首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At the point in animal evolution when cells began to adhere to each other they presumably initially functioned as colonies. The formation of an epithelium that enclosed and controlled an internal milieu would have been the first event to distinguish an individual animal from a colony. To better understand when the first epithelium arose and what its characteristics were, we evaluate the morphological, functional, and molecular characters of epithelia in sponges, considered here the extant representatives of the first metazoans. In particular, we show new claudin-like sequences from sponges align most closely with sequences from Drosophila that have a barrier function in septate junctions. We also show that type IV collagen, the main component of the basement membrane (BM), is present in calcareous sponges, and we confirm the presence of type IV-like collagen (spongin short chain collagen) in other sponges. Though in sponges as in other metazoans the epithelium has grades of specialization with varying complexity of junctions and the BM, the main character of a functional epithelium, the ability to seal and control the ionic composition of the internal milieu, is a property of even the simplest sponge epithelium, and therefore the first metazoans likely also had epithelia with these characteristics, which we consider a "true" epithelium.  相似文献   

2.
Gene duplication and evolutionary novelty in plants   总被引:3,自引:0,他引:3  
Duplication is a prominent feature of plant genomic architecture. This has led many researchers to speculate that gene duplication may have played an important role in the evolution of phenotypic novelty within plants. Until recently, however, it was difficult to make this connection. We are now beginning to understand how duplication has contributed to adaptive evolution in plants. In this review we introduce the sources of gene duplication and predictions of the various fates of duplicates. We also highlight several recent and pertinent examples from the literature. These examples demonstrate the importance of the functional characteristics of genes and the source of duplication in influencing evolutionary outcome.  相似文献   

3.
4.
Classic hypotheses of vertebrate morphology are being informed by new data and new methods. Long nascent issues, such as the origin of tetrapod limbs, are being explored by paleontologists, molecular biologists, and functional anatomists. Progress in this arena will ultimately come down to knowing how macroevolutionary differences between taxa emerge from the genetic and phenotypic variation that arises within populations. The assembly of limbs over developmental and evolutionary time offers examples of the major processes at work in the origin of novelties. Recent comparative developmental analyses demonstrate that many of the mechanisms used to pattern limbs are ancient. One of the major consequences of this phenomenon is parallelism in the evolution of anatomical structures. Studies of both the fossil record and intrapopulational variation of extant populations reveal regularities in the origin of variation. These examples reveal processes acting at the level of populations that directly affect the patterns of diversity observed at higher taxonomic levels.  相似文献   

5.
Since 1990 the recognition of deep homologies among metazoan developmental processes and the spread of more mechanistic approaches to developmental biology have led to a resurgence of interest in evolutionary novelty and innovation. Other evolutionary biologists have proposed central roles for behaviour and phenotypic plasticity in generating the conditions for the construction of novel morphologies, or invoked the accessibility of new regions of vast sequence spaces. These approaches contrast with more traditional emphasis on the exploitation of ecological opportunities as the primary source of novelty. This definitional cornucopia reflects differing stress placed on three attributes of novelties: their radical nature, the generation of new taxa, and ecological and evolutionary impact. Such different emphasis has led to conflating four distinct issues: the origin of novel attributes (genes, developmental processes, phenotypic characters), new functions, higher clades and the ecological impact of new structures and functions. Here I distinguish novelty (the origin of new characters, deep character transformations, or new combinations) from innovation, the ecological and evolutionary success of clades. Evidence from the fossil record of macroevolutionary lags between the origin of a novelty and its ecological success demonstrates that novelty may be decoupled from innovation, and only definitions of novelty based on radicality (rather than generativity or consequentiality) can be assessed without reference to the subsequent history of the clade to which a novelty belongs. These considerations suggest a conceptual framework for novelty and innovation, involving: (i) generation of the potential for novelty; (ii) the formation of novel attributes; (iii) refinement of novelties through adaptation; (iv) exploitation of novelties by a clade, which may coincide with a new round of ecological or environmental potentiation; followed by (v) the establishment of innovations through ecological processes. This framework recognizes that there is little empirical support for either the dominance of ecological opportunity, nor abrupt discontinuities (often caricatured as ‘hopeful monsters’). This general framework may be extended to aspects of cultural and social innovation.  相似文献   

6.
In this review, David Bermudes and Keith Joiner discuss the interrelationship between parasitism and mutualism and examine the parallel mechanisms used by parasites and mutualists to access and persist within the intracellular environment. By drawing analogies with mutualistic associations, they suggest mechanisms by which some parasites may ultimately benefit their hosts. They further speculate that some hosts may even become dependent upon their parasites.  相似文献   

7.
8.
According to many biologists, explaining the evolution of morphological novelty and behavioral innovation are central endeavors in contemporary evolutionary biology. These endeavors are inherently multidisciplinary but also have involved a high degree of controversy. One key source of controversy is the definitional diversity associated with the concept of evolutionary novelty, which can lead to contradictory claims (a novel trait according to one definition is not a novel trait according to another). We argue that this diversity should be interpreted in light of a different epistemic role played by the concept of evolutionary novelty-the structuring of a problem space or setting of an explanatory agenda-rather than the concept's capacity to categorize traits as novel. This distinctive role is consistent with the definitional diversity and shows that the concept of novelty benefits ongoing investigation by focusing attention on answering different questions related to comprehending the origins of novelty. A review of recent theoretical and empirical work on evolutionary novelty confirms this interpretation. J. Exp. Zool. (Mol. Dev. Evol.) 318B:417-427, 2012. ? 2012 Wiley Periodicals, Inc.  相似文献   

9.
Given the pervasiveness of gene sharing in evolution and the extent of homology across the tree of life, why is everything not homologous with everything else? The continuity and overlapping genetic contributions to diverse traits across lineages seem to imply that no discrete determination of homology is possible. Although some argue that the widespread overlap in parts and processes should be acknowledged as “partial” homology, this threatens a broad base of presumed comparative morphological knowledge accepted by most biologists. Following a long scientific tradition, we advocate a strategy of “theoretical articulation” that introduces further distinctions to existing concepts to produce increased contrastive resolution among the labels used to represent biological phenomena. We pursue this strategy by drawing on successful patterns of reasoning from serial homology at the level of gene sequences to generate an enriched characterization of serial homology as a hierarchical, phylogenetic concept. Specifically, we propose that the concept of serial homology should be applied primarily to repeated but developmentally individualized body parts, such as cell types, differentiated body segments, or epidermal appendages. For these characters, a phylogenetic history can be reconstructed, similar to families of paralogous genes, endowing the notion of serial homology with a hierarchical, phylogenetic interpretation. On this basis, we propose a five-fold theoretical classification that permits a more fine-grained mapping of diverse trait-types. This facilitates answering the question of why everything is not homologous with everything else, as well as how novelty is possible given that any new character possesses evolutionary precursors. We illustrate the fecundity of our account by reference to debates over insect wing serial homologs and vertebrate paired appendages.  相似文献   

10.
11.
Knives, birds' wings, and mountain slopes are used for certain purposes: cutting, flying, and climbing. A bird's wings have in common with knives that they have been 'designed' for the purpose they serve, which purpose accounts for their existence, whereas mountain slopes have come about by geological processes independently of their uses for climbing. A bird's wings differ from a knife in that they have not been designed or produced by any conscious agent; rather, the wings, like the slopes, are outcomes of natural processes without any intentional causation. Evolutionary biologists use teleological language and teleological explanations. I propose that this use is appropriate, because teleological explanations are hypotheses that can be subject to empirical testing. The distinctiveness of teleological hypotheses is that they account for the existence of a feature in terms of the function it serves; for example, wings have evolved and persist because flying is beneficial to birds by increasing their chances of surviving and reproducing. Features of organisms that are explained with teleological hypotheses include structures, such as wings; processes, such as development from egg to adult; and behaviours, such as nest building. A proximate explanation of these features is the function they serve; an ultimate explanation that they all share is their contribution to the reproductive fitness of the organisms. I distinguish several kinds of teleological explanations, such as natural and artificial, as well as bounded and unbounded, some of which but not others apply to biological explanations.  相似文献   

12.
Altitudinal gradients are characterized by steep changes of the physical and biotic environment that present challenges to plant adaptation throughout large parts of the world. Hybrid zones may form where related species inhabit different neighbouring altitudes and can facilitate interspecific gene flow and potentially the breakdown of species barriers. Studies of such hybrid zones can reveal much about the genetic basis of adaptation to environmental differences stemming from changes in altitude and the maintenance of species divergence in the face of gene flow. Furthermore, owing to recombination and transgressive effects, such hybrid zones can be sources of evolutionary novelty. We document plant hybrid zones associated with altitudinal gradients and emphasize similarities and differences in their structure. We then focus on recent studies of a hybrid zone between two Senecio species that occur at high and low altitude on Mount Etna, Sicily, showing how adaptation to local environments and intrinsic selection against hybrids act to maintain it. Finally, we consider the potential of altitudinal hybrid zones for generating evolutionary novelty through adaptive introgression and hybrid speciation. Examples of homoploid hybrid species of Senecio and Pinus that originated from altitudinal hybrid zones are discussed.  相似文献   

13.
Latent homologues for the neural crest as an evolutionary novelty   总被引:5,自引:0,他引:5  
The neural crest is a craniate synapomorphy and a bona fide evolutionary novelty. Recently, researchers considering intriguingly similar patterns of gene expression, cell behaviors, and embryogenetic processes in noncraniate deuterostomes have suggested that cephalochordates, urochordates, and echinoderms or their ancestors might have possessed cells that were precursors to the neural crest or its constituent cells. To emphasize the caution with which similarities at genetic, cellular, or embryological levels should be interpreted as substantiations for cell, germ layer, or tissue homologies, we present and evaluate additional tantalizing evidence that could be considered as documenting neural crest precursors in precraniates. Furthermore, we propose an evolutionary context--latent homologue--within which these data should be interpreted.  相似文献   

14.
Organisms exhibit an incredible diversity of form, a fact that makes the evolution of novelty seemingly self-evident. However, despite the "obvious" case for novelty, defining this concept in evolutionary terms is highly problematic, so much so that some have suggested discarding it altogether. Approaches to this problem tend to take either an adaptation- or development-based perspective, but we argue here that an exclusive focus on either of these misses the original intent of the novelty concept and undermines its practical utility. We propose instead that for a feature to be novel, it must have evolved both by a transition between adaptive peaks on the fitness landscape and that this transition must have overcome a previous developmental constraint. This definition focuses novelty on the explanation of apparently difficult or low-probability evolutionary transitions and highlights how the integration of developmental and functional considerations are necessary to evolutionary explanation. It further reinforces that novelty is a central concern not just of evolutionary developmental biology (i.e., "evo-devo") but of evolutionary biology more generally. We explore this definition of novelty in light of four examples that range from the obvious to subtle. J. Exp. Zool. (Mol. Dev. Evol.) 318B:501-517, 2012. ? 2012 Wiley Periodicals, Inc.  相似文献   

15.
16.

Background  

Sexually deceptive orchids of the genus Ophrys attract their pollinators, male insects, on a highly specific basis through the emission of odour blends that mimic the female sex pheromone of the targeted species. In this study, we have investigated a contact site between Ophrys arachnitiformis and O. lupercalis, two sympatric orchid species that are usually reproductively isolated via the exploitation of different pollinator "niches", but occasionally hybridise despite their apparent combination of ethological and mechanical isolation barriers. In particular, we have investigated the extent to which these Ophrys hybrids generate "emergent" combinations (i.e. novel and unpredictable from the parents' phenotypes) of floral traits, and how these phenotypic novelties, particularly the odour blends emitted by the flower, could facilitate the invasion of a novel pollinator "niche" and induce the rapid formation of reproductive isolation, a prerequisite for adaptive evolutionary divergence.  相似文献   

17.
Among the various types of evolutionary changes in morphology, the origin of novel structures may be the most rare and intriguing. Here we show statistically that the origins of different novel structures may be correlated and phylogenetically clustered into "hot spots" of evolutionary novelty, in a case study involving skull elements in treefrogs. We reconstruct phylogenetic relationships within a clade of Middle American treefrogs based on data from 10 nuclear and four mitochondrial genes and then analyze morphological evolution across this tree. New cranial elements are rare among anurans and tetrapods in general, but three novel elements have evolved within this clade, with a 40% increase in the number of skull roof elements in some species. Two of these elements also evolved in a related clade of treefrogs, and these two novel elements may have each evolved repeatedly within one or both clades. The molecular phylogeny suggests striking homoplasy in cranial morphology and shows that parsimony and Bayesian analyses of the morphological data have produced misleading results with strong statistical support. The origins of the novel elements are associated with an overall increase in the ossification of dermal skull roof elements (suggesting peramorphosis) and with the evolution of a novel adaptive behavior. Our study may be the first to statistically document significant phylogenetic clustering and correlation in the origins of novel structures, and to demonstrate the strongly misleading effects of peramorphosis on phylogenetic analysis.  相似文献   

18.
Protein phosphorylation is a ubiquitous protein post-translational modification, which plays an important role in cellular signaling systems underlying various physiological and pathological processes. Current in silico methods mainly focused on the prediction of phosphorylation sites, but rare methods considered whether a phosphorylation site is functional or not. Since functional phosphorylation sites are more valuable for further experimental research and a proportion of phosphorylation sites have no direct functional effects, the prediction of functional phosphorylation sites is quite necessary for this research area. Previous studies have shown that functional phosphorylation sites are more conserved than non-functional phosphorylation sites in evolution. Thus, in our method, we developed a web server by integrating existing phosphorylation site prediction methods, as well as both absolute and relative evolutionary conservation scores to predict the most likely functional phosphorylation sites. Using our method, we predicted the most likely functional sites of the human, rat and mouse proteomes and built a database for the predicted sites. By the analysis of overall prediction results, we demonstrated that protein phosphorylation plays an important role in all the enriched KEGG pathways. By the analysis of protein-specific prediction results, we demonstrated the usefulness of our method for individual protein studies. Our method would help to characterize the most likely functional phosphorylation sites for further studies in this research area.  相似文献   

19.
Comprehending the origin of marine invertebrate larvae remains a key domain of research for evolutionary biologists, including the repeated origin of direct developmental modes in echinoids. In order to address the latter question, we surveyed existing evidence on relationships of homology between the ectoderm territories of two closely related sea urchin species in the genus Heliocidaris that differ in their developmental mode. Additionally, we explored a recently articulated idea about homology called 'organizational homology' (Müller 2003. In: Müller GB, Newman SA, editors. Origination of organismal form: beyond the gene in developmental and evolutionary biology. Cambridge, MA: A Bradford Book, The MIT Press. p 51-69. ) in the context of this specific empirical case study. Applying the perspective of organizational homology to our experimental system of congeneric echinoids has led us to a new hypothesis concerning the ectoderm evolution in these species. The extravestibular ectoderm of the direct developer Heliocidaris erythrogramma is a novel developmental territory that arose as a fusion of the oral and aboral ectoderm territories found in indirect developing echinoids such as Heliocidaris tuberculata. This hypothesis instantiates a theoretical principle concerning the origin of developmental modules, 'integration', which has been neglected because the opposite theoretical principle, 'parcellation', is more readily observable in events such as gene duplication and divergence (Wagner 1996. Am Zool 36:36-43).  相似文献   

20.
Huntington's disease is a progressive neuro-degenerative disorder in humans, which is scharacterized by onset of dementia, muscular ataxia, and death. Huntington's disease is caused by the expansion of the polyglutamine (polyQ) tract in the N-terminus of the HD protein (Huntingtin). CAG expansion is a dominant gain of function mutation that affects striated neurons in the brain (Cattaneo, 2003, News Physiol Sci 18:34). The evolutionary origins of the vertebrate Hd gene are not well understood. In order to address the evolutionary history of the Hd gene, we have cloned and characterized the expression of the Hd gene in two invertebrate deuterostomes, an echinoderm and an ascidian, and have examined the expression patterns in a phylogenetic context. Echinoderms are basal deuterostomes and ascidians are basal chordates; both are useful for understanding the origins of and evolutionary trends in genes important in vertebrates such as the Huntigton's disease gene. Expression of Hd RNA is detected at all stages of development in both the echinoderm and ascidian studied. In the echinoderm Heliocidaris erythrogramma, Hd is expressed in coelomic mesodermal tissue derivatives, but not in the central nervous system. In the ascidian Halocynthia roretzi expression is located in both mesoderm and nervous tissue. We suggest that the primitive deuterostome expression pattern is not neural. Thus, neural expression of the Hd gene in deuterostomes may be a novel feature of the chordate lineage, and the original role(s) of HD in deuterostomes may have been non-neural.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号