首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human D5 monoclonal antibody binds to the highly conserved hydrophobic pocket on the N-terminal heptad repeat (NHR) trimer of HIV-1 gp41 and exhibits modest yet relatively broad neutralization activity. Both binding and neutralization depend on residues in the complementarity determining regions (CDRs) of the D5 IgG variable domains on heavy chain (VH) and light chain (VL). In an effort to increase neutralization activity to a wider range of HIV-1 strains, we have affinity matured the parental D5 scFv by randomizing selected residues in 5 of its 6 CDRs. The resulting scFv variants derived from four different CDR changes showed enhanced binding affinities to gp41 NHR mimetic (5-helix) which correlated to improved neutralization potencies by up to 8-fold. However, when converted to IgG1s, these D5 variants had up to a 12-fold reduction in neutralization potency over their corresponding scFvs despite their slightly enhanced in vitro binding affinities. Remarkably, D5 variant IgG1s bearing residue changes in CDRs that interact with epitope residues N-terminal to the hydrophobic pocket (such as VH CDR3 and VL CDR3) retained more neutralization potency than those containing residue changes in pocket-interacting CDRs (such as VH CDR2). These results provide compelling evidence for the existence of a steric block to an IgG that extends to the gp41 NHR hydrophobic pocket region, and can be a useful guide for developing therapeutic antibodies and vaccines circumventing this block.  相似文献   

2.
《MABS-AUSTIN》2013,5(5):462-474
The human D5 monoclonal antibody binds to the highly conserved hydrophobic pocket on the N-terminal heptad repeat (NHR) trimer of HIV-1 gp41 and exhibits modest yet relatively broad neutralization activity. Both binding and neutralization depend on residues in the complementarity determining regions (CDRs) of the D5 IgG variable domains on heavy chain (VH) and light chain (VL). In an effort to increase neutralization activity to a wider range of HIV-1 strains, we have affinity matured the parental D5 scFv by randomizing selected residues in 5 of its 6 CDRs. The resulting scFv variants derived from four different CDR changes showed enhanced binding affinities to gp41 NHR mimetic (5-helix) which correlated to improved neutralizationpotencies by up to 8-fold. However, when converted to IgG1s, these D5 variants had up to a 12-fold reduction in neutralization potency over their corresponding scFvs despite their slightly enhanced in vitro binding affinities. Remarkably, D5 variant IgG1s bearing residue changes in CDRs that interact with epitope residues N-terminal to the hydrophobic pocket (such as VH CDR3 and VL CDR3) retained more neutralization potency than those containing residue changes in pocket-interacting CDRs (such as CDR2). These results provide compelling evidence for the existence of a steric block to an IgG that extends to the gp41 NHR hydrophobic pocket region, and can be a useful guide for developing therapeutic antibodies and vaccines circumventing this block.  相似文献   

3.
Shotgun scanning combinatorial mutagenesis was used to study the antigen-binding site of Fab2C4, a humanized monoclonal antibody fragment that binds to the extracellular domain of the human oncogene product ErbB2. Essentially all the residues in the Fab2C4 complementarity determining regions (CDRs) were alanine-scanned using phage-displayed libraries that preferentially allowed side-chains to vary as the wild-type or alanine. A separate homolog-scan was performed using libraries that allowed side-chains to vary only as the wild-type or a similar amino acid residue. Following binding selections to isolate functional clones, DNA sequencing was used to determine the wild-type/mutant ratios at each varied position, and these ratios were used to assess the contributions of each side-chain to antigen binding. The alanine-scan revealed that most of the side-chains that contribute to antigen binding are located in the heavy chain, and the Fab2C4 three-dimensional structure revealed that these residues fall into two groups. The first group consists of solvent-exposed residues which likely make energetically favorable contacts with the antigen and thus comprise the functional-binding epitope. The second group consists of buried residues with side-chains that pack against other CDR residues and apparently act as scaffolding to maintain the functional epitope in a binding-competent conformation. The homolog-scan involved subtle mutations, and as a result, only a subset of the side-chains that were intolerant to alanine substitutions were also intolerant to homologous substitutions. In particular, the 610 A2 functional epitope surface revealed by alanine-scanning shrunk to only 369 A2 when mapped with homologous substitutions, suggesting that this smaller subset of side-chains may be involved in more precise contacts with the antigen. The results validate shotgun scanning as a rapid and accurate method for determining the functional contributions of individual side-chains involved in protein-protein interactions.  相似文献   

4.
The murine mAb CB4-1 raised against p24 (HIV-1) recognizes a linear epitope of the HIV-1 capsid protein. Additionally, CB4-1 exhibits cross-reactive binding to epitope-homologous peptides and polyspecific reactions to epitope nonhomologous peptides. Crystal structures demonstrate that the epitope peptide (e-pep) and the nonhomologous peptides adopt different conformations within the binding region of CB4-1. Site-directed mutagenesis of the fragment variable (Fv) region was performed using a single-chain (sc)Fv construct of CB4-1 to analyze binding contributions of single amino acid side chains toward the e-pep and toward one epitope nonhomologous peptide. The mutations of Ab amino acid side chains, which are in direct contact with the Ag, show opposite influences on the binding of the two peptides. Whereas the affinity of the e-pep to the CB4-1 scFv mutant heavy chain variable region Tyr(32)Ala is decreased 250-fold, the binding of the nonhomologous peptide remains unchanged. In contrast, the mutation light chain variable region Phe(94)Ala reduces the affinity of the nonhomologous peptide 10-fold more than it does for the e-pep. Thus, substantial changes in the specificity can be observed by single amino acid exchanges. Further characterization of the scFv mutants by substitutional analysis of the peptides demonstrates that the effect of a mutation is not restricted to contact residues. This method also reveals an inverse compensatory amino acid exchange for the nonhomologous peptide which increases the affinity to the scFv mutant light chain variable region Phe(94)Ala up to the level of the e-pep affinity to the wild-type scFv.  相似文献   

5.
Single-chain variable fragment (scFv) antibodies are widely used as diagnostic and therapeutic agents or biosensors for a majority of human disease. However, the limitations of the present scFv antibody in terms of stability, solubility, and affinity are challenging to produce by traditional antibody screening and expression formats. We describe here a feasible strategy for creating the green fluorescent protein (GFP)-based antibody. Complementarity-determining region 3 (CDR3), which retains the antigen binding activity, was introduced into the structural loops of superfolder GFP, and the result showed that CDR3-inserted GFP displayed almost the same fluorescence intensity as wild-type GFP, and the purified proteins of CDR3 insertion showed the similar binding activity to antigen as the corresponding scFv. Among of all of the CDRs, CDR3s are responsible for antigen recognition, and only the CDR3a insertion is the best format for producing GFP-based antibody binding to specific antigen. The wide versatility of this system was further verified by introducing CDR3 from other scFvs into loop 9 of GFP. We developed a feasible method for rapidly and effectively producing a high-affinity GFP-based antibody by inserting CDR3s into GFP loops. Further, the affinity can be enhanced by specific amino acids scanning and site-directed mutagenesis. Notably, this method had better versatility for creating antibodies to various antigens using GFP as the scaffold, suggesting that a GFP-based antibody with high affinity and specificity may be useful for disease diagnosis and therapy.  相似文献   

6.
Leung DT  Yam NW  Chui YL  Wong KC  Lim PL 《Gene》2000,255(2):373-380
Little is known about human anti-idiotypic antibodies. Phage display methodology was used to reconstruct these antibodies from lupus patients, which recognize a subset (T14(+)) of anti-DNA antibodies. Antigen-specific B cells were isolated from the blood using a peptide based on a complementarity determining region (V(H)CDR3) of the prototypic T14(+) antibody. cDNA fragments of the V(H) and V(L) genes prepared from the cells were expressed as phage displayed single chain Fv (scFv) fragments using the pCANTAB-5E phagemid vector. From a reactive clone obtained, the Ig genes used were identified to be V(H)3, D5-D3, J(H)4b, V(kappa)I and J(kappa)2. The heavy chain was highly mutated, especially in CDR3, which bears mutations mostly of the replacement type; this region is also unusual in being extremely long due to a D-D fusion. In contrast, a mouse hybridoma antibody, made to the same T14(+) peptide and transformed as a scFv fragment, uses a short V(H)CDR3 comprising five amino acids, three of which are tyrosines. Tyrosines may be important for antigen binding because two of these also exist in the human V(H)CDR3. The light chains of both antibodies may also contribute to the specificity of the protein, because their V(L) segments, including the CDRs, are highly homologous to each other.  相似文献   

7.
We present the crystal structure determination of an anti‐HIV‐1 gp120 single‐chain variable fragment antibody variant, 3B3, at 2.5 Å resolution. This 3B3 variant was derived from the b12 antibody, using phage display and site‐directed mutagenesis of the variable heavy chain (VH) complementary‐determining regions (CDRs). 3B3 exhibits enhanced binding affinity and neutralization activity against several cross‐clade primary isolates of HIV‐1 by interaction with the recessed CD4‐binding site on the gp120 envelope protein. Comparison with the structures of the unbound and bound forms of b12, the 3B3 structure closely resembles these structures with minimal differences with two notable exceptions. First, there is a reorientation of the CDR‐H3 of the VH domain where the primary sequences evolved from b12 to 3B3. The structural changes in CDR‐H3 of 3B3, in light of the b12‐gp120 complex structure, allow for positioning an additional Trp side chain in the binding interface with gp120. Finally, the second region of structural change involves two peptide bond flips in CDR‐L3 of the variable light (VL) domain triggered by a point mutation in CDR‐H3 of Q100eY resulting in changes in the intramolecular hydrogen bonding patterning between the VL and VH domains. Thus, the enhanced binding affinities and neutralization capabilities of 3B3 relative to b12 probably result from higher hydrophobic driving potential by burying more aromatic residues at the 3B3‐gp120 interface and by indirect stabilization of intramolecular contacts of the core framework residues between the VL and VH domains possibly through more favorable entropic effect through the expulsion of water.  相似文献   

8.
mAb Z22 is a highly selective IgG anti-Z-DNA Ab from an immunized C57BL/6 mouse. Previous studies showed that heavy chain CDR3 amino acids are critical for Z-DNA binding by the single chain variable fragment (scFv) comprising both V region heavy chain (VH) and V region light chain (VL) of mAb Z22 and that the VH domain alone binds Z-DNA with an affinity similar to that of whole variable fragment (Fv). To determine whether Z-DNA binding by VH alone and by Fv involves identical complementarity determining region residues, we tested effects of single or multiple amino acid substitutions in recombinant VH, scFv, and associated VH-VL heterodimers. Each recombinant product was a fusion protein with a B domain of Staphylococcal protein A (SPA). Z22VH-SPA alone was not highly selective; it bound strongly to other polynucleotides, particularly polypyrimidines, and ssDNA as well as to Z-DNA. In contrast, scFv-SPA or associated VH-VL dimers bound only to Z-DNA. VL-SPA domains bound weakly to Z-DNA; SPA alone did not bind. Introduction of multiple substitutions revealed that the third complementarity determining region of the heavy chain (CDR3H) was critical for both VH and scFv binding to Z-DNA. However, single substitutions that eliminated or markedly reduced Z-DNA binding by scFv instead caused a modest increase or no reduction in binding by VH alone. Association of VH-SPA with Z22VL-SPA restored both the effects of single substitutions and Z-DNA selectivity seen with Fv and intact Ab. Polypyrimidine and ssDNA binding by the isolated VH domain of immunization-induced anti-Z-DNA Ab resembles the activity of natural autoantibodies and suggests that VH-dependent binding to a ligand mimicked by polypyrimidines may play a role in B cell selection before immunization with Z-DNA.  相似文献   

9.
Previously we reported that the variable heavy chain region (VH) of a human beta2 glycoprotein I-dependent monoclonal antiphospholipid antibody (IS4) was dominant in conferring the ability to bind cardiolipin (CL). In contrast, the identity of the paired variable light chain region (VL) determined the strength of CL binding. In the present study, we examine the importance of specific arginine residues in IS4VH and paired VL in CL binding. The distribution of arginine residues in complementarity determining regions (CDRs) of VH and VL sequences was altered by site-directed mutagenesis or by CDR exchange. Ten different 2a2 germline gene-derived VL sequences were expressed with IS4VH and the VH of an anti-dsDNA antibody, B3. Six variants of IS4VH, containing different patterns of arginine residues in CDR3, were paired with B3VL and IS4VL. The ability of the 32 expressed heavy chain/light chain combinations to bind CL was determined by ELISA. Of four arginine residues in IS4VH CDR3 substituted to serines, two residues at positions 100 and 100 g had a major influence on the strength of CL binding while the two residues at positions 96 and 97 had no effect. In CDR exchange studies, VL containing B3VL CDR1 were associated with elevated CL binding, which was reduced significantly by substitution of a CDR1 arginine residue at position 27a with serine. In contrast, arginine residues in VL CDR2 or VL CDR3 did not enhance CL binding, and in one case may have contributed to inhibition of this binding. Subsets of arginine residues at specific locations in the CDRs of heavy chains and light chains of pathogenic antiphospholipid antibodies are important in determining their ability to bind CL.  相似文献   

10.
A structure-based approach was used to design libraries of synthetic heavy chain complementarity determining regions (CDRs). The CDR libraries were displayed as either monovalent or bivalent single-chain variable fragments (scFvs) with a single heavy chain variable domain scaffold and a fixed light chain variable domain. Using the structure of a parent antibody as a guide, we restricted library diversity to CDR positions with significant exposure to solvent. We introduced diversity with tailored degenerate codons that ideally only encoded for amino acids commonly observed in natural antibody CDRs. With these design principles, we reasoned that we would produce libraries of diverse solvent-exposed surfaces displayed on stable scaffolds with minimal structural perturbations. The libraries were sorted against a panel of proteins and yielded multiple unique binding clones against all six antigens tested. The bivalent library yielded numerous unique sequences, while the monovalent library yielded fewer unique clones. Selected scFvs were converted to the Fab format, and the purified Fab proteins retained high affinity for antigen. The results support the view that synthetic heavy chain diversity alone may be sufficient for the generation of high-affinity antibodies from phage-displayed libraries; thus, it may be possible to dispense with the light chain altogether, as is the case in natural camelid immunoglobulins.  相似文献   

11.
Paula S  Monson N  Ball WJ 《Proteins》2005,60(3):382-391
The amino acid sequences of the heavy- and light-chain variable regions of the high-affinity human sequence antidigoxin monoclonal antibody 1B3 (mAb 1B3) were determined, and a structural model for the mAb's variable region was developed by homology modeling techniques. The structural model provided the basis for computationally docking digoxin and eight related cardiac glycosides into the putative binding site of mAb 1B3. Analysis of the consensus binding mode obtained for digoxin showed that the cardenolide moiety of digoxin is deeply embedded in a predominantly hydrophobic, narrow cavity, whereas the terminal, gamma-carbohydrate group is solvent-exposed. The docking results indicated that the primary driving forces for digoxin binding by mAb 1B3 are hydrophobic interactions with the digoxin steroid ring system and hydrogen bonds with the digitoxose groups. The binding model accounts for the experimentally observed variations in mAb 1B3 binding affinity for various structural analogs of digoxin used previously to develop a 3D structure-activity relationship model of drug binding (Farr CD, Tabet MR, Ball WJ Jr, Fishwild DM, Wang X, Nair AC, Welsh WJ. Three-dimensional quantitative structure-activity relationship analysis of ligand binding to human sequence antidigoxin monoclonal antibodies using comparative molecular field analysis. J Med Chem 2002;45:3257-3270). In particular, the hydrogen bond pattern is consistent with the unique sensitivity of mAb 1B3's binding affinity to the number of sugar residues present in a cardiac glycoside. The hydrophobic environment about the steroid moiety of digoxin is compatible with the mAb's reduced affinity for ligands that possess hydrophilic hydroxyl and acetyl group modifications in this region. The model also indicated that most of the amino acid residues in contact with the ligand reside in or about the three complementarity determining regions (CDRs) of the heavy chain and the third CDR of the light chain. A comparison of the 1B3 binding model with the crystal structures of two murine antidigoxin mAbs revealed similar binding patterns used by the three mAbs, such as a high frequency of occurrence of aromatic, hydrophobic residues in the CDRs and a dominant role of the heavy chain CDR3 in antigen binding.  相似文献   

12.
We have isolated single-chain Fv fragments directed against human endothelial cells from a novel fully synthetic human scFv library (scFv 479). This library was constructed using the variable germline segments DP47 and DPkappa9 as scaffolds. Complementarity determining regions 3 (CDR) of the variable heavy and light chain were introduced with a length of 9 amino acid residues. In total, 16 amino acid positions of all six CDRs exposed in the antigen-binding site were randomized and the library was produced from synthetic oligonucleotides encoding the entire scFv fragment. From this library endothelial-specific scFv fragments were either selected using the recombinant extracellular domain of human endoglin (CD105) or by cell selections with human dermal microvascular endothelial cells (HDMEC). These scFv fragments might be useful for the generation of vascular or tumor targeting agents in cancer therapy.  相似文献   

13.
A mono-specific antibody may recruit a second antigen binding specificity, thus converting to a dual-specific Two-in-One antibody through mutation at the light chain complementarity-determining regions (CDRs). It is, however, unknown whether mutation at the heavy chain CDRs may evolve such dual specificity. Herein, we examined the CDRs of a humanized interleukin 4 (IL4) antibody using alanine scanning and structural modeling, designed libraries of mutants in regions that tolerate mutation, and isolated dual specific antibodies harboring mutation at the heavy chain CDRs only. We then affinity improved an IL4/IL5 dual specific antibody to variants with dissociation constants in the low nanomolar range for both antigens. The results demonstrate the full capacity of antibodies to evolve dual binding specificity.  相似文献   

14.
《MABS-AUSTIN》2013,5(3):622-627
A mono-specific antibody may recruit a second antigen binding specificity, thus converting to a dual-specific Two-in-One antibody through mutation at the light chain complementarity-determining regions (CDRs). It is, however, unknown whether mutation at the heavy chain CDRs may evolve such dual specificity. Herein, we examined the CDRs of a humanized interleukin 4 (IL4) antibody using alanine scanning and structural modeling, designed libraries of mutants in regions that tolerate mutation, and isolated dual specific antibodies harboring mutation at the heavy chain CDRs only. We then affinity improved an IL4/IL5 dual specific antibody to variants with dissociation constants in the low nanomolar range for both antigens. The results demonstrate the full capacity of antibodies to evolve dual binding specificity.  相似文献   

15.
A semisynthetic antibody library composed of single chain Fv fragments (scFv) was constructed by replacing the heavy chain CDR3 region of a human scFv by a random sequence of eight amino acids using trinucleotide codons. After cloning into a phage display vector, an antibody library was generated with a complexity of 8 x 10(8) independent clones. The library was screened for binders to dinitrophenol, fluorescein isothiocyanate and 3-nitro-4-hydroxy-5-iodophenylacetic acid. scFv antibodies that specifically bound the antigen were obtained in each case.  相似文献   

16.
Obtaining antibodies with high affinity and specificity against antigens are required for the development of therapeutic and diagnostic antibodies. In this study, the contributions to binding affinity in the CDR2 and CDR3 regions of two monoclonal antibodies E3.3 and 2H2 were investigated by random mutagenesis in a phage-display synthetic oligonucleotide library. One high-affinity clone (CDR3-30) was obtained with a 3-fold increase of the dissociation constant, resulting from the changes in amino acids at residues 95, 97, and 98 in the CDRH3 region. Analysis of the predicted structure by modeling suggested that the contributions of mutated residues in the CDR3 region to the binding affinity involved not only complementarity between antigen and CDR3, but also interaction between heavy and light chains. The information gained from this study may benefit the design of vaccines and therapeutic antibodies against Japanese encephalitis virus infection.  相似文献   

17.
An efficient route to the production of an IgG-like bispecific antibody   总被引:5,自引:0,他引:5  
Production of IgG-form bispecific antibody (BsAb-IgG) by co-expressing two antibodies in transfected cells is often inefficient owing to the unwanted pairing between the component heavy and light chains. We have developed an efficient method for the production of a novel IgG-like BsAb by using the natural dimerization mechanism between IgG heavy and light chains. Two single-chain Fv (scFv) of different specificity are fused to the constant domain of human kappa chain (C(L)) and the first constant domain of human heavy chain (C(H1)), to form two polypeptides, (scFv)(1)-C(L) and (scFv)(2)-C(H1)-C(H2)-C(H3), respectively. Co-expression of the two polypeptides in mammalian cells results in the formation of a covalently linked IgG-like hetero-tetramer, Bs(scFv)(4)-IgG, with dual specificity. Our approach yields a homogeneous bispecific IgG-like antibody product with each molecule containing four antigen binding sites, two for each of its target antigens. A Bs(scFv)(4)-IgG was prepared using two scFv antibodies each directed against a different epitope of a vascular endothelial growth factor receptor, the kinase insert domain-containing receptor (KDR). The Bs(scFv)(4)-IgG is capable of simultaneously binding to the two epitopes on the receptor. Further, the Bs(scFv)(4)-IgG also retains the antigen-binding efficacy and biological activity of its component antibodies.  相似文献   

18.
Of the complementarity‐determining regions (CDRs) of antibodies, H3 loops, with varying amino acid sequences and loop lengths, adopt particularly diverse loop conformations. The diversity of H3 conformations produces an array of antigen recognition patterns involving all the CDRs, in which the residue positions actually in contact with the antigen vary considerably. Therefore, for a deeper understanding of antigen recognition, it is necessary to relate the sequence and structural properties of each residue position in each CDR loop to its ability to bind antigens. In this study, we proposed a new method for characterizing the structural features of the CDR loops and obtained the antigen‐binding ability of each residue position in each CDR loop. This analysis led to a simple set of rules for identifying probable antigen‐binding residues. We also found that the diversity of H3 loop lengths and conformations affects the antigen‐binding tendencies of all the CDR loops.  相似文献   

19.
Many pathogens present highly variable surface proteins to their host as a means of evading immune responses. The structure of a peptide antigen corresponding to the subtype P1.7 variant of the porin PorA from the human pathogen Neisseria meningitidis was determined by solution of the X-ray crystal structure of the ternary complex of the peptide (ANGGASGQVK) in complex with a Fab fragment and a domain from streptococcal protein G to 1.95 A resolution. The peptide adopted a beta-hairpin structure with a type I beta-turn between residues Gly4P and Gly7P, the conformation of the peptide being further stabilised by a pair of hydrogen bonds from the side-chain of Asn2P to main-chain atoms in Val9P. The antigen binding site within the Fab formed a distinct crevice lined by a high proportion of apolar amino acids. Recognition was supplemented by hydrogen bonds from heavy chain residues Thr50H, Asp95H, Leu97H and Tyr100H to main-chain and side-chain atoms in the peptide. Complementarity-determining region (CDR) 3 of the heavy chain was responsible for approximately 50 % of the buried surface area formed by peptide-Fab binding, with the remainder made up from CDRs 1 and 3 of the light chain and CDRs 1 and 2 of the heavy chain. Knowledge of the structures of variable surface antigens such as PorA is an essential prerequisite to a molecular understanding of antigenic variation and its implications for vaccine design.  相似文献   

20.
Phage-displayed synthetic antibody libraries were built on a single human framework by introducing synthetic diversity at solvent-exposed positions within the heavy chain complementarity-determining regions (CDRs). The design strategy of mimicking natural diversity using tailored codons had been validated previously with scFv libraries, which produced antibodies that bound to antigen, murine vascular endothelial growth factor (mVEGF), with affinities in the 100nM range. To improve library performance, we constructed monovalent and bivalent antigen-binding fragment (Fab) libraries, and explored different CDR-H3 diversities by varying the amino acid composition and CDR length. A Fab with sub-nanomolar affinity for mVEGF was obtained from a library with CDR-H3 diversity designed to contain all 20 naturally occurring amino acids. We then expanded the library by increasing the variability of CDR-H3 length and using tailored codons that mimicked the amino acid composition of natural CDR-H3 sequences. The library was tested against a panel of 13 protein antigens and high-affinity Fabs were obtained for most antigens. Furthermore, the heavy chain of an anti-mVEGF clone was recombined with a library of light chain CDRs, and the affinity was improved from low nanomolar to low picomolar. The results demonstrated that high-affinity human antibodies can be generated from libraries with completely synthetic CDRs displayed on a single scaffold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号