首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wang SH  Yin LN  Liang ZH  Lu SJ  Zeng S 《Chirality》2007,19(10):769-774
The stereoselectivity of release of ketoprofen (KET) enantiomers from a biodegradable injectable implant containing racemic KET (rac-KET) was investigated in vivo. A pre-column chiral derivatization RP-HPLC method was employed to assay diastereoisomeric derivatives of R- and S-KET. The rac-KET injectable implant, once injected subcutaneously in rats, produced long-lasting plasma levels of S-KET, which were always greater than those of R-KET. The difference in enantiomer concentration was to be related to stereoselective release, due to stereoselective interaction between D,L-PLG in the implant and KET enantiomers, as well as the chiral inversion of KET in vivo. The rac-KET injectable implant provided the sustained release of S-KET with effective plasma levels maintained for about 8 wk after a single injection.  相似文献   

2.
Myocardial uptake of thiopental enantiomers by an isolated perfused rat heart preparation was examined after perfusion with protein-free perfusate. Outflow perfusate samples were collected at frequent intervals for 20 min during single-pass perfusion with 10 μg/ml racemic thiopental (washin phase) and for another 45 min during perfusion with drug-free perfusate (washout phase). (+)- and (−)-thiopental concentrations were assayed by chiral high-performance liquid chromatography. Heart rate, perfusion pressure, and electrocardiogram were also monitored. During the washin phase, there was no significant difference between the mean values of the equilibration rate constants of (+)- and (−)-thiopental enantiomers (0.44 ± 0.07 min−1 and 0.43 ± 0.09 min−1, respectively, P > 0.05). Mean volumes of distribution of (+)- and (−)-thiopental enantiomers were similar (6.34 ± 1.20 and 6.45 ± 1.29 ml/g for the washin phase and 7.22 ± 0.71 and 7.47 ± 0.81 ml/g for the washout phase, respectively, P > 0.05). This indicates that tissue accumulation of thiopental enantiomers in the isolated perfused rat heart was not stereoselective. Uptake of thiopental by the heart was perfusion flow rate-limited and independent of capillary permeability. These findings suggest that myocardial tissue concentration of racemic thiopental should be an accurate predictor of myocardial drug effect. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Cycloaminoalkylnaphthalene 3 shows interesting opioid‐like analgesic properties. It possesses two chiral centers and can exist as two racemic pairs and four diastereomers. Since the binding of opioids with receptors is stereoselective, it was important to have the two racemic pairs as well as the four diastereomers. In this paper the synthesis of the (2R,3S/2S,3R) racemate and the (2R,3S) and (2S,3R) enantiomers of the 1,2‐dimethyl‐3‐[2‐(6‐hydroxynaphthyl)]‐3‐hydroxypyrrolidine 3 is considered and the determination of absolute configuration is described. The (2R,3S/2S,3R)‐ 3 racemate and the (2R,3S)‐ 3 and (2S,3R)‐ 3 enantiomers were prepared by reaction of the racemic and optically active 1,2‐dimethyl‐3‐pyrrolidone 2, respectively, with the lithiation product obtained from 2‐bromo‐6‐tetrahydropyranyloxy‐naphthalene 1 and acidic hydrolysis. The above‐mentioned enantiomers of 3 were also obtained by optical resolution via fractional crystallization of the salts with d ‐ and l ‐tartaric acids. The configuration of the optically active compounds was determined by X‐ray analysis of a crystal of (−)‐(2S,3R)‐ 3 · HCl · H2O. The pharmacological test HPT showed that (−)‐(2S,3R)‐ 3 · HCl · H2O enantiomer is able to induce opioid‐like analgesia with a relative potency 1.5 times that of (2R,3S/2S,3R)‐ 3 and ∼1.5 times that of morphine. Chirality 11:21–28, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
The objective of this work was to study the stereoselectivity in excretion of tetrahydropalmatine (THP) enantiomers by rats and identify the metabolites of racemic THP (rac‐THP) in rat urine. Urine and bile samples were collected at various time intervals after a single oral dose of rac‐THP. The concentrations of THP enantiomers in rat urine and bile were determined using a modification of an achiral–chiral high‐performance liquid chromatographic (HPLC) method that had been previously published. The cumulative urinary excretion over 96 h of (?)‐THP and (+)‐THP was found to be 55.49 ± 36.9 μg and 18.33 ± 9.7 μg, respectively. The cumulative biliary excretion over 24 h of (?)‐THP and (+)‐THP was 19.19 ± 14.6 μg and 12.53 ± 10.4 μg, respectively. The enantiomeric (?/+) concentration ratios of THP changed from 2.80 to 5.15 in urine, and from 1.36 to 1.80 in bile. The mean cumulative amount of (?)‐THP was significantly higher than that of (+)‐THP both in urine and bile samples. However, the enantiomeric (?/+) concentration ratios in rat urine and bile were significantly lower than those ratios in rat plasma. These findings suggested the excretion of THP enantiomers was stereoselective rather than a reflection of chiral pharmacokinetic aspects in plasma and (?)‐THP was preferentially excreted in rat urine and bile. Three O‐demethylation metabolites and the parent drug rac‐THP were detected by liquid chromatography‐tandem mass spectrometry in rat urine. One metabolite was obtained by preparative HPLC and identified as 10‐O‐demethyl‐THP. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The stratum corneum, the rate-limiting barrier to percutaneous penetration, is made up of several components, principally keratin and ceramides. These are potential sources of chiral discrimination that could result in differential diffusion rates, dependent upon the stereochemistry of the solute. Although binding to keratin can occur it is not a stereoselective process [percent binding to solubilised epidermal keratin: (R)-propranolol 7.9 ± 1.7, (S)-propranolol 8.3 ± 2.0]. On the other hand, studies with ceramide monolayers produced qualitative evidence of dose-dependent stereoselective interaction when the pure diastereomers of ephedrine were present in the aqueous subphase which suggested that differences in diffusion rates might occur in skin. However, the differences in permeation rates in vitro for these diastereomers through human skin were not statistically different [(+)-(1S, 2R)-ephedrine 119.1 ± 2.6 μg/cm2, (-)-(1R,2S)-ephedrine 107.0 ± 3.9 μg/cm2, 12 h]. Time averaging, involving contributions from binding to all lipid headgroups present in the intercellular channels, may obscure specific differential interactions. Further, any stereospecific interaction may be subtle and readily overwhelmed if diffusant concentration is greater than the capacity of the skin to differentiate between stereoisomers. Evidence for intrinsic stereoselectivity in skin permeation has therefore yet to be obtained. © 1995 Wiley-Liss, Inc.  相似文献   

6.
Zhang Y  Shi K  Wen J  Fan G  Chai Y  Hong Z 《Chirality》2012,24(3):239-244
Tetrahydroberberine (THB), a racemic mixture of (+)‐ and (?)‐enantiomer, is a biologically active ingredient isolated from a traditional Chinese herb Rhizoma corydalis (yanhusuo). A chiral high performance liquid chromatography method has been developed for the determination of THB enantiomers in rat plasma. The enantioseparation was carried out on a Chiral®‐AD column using methanol:ethanol (80:20, v/v) as the mobile phase at the flow rate 0.4 ml/min. The ultraviolet detection was set at 230 nm. The calibration curves were linear over the range of 0.01–2.5 μg/ml for (+)‐THB and 0.01‐5.0 μg/ml for (?)‐THB, respectively. The lower limit of quantification was 0.01 μg/ml for both (+)‐THB and (?)‐THB. The stereoselective pharmacokinetics of THB enantiomers in rats was studied after oral and intravenous administration at a dose of 50 and 10 mg/kg racemic THB (rac‐THB). The mean plasma levels of (?)‐THB were higher at almost all time points than those of (+)‐THB. (?)‐THB also exhibited greater Cmax, and AUC0–∞, smaller CL and Vd, than its antipode. The (?)/(+)‐enantiomer ratio of AUC0–∞ after oral and intravenous administration were 2.17 and 1.43, respectively. These results indicated substantial stereoselectivity in the pharmacokinetics of THB enantiomers in rats. Chirality, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
A sensitive and efficient chiral assay for bupivacaine and its three principal metabolites desbutylbupivacaine, 4′‐hydroxybupivacaine, and 3′‐hydroxybupivacaine has been applied to urine from five male patients receiving postoperative epidural infusions of rac‐bupivacaine fentanyl over 60–120 hr. The fraction of the dose of bupivacaine (total dose 840–2093 mg) accounted for in urine was 75 ± 6%. The rate of excretion of bupivacaine enantiomers approximated a steady state after ∼30 hr with values of 1.27 ± 0.26 and 0.76 ± 0.13 mg hr−1 for (R)‐ and (S)‐enantiomers, respectively. The fraction of the dose of bupivacaine enantiomer excreted unchanged in the urine (fe) varied from 14.3% to 39.1% for (+)‐(R)‐bupivacaine and 9.2% to 14.0% for (−)‐(S)‐bupivacaine in the five patients. The rate of excretion of all metabolites also reached a steady state after ∼30 hr and the relative amounts of metabolites excreted into urine (fm) suggest bupivacaine is subject to regioselective and stereoselective clearance, which may vary from patient to patient. Chirality 11:50–55, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
Reboxetine, (RS)-2-[(RS)-α-(2-ethoxyphenoxy)benzyl]morpholine methanesulphonate, is a racemic compound and consists of a mixture of the (R,R)- and (S,S)-enantiomers. The pharmacokinetics of reboxetine enantiomers were determined in a crossover study in three male beagle dogs. Each animal received the following oral treatments, separated by 1-week washout period: 10 mg/kg reboxetine, 5 mg/kg (R,R)- and 5 mg/kg (S,S)-. Plasma and urinary levels of the reboxetine enantiomers were monitored up to 48 h post-dosing using an enantiospecific HPLC method with fluorimetric detection (LOQ: 1.1 ng/ml in plasma and 5 ng/ml in urine for each enantiomer). After reboxetine administration mean tmax was about 1 h for both enantiomers. Cmax and AUC were about 1.5 times higher for the (R,R)- than for the (S,S)-enantiomer, mean values ± SD being 704 ± 330 and 427 ± 175 ng/ml for Cmax and 2,876 ± 1,354 and 1,998 ± 848 ng.h/ml for AUC, respectively. No differences between the (R,R)- and (S,S)-enantiomers were observed in t½ (3.9 h). Total recovery of the two enantiomers in urine was similar, the Ae (0–48 h) being 1.3 ± 0.7 and 1.1 ± 0.7% of the enantiomer dose for the (R,R)- and the (S,S)-enantiomers, respectively. No marked differences in the main plasma pharmacokinetic parameters were found for either enantiomer on administration of the single enantiomers or reboxetine. No chiral inversion was observed after administration of the separate enantiomers, as already observed in humans. Chirality 9:303–306, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
Proglumide is used in the treatment of neuropathic pain. It acts by inhibiting peptide cholecystokinin (CCK). Neural injury produces an elevation in plasma CCK. Proglumide has been also shown to augment the analgesic effect of sustained release morphine in neuropathic pain. Currently proglumide is administered as a racemic mixture. In the present study, an attempt is made to separate the racemic mixture of the drug using lipase obtained from Candida cylindracea by stereoselective esterification. Enzymatic stereoselective esterification was carried out in organic solvents. The resolution was studied using a chromatographic column with a chiral support and mass spectrometry. The reaction conditions for stereoselective esterification including amount of substrate, amount of enzyme, alcohol, solvent and temperature were optimised during the present investigation. Butanol and hexanol were found to be suitable for formation of S and R esters, respectively. Hexane was the best solvent for esterification and the optimum temperature was found to be 30 degreesC.  相似文献   

10.
The binding of racemic zopiclone (ZOP) and of its two enantiomers to plasma proteins, albumin and α1‐acid glycoprotein were compared. Our work shows that the binding of ZOP to human plasma proteins is stereoselective. The total plasma protein binding percentages were 79.3 ± 5.5%, 83.8 ± 5.2%, and 75.1 ± 2.1%, for racemic zopiclone, (−)zopiclone and (+)zopiclone, respectively. These results were confirmed by the analysis of samples obtained from healthy volunteers after the oral administration of ZOP. The anticoagulant used for sampling was also shown to have an influence on the percentage binding and on its stereoselectivity. Considering albumin and α1‐acid glycoprotein separately, stereoselectivity was also observed. Chirality 11:129–132, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

11.
Ibuprofen (IB) is a chiral 2-arylpropionic acid derivative used as a nonsteroidal antiinflammatory drug (NSAID). It undergoes substantial R to S chiral inversion in humans and rats. In addition to systemic inversion, presystemic chiral inversion has been suggested for IB in humans but only after administration of formulations with slow absorption rates. In search for a suitable animal model, the absorption rate dependency of the extent of inversion was examined in male Sprague–Dawley rats given 20 mg/kg of racemic IB in aqueous solution (Tmax, 0.6 h), suspension (Tmax, 1 h) or as sustained release granules (Tmax, 2.3 h). In addition, (R)-IB (5 mg/liter) was incubated in the presence of everted rat gut segments in an organ bath at 37°. After sustained release granules, the S:R AUC ratios (7.3 ± 1.5) were significantly higher than suspension (3.6 ± 1.1) and solution (3.5 ± 0.2). Accordingly, AUCS and AUCR, as percent of the total AUC (S + R), significantly increased and decreased, respectively, after administration of the sustained released granules as compared with the solution and suspension. A significant positive linear correlation was found between the S:R AUC ratios and the corresponding Tmax for (R)-IB (r = 0.82). In vitro, (R)-IB was inverted by everted jejunum (12.2 ± 1.6%), ileum (14.2 ± 2.0%), and colon (4.4 ± 0.6%) segments. IB was also glucuronidated in the presence of the intestinal segments. Therefore, similar to earlier observations made in humans, in the rat, the S:R AUC ratio was positively and significantly correlated with the absorption rate from the dosage form. Rat small intestine was capable of inverting and conjugating (R)-IB. Hence, rat is a suitable model for studying the chiral inversion of IB. © 1994 Wiley-Liss, Inc.  相似文献   

12.
A novel method was developed for the simultaneous determination of guaifenesin (GUA) and ketorolac tromethamine (KET) enantiomers in plasma samples. Since GUA probably increases the absorption of coadministered drugs (e.g., KET), it would be extremely important to monitor KET plasma levels for the purpose of dose adjustment with a subsequent decrease in the side effects. Enantiomeric resolution was achieved on a polysaccharide‐based chiral stationary phase, amylose‐2, as a chiral selector under the normal phase (NP) mode and using ornidazole (ORN) as internal standard. This innovative method has the advantage of the ease and reliability of sample preparation for plasma samples. Sample clean‐up was based on simply using methanol for protein precipitation followed by direct extraction of drug residues using ethanol. Both GUA and KET enantiomers were separated using an isocratic mobile phase composed of hexane/isopropanol/trifluoroacetic acid, 85:15:0.05 v/v/v. Peak area ratios were linear over the range 0.05–20 µg/mL for the four enantiomers S (+) GUA, R (–) GUA, R (+) KET, and S (–) KET. The method was fully validated according to the International Conference on Harmonization (ICH) guidelines in terms of system suitability, specificity, accuracy, precision, robustness, and solution stability. Finally, this procedure was innovative to apply the rationale of developing a chiral high‐performance liquid chromatography (HPLC) procedure for the simultaneous quantitative analysis of drug isomers in clinical samples. Chirality 26:629–639, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Pharmacokinetic studies are reported after single oral administration of 3 mg/kg of stereochemically pure (S)-ketoprofen [(S)-KP] and (R)-ketoprofen [(R)-KP] to three male Cynomolgus monkeys and after repeated administration for 6 months of 3, 15 and 75 mg/kg/day of (S)-KP to both male and female monkeys. A high-performance liquid chromatographic (HPLC) analysis was performed without derivatization of the samples, using a chiral column. The pharmacokinetic parameters for (S)-KP after administration of (S)-KP and for (R)-KP after administration of (R)-KP were, respectively, elimination half-life 2.32 ± 0.36 and 1.64 ± 0.40 h; oral clearance 3.50 ± 0.66 and 7.50 ± 3.20 ml/min/kg; apparent volume of distribution 0.74 ± 0.24 and 1.16 ± 0.76 liter/kg; mean residence time 1.79 ± 0.77 and 1.41 ± 0.65 h; area under the concentration/time curve 14.16 ± 2.93 and 7.31 ± 2.98 μg·h/ml. Forty-nine percent unidirectional bioinversion of (R)-KP to (S)-KP was observed in this species and the pharmacokinetic parameters for the (S)-KP resulting from this inversion were also calculated. In the study of 6-month repeated administration of (S)-KP, linear pharmacokinetic behavior and no evidence of drug accumulation were observed at the three dose levels. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Itraconazole is an antifungal drug widely used in a variety of fungal infections, which have become a significant public-health problem in recent decades. Itraconazole is a chiral drug consisting of two diastereoisomeric racemates, i.e., four stereoisomers. Data in the literature suggests that stereochemistry may play a significant role in the action and disposition of the drug and therefore stereoselective analytical methods for the determination of the drug in biological fluids are needed for the elucidation of that role. We report a stereoselective HPLC method that incorporates solvent extraction, the use of an internal standard, two chiral stationary phases in series, and fluorescence detection. The procedure is enantioselective and partially diastereoselective and provides the concentrations in blood plasma of the two epimer mixtures 2R,4S,2'R/2R,4S2'S and 2S,4R,2'R/2S,4R,2'S, respectively, each of which is a combination of the two epimers that differ in the configuration at the sec-butyl group. The analytical method has suitable sensitivity, recovery, precision, and accuracy. Analysis of the plasma of a human subject six hours after the oral administration of a single 200-mg dose of itraconazole showed a 3.4-fold difference between the concentrations of the epimer mixtures. The method has certain advantages over the published alternative procedure that uses LC-MS.  相似文献   

15.
The alkylaminoalkylnaphthalene 3 shows interesting opioid-like analgesic properties, μ-selective ligand competition, and enkephalin hydrolyzing enzyme inhibition. 3 possesses two chiral centers and can exist as two racemic pairs and four diastereomers. Since the binding of opioids with the receptor is stereoselective, it was important to have the two racemic pairs as well as the four diastereomers. In this paper the synthesis of the (1R,2R/1S,2S)- and (1R,2S/1S,2R)-racemates and the (1R,2R)- and (1S,2S)-enantiomers of the 1-ethyl-1-hydroxy-1-[2-(6-hydroxynaphthyl)]-2-methyl-3-dimethylaminopropane 3 is considered and the determination of absolute configuration is described. The (1R,2R/1S,2S)- 3 and (1R,2S/1S,2R)- 3 racemates and the (1R,2R)- 3 and (1S,2S)- 3 enantiomers were prepared by reaction of the racemic and optically active 1-dimethylamino-2-methylpentan-3-one 2 , respectively, with the lithiation product obtained from 2-bromo-6-tetrahydropyranyloxynaphthalene and acidic hydrolysis. The optical resolution of aminoketone 2 was carried out via fractional crystallization of salts (+)- and (?)-dibenzoyltartrates. The configuration of the optically active compounds was determined by X-ray analysis of a crystal of (+)-(1R,2R)- 3 · HCl · H2O. Preliminary pharmachological tests showed that (+)-(1R,2R)- 3 enantiomer is able to induce opioid-like analgesia with a relative potency 2.5 times that of (1R,2R/1S,2S)- 3 and about 4 times that of morphine. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Amide-type pipecoloxylidide local anesthetics, bupivacaine, and ropivacaine, show cardiotoxic effects with the potency depending on stereostructures. Cardiotoxic drugs not only bind to cardiomyocyte membrane channels to block them but also modify the physicochemical property of membrane lipid bilayers in which channels are embedded. The opposite configurations allow enantiomers to be discriminated by their enantiospecific interactions with another chiral molecule in membranes. We compared the interactions of local anesthetic stereoisomers with biomimetic membranes consisting of chiral lipid components, the differences of which might be indicative of the drug design for reducing cardiotoxicity. Fluorescent probe-labeled biomimetic membranes were prepared with cardiolipin and cholesterol of varying compositions and different phospholipids. Local anesthetics were reacted with the membrane preparations at a cardiotoxically relevant concentration of 200 μM. The potencies to interact with biomimetic membranes and change their fluidity were compared by measuring fluorescence polarization. All local anesthetics acted on lipid bilayers to increase membrane fluidity. Chiral cardiolipin was ineffective in discriminating S(-)-enantiomers from their antipodes. On the other hand, cholesterol produced the enantiospecific membrane interactions of bupivacaine and ropivacaine with increasing its composition in membranes. In 40 mol% and more cholesterol-containing membranes, the membrane-interacting potency was S(-)-bupivacaine相似文献   

17.
Bonded polysaccharide‐derived chiral stationary phases were found to be useful for the preparation of the four stereoisomers of the cyclopropane analogue of phenylalanine (c3Phe) as well as for the direct determination of the enantiomeric purity of c3Phe derivatives by HPLC. Three chiral stationary phases, consisting of cellulose and amylose derivatives chemically bonded on allylsilica gel, were tested. The mixed 10‐undecenoate/3,5‐dimethylphenylcarbamate of cellulose, 10‐undecenoate/3,5‐dimethylphenylcarbamate of amylose and 10‐undecenoate/p‐methylbenzoate of cellulose were the starting polysaccharide derivatives for CSP‐1, CSP‐2, and CSP‐3, respectively. Using mixtures of n‐hexane/chloroform/2‐propanol as mobile phase on a semi‐preparative column (150 mm × 20 mm ID) containing CSP‐2, we separated about 1.7 g of racemic cis‐methyl 1‐tert‐butoxycarbonylamino‐2‐phenylcyclopropanecarboxylate (cis‐ 6 ) and 1.2 g of racemic trans‐methyl‐1‐tert‐butoxycarbonylamino‐2‐phenylcycloprop‐anecarboxylate (trans‐ 6 ) by successive injections. Chirality 11:583–590, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

18.
A new covalently-bonded, silica-based stationary phase, using as the chiral selector the 1-(3-aminopropyl) derivative of (+)-(5R,8S,10R)-terguride, has been developed to resolve optically active isomers by HPLC. Good resolution of structurally related racemic ergot alkaloids were obtained using water-methanol mixtures as the eluent. Analysis of the influence of the type and concentration of the organic modifier, and the pH of the buffer in the mobile phase allowed the enantioseparation of these compounds to be optimized. Determination of the optical purity of a lisuride-containig drug is reported. © 1994 Wiley-Liss, Inc.  相似文献   

19.
An inhibition study showed that the stereoselective hydrolysis of butyryl propranolol (butyryl PL) in rat liver microsomes and plasma involves carboxylesterase. The hydrolysis of (S)‐butyryl PL in plasma was specifically inhibited by eserine and bis‐nitrophenyl phosphate (BNPP), compared to the (R)‐isomer, despite the non‐stereoselective hydrolysis of butyryl PL in plasma. In addition, inhibition of hydroloysis by eserine and BNPP showed little stereoselectivity for butyryl PL in liver, although liver microsomes showed an (S)‐preferential hydrolysis for butyryl PL (R/S ratio of Vmax/Km: 2.1 ± 0.2). The hydrolysis of butyryl PL was not inhibited by a polyclonal antibody against a high affinity carboxylesterase (hydrolase A, RH1). Moreover, the high Km value and the high IC50 for phenylmethylsulfonyl fluoride (PMSF) against the hydrolysis of butyryl PL in rat liver microsomes suggest that a low affinity carboxylesterase (perhaps hydrolase B) might be involved in this hydrolysis in rat liver. Chirality 11:10–13, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

20.
Rapid and simple isocratic high‐performance liquid chromatographic methods with UV detection were developed and validated for the direct resolution of racemic mixtures of hyoscyamine sulfate and zopiclone. The method involved the use of αl‐acid glycoprotein (AGP) as chiral stationary phase. The stereochemical separation factor (?) and the stereochemical resolution factor (Rs) obtained were 1.29 and 1.60 for hyoscyamine sulfate and 1.47 and 2.45 for zopiclone, respectively. The method was used for determination of chiral switching (eutomer) isomers: S‐hyoscyamine sulfate and eszopiclone. Several mobile phase parameters were investigated for controlling enantioselective retention and resolution on the chiral AGP column. The influence of mobile phase, concentration and type of uncharged organic modifier, ionic strength, and column temperature on enantioselectivity were studied. Calibration curves were linear in the ranges of 1–10 µg mL‐1 and 0.5–5 µg mL‐1 for S‐hyoscyamine sulfate and eszopiclone, respectively. The method is specific and sensitive, with lower limits of detection and quantifications of 0.156, 0.515 and 0.106, 0.349 for S‐hyoscyamine sulfate and eszopiclone, respectively. The method was used to identify quantitatively the enantiomers profile of the racemic mixtures of the studied drugs in their pharmaceutical preparations. Thermodynamic studies were performed to calculate the enthalpic ΔH and entropic ΔS terms. The results showed that enantiomer separation of the studied drugs were an enthalpic process. Chirality 28:49–57, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号