hospital No. 1 of dr A. Jurasz Collegium Medicum of L. Rydygier in Bydgoszcz Nicolaus Copernicus University in Toruń. Amongst 6137 Enterococcus sp. strains 1124 (18,3%) presented HLAR phenotype; 53,1% of them was identified as E. faecalis and 46,9% as E. faecium. The highest percentage of all examined strains was isolated from the patients of different surgery clinics, Intensive Care Units, and Pediatrics, Hematology and Oncology Clinic. HLAR and HLSR phenotypes were noted in E. faecalis, for 45,7% and 27,5% strains, in E. faecium - 29,8% and 9,5%, respectively. HLGR phenotype was presented twice more often in E. faecium than E. faecalis. Highest percentages of E. faecium resistant to glycopeptides and rifampicin were observed when compared with E. faecalis. The highest percentages of strains intermediate, resistant to vancomycin and resistant to glycopeptides were noted for E. faecium strains with phenotypes HLAR, HLGR and HLSR.  相似文献   

12.
A total of 12 VanA-type vancomycin-resistant enterococci, consisting of 10 Enterococcus faecium isolates and two Enterococcus avium isolates, were examined in detail. The vancomycin resistance conjugative plasmids pHTalpha (65.9 kbp), pHTbeta (63.7 kbp), and pHTgamma (66.5 kbp) were isolated from each of three different E. faecium strains. The plasmids transferred highly efficiently between enterococcus strains during broth mating and were homologous with pMG1 (Gm(r); 65.1 kb).  相似文献   

13.
Twenty vancomycin resistant E. faecium strains (VRE) isolated from patients of three different hospital wards in 2005-2008 were examined. The strains originated from patients of intensive therapy, urological and internistic wards. The chosen wards differ significantly in their specificity. In all cases the presence of o vanA and lack of vanB, vanD, vanE and vanG genes and were found. Strains were compared by using RFLP-PFGE, the reference method for molecular typing of VRE. One group including fourteen strains showing similarity higher than 79.5% was distinguished. This group was divided into subgroups. The greatest similarity was found among strains from patients of intensive therapy ward. Two subgroups of strains showing similarity more than 93.3%, of four strains each were identified. The similarity between these two subgroups was 79.5%. Most strains from other two wards showed less than 79.5% similarity and they could be recognised as not related. Only one strain from internal ward and two strains from urologic ward were similar in 82.1 - 86.4% to one of subgroups of strains originated from intensive therapy.  相似文献   

14.
Enterococcus faecium has become a nosocomial pathogen of major importance, causing infections that are difficult to treat owing to its multi-drug resistance. In particular, resistance to the β-lactam antibiotic ampicillin has become ubiquitous among clinical isolates. Mutations in the low-affinity penicillin binding protein PBP5 have previously been shown to be important for ampicillin resistance in E. faecium, but the existence of additional resistance determinants has been suggested. Here, we constructed a high-density transposon mutant library in E. faecium and developed a transposon mutant tracking approach termed Microarray-based Transposon Mapping (M-TraM), leading to the identification of a compendium of E. faecium genes that contribute to ampicillin resistance. These genes are part of the core genome of E. faecium, indicating a high potential for E. faecium to evolve towards β-lactam resistance. To validate the M-TraM results, we adapted a Cre-lox recombination system to construct targeted, markerless mutants in E. faecium. We confirmed the role of four genes in ampicillin resistance by the generation of targeted mutants and further characterized these mutants regarding their resistance to lysozyme. The results revealed that ddcP, a gene predicted to encode a low-molecular-weight penicillin binding protein with D-alanyl-D-alanine carboxypeptidase activity, was essential for high-level ampicillin resistance. Furthermore, deletion of ddcP sensitized E. faecium to lysozyme and abolished membrane-associated D,D-carboxypeptidase activity. This study has led to the development of a broadly applicable platform for functional genomic-based studies in E. faecium, and it provides a new perspective on the genetic basis of ampicillin resistance in this organism.  相似文献   

15.
16.
17.
The genus Enterococcus includes some of the most important nosocomial multidrug-resistant organisms, and these pathogens usually affect patients who are debilitated by other, concurrent illnesses and undergoing prolonged hospitalization. This Review discusses the factors involved in the changing epidemiology of enterococcal infections, with an emphasis on Enterococcus faecium as an emergent and challenging nosocomial problem. The effects of antibiotics on the gut microbiota and on colonization with vancomycin-resistant enterococci are highlighted, including how enterococci benefit from the antibiotic-mediated eradication of gram-negative members of the gut microbiota. Analyses of enterococcal genomes indicate that there are certain genetic lineages, including an E. faecium clade of ancient origin, with the ability to succeed in the hospital environment, and the possible virulence determinants that are found in these genetic lineages are discussed. Finally, we review the most important mechanisms of resistance to the antibiotics that are used to treat vancomycin-resistant enterococci.  相似文献   

18.
Glycopeptides and beta-lactams are the major antibiotics available for the treatment of infections due to Gram-positive bacteria. Emergence of cross-resistance to these drugs by a single mechanism has been considered as unlikely because they inhibit peptidoglycan polymerization by different mechanisms. The glycopeptides bind to the peptidyl-D-Ala(4)-D-Ala(5) extremity of peptidoglycan precursors and block by steric hindrance the essential glycosyltransferase and D,D-transpeptidase activities of the penicillin-binding proteins (PBPs). The beta-lactams are structural analogues of D-Ala(4)-D-Ala(5) and act as suicide substrates of the D,D-transpeptidase module of the PBPs. Here we have shown that bypass of the PBPs by the recently described beta-lactam-insensitive L,D-transpeptidase from Enterococcus faecium (Ldt(fm)) can lead to high level resistance to glycopeptides and beta-lactams. Cross-resistance was selected by glycopeptides alone or serially by beta-lactams and glycopeptides. In the corresponding mutants, UDP-MurNAc-pentapeptide was extensively converted to UDP-MurNAc-tetrapeptide following hydrolysis of D-Ala(5), thereby providing the substrate of Ldt(fm). Complete elimination of D-Ala(5), a residue essential for glycopeptide binding, was possible because Ldt(fm) uses the energy of the L-Lys(3)-D-Ala(4) peptide bond for cross-link formation in contrast to PBPs, which use the energy of the D-Ala(4)-D-Ala(5) bond. This novel mechanism of glycopeptide resistance was unrelated to the previously identified replacement of D-Ala(5) by D-Ser or D-lactate.  相似文献   

19.
AIM: To partially characterize the bacteriocin produced by the GM-1 strain of Enterococcus faecium, isolated from the faeces of a newborn human infant. METHODS AND RESULTS: The bacteriocin produced by E. faecium GM-1 showed a broad spectrum of activity against indicator strains of Escherichia coli, Staphylococcus aureus, Vibrio spp., Salmonella typhimurium, Listeria monocytogenes, Lactobacillus acidophilus, and Streptococcus thermophilus. Treatment of the GM-1 bacteriocin with proteolytic enzymes reduced its inhibitory activities. The bacteriocin was stable at 100 degrees C for 20 min and displayed inhibitory activity at neutral pH. The optimal production of bacteriocin from E. faecium GM-1 was obtained when the culture conditions were pH 6.0-6.5 and 35-40 degrees C. The inhibitory activity of the bacteriocin was not substantially changed by the use of different carbon sources in the media, except when galactose was substituted for glucose. The use of a sole nitrogen source caused a decrease in inhibitory activity. A bacteriocin gene similar to enterocin P was identified from the total DNA of E. faecium GM-1 by PCR and direct sequencing methods. CONCLUSION: E. faecium GM-1, which was isolated from the faeces of a newborn baby, produces an enterocin P-like bacteriocin with inhibitory activity against Gram-positive and Gram-negative bacteria, including food-borne pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY: E. faecium GM-1, isolated from infant faeces, produces a new bacteriocin that is similar to enterocin P. This bacteriocin is heat stable and has a broad antibacterial spectrum that includes both Gram-positive and Gram-negative bacteria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号