首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Flax seed meal (FSM) is rich in various nutrients, especially CP and energy, and can be used as animal protein feed. In animal husbandry production, it is a long-term goal to replace soybean meal (SBM) in animal feed with other plant protein feed. However, studies on the effects of replacing SBM with FSM in fattening sheep are limited. The aim of this experiment was to study the effects of replacing a portion of SBM with FSM on nutrient digestibility, rumen microbial protein synthesis and growth performance in sheep. Thirty-six Dorper × Small Thin-Tailed crossbred rams (BW = 40.4 ± 1.73 kg, mean ± SD) were randomly assigned into four groups. The dietary treatments (forage/concentrate, 45 : 55) were isocaloric according to the nutrient requirements of rams. Soybean meal was replaced with FSM at different levels (DM basis): (1) 18% SBM (18SBM), (2) 12% SBM and 6% FSM (6FSM), (3) 6% SBM and 12% FSM (12FSM) and (4) 18% FSM (18FSM). The rams were fed in individual pens for 60 days, with the first 10 days for adaptation to diets, and then the digestibility of nutrients was determined. There was no significant difference in DM intake, but quadratic (P < 0.001) effects on the average daily gain and feed efficiency were detected, with the highest values in the 6FSM and 12FSM groups. For DM and NDF digestibility, quadratic effects were observed with the higher values in the 6FSM and 12FSM groups, but the digestibility of CP linearly decreased with the increase in FSM in the diet (P = 0.043). There was a quadratic (P < 0.001) effect of FSM inclusion rate on the estimated microbial CP yield. However, the values of intestinally absorbable dietary protein decreased linearly (P < 0.001). For the supply of metabolisable protein, both the linear (P = 0.001) and quadratic (P = 0.044) effects were observed with the lowest value in the 18FSM group. Overall, the results indicated that SBM can be effectively replaced by FSM in the diets of fattening sheep and the optimal proportion was 12.0% under the conditions of this experiment.  相似文献   

2.
In this study, a brown macroalgae species, Saccharina latissima, processed to increase its protein concentration, and a red macroalgae species, Porphyra spp., were used to evaluate their in vivo digestibility, rumen fermentation and blood amino acid concentrations. Four castrated rams were used, whose diets were supplemented with a protein-rich fraction of S. latissima, a commercial Porphyra spp. and soybean meal (SBM). Our results show that the protein digestibility of a diet with S. latissima extract was lower (0.55) than those with Porphyra spp. (0.64) and SBM (0.66). In spite of the higher nitrogen (N) intake of diets containing Porphyra spp. and SBM (20.9 and 19.8 g N/day, respectively) than that with S. latissima (18.6 g N/day), the ratio of N excreted in faeces to total N intake was significantly higher in the diet with S. latissima than those with Porphyra spp. and SBM. This reflects that the utilization of protein in S. latissima was impaired, possibly due to reduced microbial activity. The latter statement is corroborated by lower volatile fatty acid composition (25.6, 54.8 and 100 mmol/l for S. latissima, Porphyra spp. and SBM, respectively) and a non-significant tendency for lower ammonia concentration observed in diets with S. latissima and Porphyra spp. compared to SBM. It is important to note that the S. latissima used in this trial was rinsed during processing to remove salt. This process potentially also removes other water-soluble compounds, such as free amino acids, and may have increased the relative fraction of protein resistant to rumen degradation and intestinal absorption. Furthermore, the phlorotannins present in macroalgae may have formed complexes with protein and fibre, further limiting their degradability in rumen and absorption in small intestines. We recommend that further studies explore the extent to which processing of macroalgae affects its nutritive properties and rumen degradability, in addition to studies to measure the intestinal absorption of these macroalgae species.  相似文献   

3.
Two Latin square design experiments investigated the relationship between hydrogen sulphide concentration in the rumen headspace gas of dairy cows and the early stages of protein degradation in the rumen. In Expt 1, three protein sources differing in rumen N (nitrogen) degradability (maize gluten feed (MGF); sunflower meal (SFM); and soyabean meal (SBM)) were used, whereas in Expt 2 four different batches of the same feed (MGF) differing in colour (CIE L*, a*, b* (CIELAB) scale) were used. After allowing the concentration of hydrogen sulphide in rumen gas to decline close to zero, a fixed amount of protein sources was offered to cows and the concentrations of hydrogen sulphide were recorded in rumen headspace gas at 30-min intervals. In Expt 1, the concentration of hydrogen sulphide showed considerable variation between protein sources, with MGF having the highest concentration followed by SFM and SBM resulting in very low concentrations. The N wash losses (zero time measurements with nylon bags) ranked the feeds in the same way, from MGF (highest; 61%) to SBM (lowest; 26%). There were marked differences in the degradation of cystine and methionine between protein sources, although the degradation of cystine was always higher than for methionine. MGF (Expt 2) led to increased concentrations of hydrogen sulphide, with peak concentrations achieved between 1 and 2 h after feeding. The concentrations of hydrogen sulphide were higher for MGF1, intermediate for MGF2 and lower for MGF3 and MGF4, agreeing with colour scale. Differences in the early stages of dietary sulphur degradation corresponded with differences in hydrogen sulphide concentrations in rumen gas. The results suggest that hydrogen sulphide concentrations in the rumen headspace gas could be useful to evaluate nutritional parameters not measured by the in sacco technique, contributing to a better understanding of the response of dairy cows to different protein supplements.  相似文献   

4.
The ruminal effective degradability (RED) and intestinal effective digestibility (IED) for dry matter, crude protein (CP) and amino acids (AA) were estimated by a simplified in situ method using pooled samples from rumen-incubated residues, which represented the ruminal outflow of undegraded feed. The effect of microbial contamination in the rumen was corrected using 15N infusion techniques. Studies were carried out for soybean meal (SBM), barley grain (BG) and lucerne hay (LH) in three wethers cannulated in the rumen and the duodenum. Uncorrected values of RED for CP obtained either by mathematical integration or our simplified method were similar in all feeds. Microbial N in the pooled samples of SBM, BG and LH were 2%, 11% and 24% of total N, respectively. However, intestinal incubation eliminated this microbial charge by 100%, 99% and 88%, respectively. With microbial corrections, RED showed an increase, and IED showed a decrease, except for SBM. With this correction, intestinal digested CP was reduced by 2% in SBM, 13% in BG and 34% in LH. Corrected IED of AA was relatively similar in SBM (97–99%). However, large variations were observed in BG (74–93%) and in LH (10–88%). Digestion in the rumen and intestine changed the essential AA pattern. Overall, our results support that AA digestion is affected by the characteristics of their radicals and their contents in plant cell wall proteins. The accurate estimation of feed metabolisable AA or protein requires effective measures that are corrected by ruminal microbial contamination. The proposed in situ method largely simplifies these tasks and allows a more complete and less expensive feed evaluation.  相似文献   

5.
The objective of this experiment was to compare the nutritional properties of potato protein concentrate, a by-product of the starch industry produced entirely in Europe, with that of soybean meal (SBM), for growing cattle. The experiment was conducted on double-muscled Belgian Blue bulls, fitted with rumen, duodenal and ileal cannulas, according to a 4 × 4 Latin square design. They were fed three different iso-N and iso-net energy diets formulated according to the Dutch feed evaluation system, differing in the nature of the main protein source, which was either SBM (‘SBM’ treatment), potato protein concentrate (PPC, ‘PPC’ treatment) or an iso-N mixture of these two protein sources (‘mixed’ treatment). A fourth treatment consisted of ‘PPC’ supplemented by 9.5% digestible proteins supplied by duodenal perfusion of sodium caseinate (CAS, ‘PPC + CAS’ treatment). No significant difference was observed in the ruminal fluid pH, whereas both ‘PPC’ and ‘PPC + CAS’ had the effect of reducing the ruminal ammonia nitrogen (N-NH3) concentration. No significant difference was observed in the apparent intestinal digestibility of the dry matter (DM), organic matter (OM) or N. Outflows of non-NH3-N, microbial proteins and dietary proteins from the rumen were similar for ‘PPC’, ‘SBM’ and ‘mixed’, and increased with CAS infusion by 20%, 17% and 27%, respectively. On the basis of in vivo observations, the degradability of SBM and PPC proteins was estimated at 0.60 and 0.43, respectively, corresponding to the values quoted in the literature. The supply of digestible essential amino acids (EAA) was significantly greater with ‘PPC + CAS’ and did not differ among ‘SBM’, ‘mixed’ and ‘PPC’. This illustrates the difficulty of altering the amino acid (AA) pattern of digestible protein by the nature of the protein of dietary origin when an animal is fed a high nutritional value diet. N retention was not affected by replacing SBM with PPC, but increased by 10% with CAS infusion. On the basis of the plasma AA pattern, the supply of digestible Met was probably limiting with ‘SBM’, ‘mixed’ and ‘PPC’. The CAS perfusion supplemented all AA, including Met, leading to increased N retention. This improvement was limited, however, and N utilisation remained unchanged between treatments. In conclusion, despite a more favourable EAA pattern, PPC offered no advantage compared with SBM for growing bulls when diets were formulated according to the Dutch feed evaluation system.  相似文献   

6.
Three Polish Friesian bulls fitted with rumen and duodenal canulas were used in a 3 × 3 Latin square experiment to study the effect of Ca soaps of rapeseed fatty acids (CSRFA) on rumen fermentation, nutrient and fatty acid (FA) flow to the duodenum, and to investigate in vivo the possibility of using CSRFA as a means of protecting soya bean meal protein against degradation in the rumen. Treatments were (1) control, no fat (2) CSRFA, at 2% of dietary DM and (3) SBM protein coated with CSRFA (CSRFA:SBM, 1:1, wt/wt), at 4% of dietary DM. The animals were fed isonitrogenous diets, containing 45% meadow hay, 10% fodder beet and 45% concentrate mixture on a DM basis. Intake was limited to 80 g DM d−1 kg−0.75. There were no treatment effects on rumen fermentation, rumen liquid turnover rate or volume, suggesting that CSRFA were inert in the rumen. A slight decrease in ammonia concentration in the rumen fluid from the CSRFA:SBM diet and the degradability data do not confirm the protection of SBM protein by CSRFA. Treatments did not affect apparent OM digestibility in the rumen, total N and NAN (non-ammonia nitrogen) flow into the duodenum or microbial protein synthesis. However, rumen degradability of protein was increased by feeding CSRFA. Feeding CSRFA significantly increased the duodenal flows of C18:0, C18:1 and total FA, but when expressed as a percentage of intake, there were no significant treatment differences. The average duodenal flow of total FA was 81.7% of intake. Extents of biohydrogenation of unsaturated FA were decreased in diets containing CSRFA. Estimated net biohydrogenation of C18:2, C18:3 and total unsaturated C18 FA of CSRFA was 43.3, 60.4 and 59.4%, respectively. Postrumen and total tract digestibility of total and individual FA were not different between treatments  相似文献   

7.
A digestibility and balance trial was carried out to study the nutrient digestibility and utilisation of protein and energy in wet distillers' solids derived from barley or soyabean meal. Eight growing pigs (30–72 kg liveweight) were used in an 8 × 6 cyclic change-over experimental design, in which eight experimental diets were arranged 2 × 2 × 2 factorially. The corresponding factors were the protein source (wet distillers' solids (DS) or soyabean meal (SBM)), protein supply (130 or 162 g crude protein (CP) kg−1 dry matter (DM)) and liquid lysine product supplementation.DS and SBM contained 565 g and 485 g CP kg−1 DM, respectively, and the respective lysine contents in CP were 39 g and 64 g per 160 g N. The liquid lysine product contained 527 g CP kg−1 DM and lysine in CP 193 g per 160 g N.No differences were found in the total tract digestibility of the nutrients or energy among diets composed of DS or SBM without lysine supplementation. Those diets with liquid lysine product supplementation, however, had opposite effects on the digestibility of the diets composed of the different protein sources. Lysine supplementation improved the digestibility of ash (P < 0.001), ether extract (P < 0.05) and crude carbohydrates (CCH) (P < 0.05) in diets composed of DS and adversely impaired the digestibility of organic matter and CCH (P < 0.05) in diets composed of SBM. The calculated digestibility of CP and gross energy were respectively 91.2% and 88.3% in SBM and 90.2% and 85.0% in DS. The digestible and calculated net energy contents were respectively 18.16 MJ kg−1 DM and 10.73 MJ kg−1 DM for SBM and 19.31 MJ kg−1 DM and 10.40 MJ kg−1 DM for DS.The pigs on the diets composed of DS had higher total (P < 0.001) and urea (P < 0.01) nitrogen (N) excretion in urine and lower daily retention of N (P < 0.001) than the pigs on the diets composed of SBM. The liquid lysine product supplementation of the diets decreased the total and urea N excretion in urine (P < 0.001) and improved the daily N retention (P < 0.001). With lysine supplementation, the protein utilisation of the diets composed of DS was improved to the level of the diets composed of SBM. No differences were observed in the utilisation of energy among the diets composed of different protein sources.It is concluded that DS is highly digestible, but its protein is efficiently utilised only with lysine supplementation.  相似文献   

8.
In current feed evaluation systems, the nutritional value of protein sources in diets for pigs is based on the ileal digestibility of protein and amino acids, which does not account for the kinetics of protein digestion along the gastrointestinal tract. The objective of the present study was to determine the in vitro protein digestion kinetics of different protein sources (soya bean meal (SBM), wheat gluten (WG), rapeseed meal (RSM), whey powder (WP), dried porcine plasma protein, yellow meal worm larvae and black soldier fly larvae (BSF)). Protein sources were incubated with pepsin at pH 3.5 for 0 to 90 min and subsequently with pancreatin at pH 6.8 for 0 to 210 min at 39°C. The in vitro protein digestion kinetics were described as the kinetics of nitrogen (N) solubilisation and the release of low molecular weight peptides (LMW) (<500 Da). The N solubilisation rate ranged from 0.025 min−1 for BSF to 0.685 min−1 for WP during the incubation with pepsin, and from 0.027 min−1 for RSM to 0.343 min−1 for WP during the incubation with pancreatin. The release rate of LMW peptides ranged from 0.027 min−1 for WG to 0.093 min−1 for WP during the incubation with pepsin, and from 0.029 min−1 for SBM to 0.385 min−1 for WP. Black soldier fly larvae showed a similar release rate of LMW peptides as WP during the incubation with pancreatin. At the end of the sequential incubation with pepsin (90 min) and pancreatin (210 min), WG and WP showed the highest percentage of N present in LMW peptides relative to total N (78% and 79%, respectively), whereas SBM showed the lowest (35%). In conclusion, protein sources for pig diets show substantial differences in in vitro protein digestion kinetics as measured by the kinetics of N solubilisation and the release of LMW peptides. The rate of release of LMW peptides was not correlated to the rate of N solubilisation for each of the protein sources evaluated.  相似文献   

9.
Fat coating of soybean meal (SBM) can reduce its protein degradability in the rumen, but the encapsulation of SBM with palmitic (PA) and stearic acids (SA) has not yet been investigated, despite both fatty acids are common energy sources in dairy cow diets. This study aimed to evaluate the effects of applying a novel method, using either 400 or 500 g fat/kg (treatments FL40 and FL50, respectively), which was enriched in PA and SA at different ratios (100:0, 75:25, 50:50, 25:75 and 0:100), on physical and chemical characteristics, ruminal degradability, solubility and in vitro intestinal protein digestibility (IVIPD) of the obtained products. Encapsulation of SBM in fat resulted in greater mean particle size and lower bulk density and protein solubility than unprotected SBM (USBM). Treatment FL50 resulted in increased (p < 0.01) rumen-undegraded protein (RUP) compared to USBM. There were no differences in RUP of SBM when different PA: SA ratios were used. The mean RUP content of treatments FL40 and FL50 (306 and 349 g/kg, respectively) was greater compared to USBM (262 g/kg, p < 0.05), but lower than that for a standard heat-treated SBM (431 g/kg). Values of IVIPD did not differ among SBM, heat-treated SBM and FL40 and FL50 samples, all being greater than 97.8%. In conclusion, encapsulation of SBM with fats enriched in PA and SA proved to be effective in reducing protein solubility and increasing RUP without depressing protein digestibility in the intestine. For validation of the method, in vivo research to investigate the effects of these products on the production of dairy cows is warranted.  相似文献   

10.
《Small Ruminant Research》2007,72(1-3):205-214
In situ degradability and in vivo (by difference) digestibility trials were conducted to estimate lower tract residual N digestibility (LTRND) of five protein supplements. Efforts were also made to improve the in situ method of measuring protein degradability. For in situ degradability trials, soybean meal (SBM), corn gluten meal (CGM), cotton seed cake (CSC), wheat bran (WB) and corn gluten feed (CGF) were weighed into Dacron bags and incubated in the rumen of three cannulated Chios ewes. SBM, CGF and WB were degraded significantly, while CGM and CSC were least degraded. Microbial contamination (MC) resulted in a 5.3–28.3% artificially decrease in effective ruminal protein degradation of supplements. Total tract digestibility was measured using five rams in an in vivo, by difference, trial using a 5 × 5 Latin-square design. SBM had higher CP digestibility compared to WB, CGF and CSC, and higher N free extract (NFE) digestibility compared to the other feeds. CGM showed higher CP digestibility compared to WB, CGF or CSC, while CGF had higher organic matter (OM) and crude fibre (CF) digestibility compared to WB. CSC was the protein source with the lowest digestibility of OM, CP and NFE in comparison with the other feeds. LTRND was predicted as 0.928, 0.806, 0.227, 0.540, and 0.498 for SBM, CGM, CSC, WB, and CGF, respectively, or 0.931, 0.803, 0.147, 0.364, and 0.316 when the correction for MC was applied. Lower tract N digestibility could be predicted via a combination of in situ degradability and in vivo apparent digestibility data. This approach yields significant data regarding LTRND estimation of protein supplements, while diminishing animal suffering by avoiding small intestinal fistulation.  相似文献   

11.
The purpose of this study was to evaluate the effects of various N sources in concentrates containing high levels of cassava chips, with rice straw as the basal forage, on rumen ecology, rumen microbial counts, microbial crude (CP) protein synthesis, and digestibility of nutrients. Four ruminally fistulated crossbred (Brahman × native) beef steers with initial body weight (BW) of 400 ± 40.2 kg were randomly assigned according to a 4 × 4 Latin square design. The dietary treatments were different sources of N in the concentrates and were: T1 = urea (control; urea); T2 = soybean meal (SBM); T3 = urea CaCl2 mixture (U-Cal); T4 = urea CaSO4 mixture (U-Cas). All steers were kept in individual pens and supplemented with concentrate at 5 g/kg of BW daily. The experiment was 4 periods, and each lasted 21 d. During the first 14 d, all steers were fed their respective diets ad libitum and for during the last 7 d, they were moved to metabolism crates for total urine and fecal collection. Dry matter intake ranged from 9.8 to 10.5 kg daily and was not altered by diet, while digestibility of NDF differed among treatments and was highest with U-Cas supplementation (P<0.05). Ruminal NH3 N and plasma urea N with U-Cal, U-Cas, and SBM diets were lower compared with the urea supplemented group (P<0.05). Ruminal volatile fatty acid concentrations were not altered by treatments. Total viable, and cellulolytic bacteria, differed among treatments and were highest with U-Cas (9.1 × 1011, and 4.0 × 109 cfu/mL, respectively). In addition, efficiency of rumen microbial CP synthesis based on organic matter (OM) truly digested in the rumen was increased by SBM or U-Cal supplementation, and was highest with U-Cas supplementation (18.2 g of N/kg of OM truly digested in the rumen). Supplementation of U-Cas to a concentrate containing a high level of cassava chips improved rumen ecology and microbial CP synthesis in beef cattle, suggesting that urea calcium mixtures can replace soybean meal or urea in beef cattle diets without adverse affects on rumen fermentation and other rumen parameters.  相似文献   

12.
The effects of non-enzymatic browning reactions on in vitro ruminal gas production and in vitro ruminal and intestinal crude protein (CP) digestibilities of soybean (SBM) and cottonseed (CSM) meals were investigated. Non-enzymatically browned SBM and CSM samples were prepared using two xylose levels (10 or 30 g/kg dry matter), two heating lengths (30 or 60 min) and two heating temperatures (120 or 150 °C) for a total of one untreated (commercially solvent-extracted, Control) and eight treated samples for each protein source. The control SBM had higher (P<0.001) in vitro ruminal CP degradability values than the treated samples. Intestinal protein digestibility and total-tract CP digestibility of CSM and SBM were affected by the treatment (P<0.01). The results of the study indicate that not only ruminal CP degradability is reduced but also intestinal and total-tract CP digestibilities may be lowered depending on protein source and intensity of the non-enzymatic browning reaction.  相似文献   

13.
Using rats, the protein content and quality of an enriched cassava-root meal (CRM) biomass, produced by growing Cephalosporium eichhorniae 152 on a CRM medium in a submerged fermentation, was compared with that of soya-bean meal (SBM) and cotton-seed cake (CSC) in rats. The contents of crude protein of these feeds were 38.8, 52.0 and 42.3% on DM basis, respectively, and there were differences in their amino acid composition. The nitrogen digestibility of the enriched CRM-biomass and of CSC was lower than that of SBM. The biological value of the enriched CRM-biomass was equal to that of CSC, but lower than that of SBM. Net protein-utilization estimates for the enriched CRM-biomass and for CSC were similar, whereas that for SEM was greater. Enriching CRM by C. eichhorniae 152 seems to be a way of increasing protein supply for livestock production.  相似文献   

14.
Feed ingredients used in swine diets are often processed to improve nutritional value. However, (over-)processing may result in chemical reactions with amino acids (AAs) that decrease their ileal digestibility. This study aimed to determine effects of (over-)processing of soybean meal (SBM) and rapeseed meal (RSM) on post-absorptive utilization of ileal digestible AAs for retention and on body AA composition of growing pigs. Soybean meal and RSM were processed by secondary toasting in the presence of lignosulfonate to obtain processed soybean meal (pSBM) and processed rapeseed meal (pRSM). Four diets contained SBM, pSBM, RSM or pRSM as sole protein source. Two additional diets contained pSBM or pRSM and were supplemented with crystalline AA to similar standardized ileal digestible (SID) AA level as the SBM or RSM diet. These diets were used to verify that processing affected AA retention by affecting ileal AA digestibility rather than post-absorptive AA utilization. The SID AA levels of the protein sources were determined in a previous study. In total, 59 pigs were used (initial BW of 15.6±0.7 kg) of which five were used to determine initial body composition at the start of the experiment. In total, 54 pigs were fed one of six experimental diets and were slaughtered at a BW of 40 kg. The organ fraction (i.e. empty organs plus blood) and carcass were analyzed separately for N and AA content. Post-absorptive AA utilization was calculated from AA retention and SID AA intake. An interaction between diet type, comprising effects of processing and supplementing crystalline AA, and protein source was observed for CP content in the organ fraction, carcass and empty body and for nutrient retention. Processing reduced CP content and nutrient retention more for SBM than for RSM. Moreover, processing reduced (P<0.001) the lysine content in the organ fraction for both protein sources. Supplementing crystalline AA ameliorated the effect of processing on these variables. Thus, the data indicated that processing affected retention by reducing digestibility. Correcting AA retention for SID AA intake was, therefore, expected to result in similar post-absorptive AA utilization which was observed for the RSM diets. However, post-absorptive AA utilization was lower for the pSBM diet than for the SBM diet which might be related to an imbalanced post-absorptive AA supply. In conclusion, processing negatively affected nutrient retention for both protein sources and post-absorptive utilization of SID AA for retention for SBM. Effects of processing were compensated by supplementing crystalline AA.  相似文献   

15.
The rumen degradability and intestinal digestibility of dry matter (DM) and nitrogen (N) of three samples of brewers' grains (BG) and three of barley rootlets (BR) were determined. Rumen degradability was determined by the nylon bag technique in three rumen fistulated wethers. Intestinal digestibility was determined by the mobile nylon bag technique in two duodenal fistulated wethers. N content ranged from 41.2 to 46.4 g/kg DM for BG, and from 42.8 to 53.7 g/kg DM for BR. N effective degradability (NED), calculated for rumen outflow rates determined in each sheep, ranged from 57.2% to 70.9% for BG and from 79.0% to 84.0% for BR. N intestinal digestibility (NID) determined on 8 h-rumen incubated residues, ranged from 84.9% to 89.8% for BG and from 67.3% to 81.3% for BR. Lower rumen degradability was partially compensated by higher intestinal digestibility, resulting in a smaller variation in the estimated amount of digestible bypass N, which ranged from 24.7% to 36.7% for BG and from 10.8% to 17.1% for BR. One BG sample was selected to study the effects of heat treatment (HT) on its chemical composition, rumen degradability and intestinal digestibility. The BG sample was either freeze-dried (UBG) or dried at 50°C (50BG), 100°C (100BG), 135°C (135BG) and 175°C (175BG). Total N content was not affected by HT, but the acid–detergent insoluble N (expressed as percentage of total N content) increased from 13.7% to 54.1%. HT reduced the NED (from 76.5% to 25.6%) and, as a consequence, the supply of undegraded N to the duodenum was increased by 1.2, 1.8, 2.4 and 3.2 times for 50BG, 100BG, 135BG and 175BG, respectively. Drying at 50°C and 100°C had no adverse effects on the NID determined on 8 h-rumen incubation residues (mean value of 84.3%), but drying at 135 and 175°C decreased it to values of 80.1 and 51.6%, respectively. As a consequence, the estimated amount of digestible bypass N was increased by 1.2, 1.8, 2.3 and 1.9 times when drying at 50°C, 100°C, 135°C and 175°C, respectively.  相似文献   

16.
This paper aims to study the effect of the dietary treatments on mRNA expression of urea transporter B (UT-B) and some aquaporins (AQP) in rumen epithelium of Italian Simmental young bulls. Eighty animals allocated to 16 pens were fed from about 500 to 650 kg body weight with four experimental diets, which resulted from the combination of two crude protein levels (125 and 110 g/kg dry matter, diets M and L, respectively) and two nitrogen sources (soybean meal (SBM) or SBM partly replaced by an isonitrogenous mixture of corn and urea; diets ?U and +U, respectively). At slaughtering samples of blood and rumen epithelium were collected from six bulls for each diet. Blood samples were analysed for haematological parameters and quantitative PCR was carried out on the mRNA extracted from the rumen epithelium samples. The bulls fed diets M had lower plasma concentrations of aspartate aminotransferase than those receiving diets L (78.9 vs. 88.3 U/l, = 0.04). Plasma urea was higher (= 0.03) for diets M and lower for diets +U (2.0 vs. 2.5 and 1.73 vs. 2.00 mmol/l, respectively, in M and L diets, = 0.04). The effect of dietary treatments on rumen UT expression were limited to AQP3, which was down regulated (= 0.01) in diets +U. Finally, a high positive correlation (R2 = 0.871) between the expressions of AQP7 and AQP10 was found. In conclusion, the AQP3 appears very responsive to dietary treatments and therefore it is a candidate to be further studied in rumen metabolism experiments. The close relationship between mRNA expression of AQP7 and AQP10 indicates a similar function of these two proteins.  相似文献   

17.
Total tract digestibility in Atlantic salmon and ileal digestibility in chicken were assessed from diets with different soyabean products (hulled, toasted, extracted, SBM; reduced oligosaccharide content, ROM; ethanol-extracted protein concentrate, SPC; isolated protein, ISP). The concentration of dietary fibre was highest in SBM and ROM, while it was low in ISP. In vitro viscosity was also higher in SBM than in the other soyabean products. The diets for the salmon and chickens were based on the same feed ingredients, with the exception that fish meal provided half the crude protein in the salmon diets. For each species, the diets were isonitrogenous, contained similar amounts of fat (fish oil), and were balanced with dextrin, thus substituting soyabean non-starch polysaccharides (NSP) and other non-proteinous components by dextrin.In the salmon, total tract digestibility of nitrogen and dry matter were lower (p < 0.05) with the SBM and ROM diets than with the ISP diet. In the chickens, ileal digestibility of dry matter differed among all treatments (p < 0.05). Digestibility of nitrogen, starch, phosphorus and calcium in the chickens was lower (p < 0.05) with the SBM diet than with the ISP and SPC diets, and fat digestibility was lower (p < 0.05) with the SBM and ROM diets than with the SPC diet. Also, the SBM diet gave lower (p < 0.05) digestibility of nitrogen, phosphorus and calcium than the ROM diet, while the ROM diets gave lower (p < 0.05) digestibilities of nitrogen, fat and starch than the ISP and SPC diets. Intestinal viscosity was higher (p < 0.05) and cholesterol content in the blood was lower (p < 0.05) for the chickens fed the SBM-based diet than those fed the other diets. There was a similar response to the different soy products in salmon and chickens with regard to digestibility of nitrogen and fat (p < 0.05). The negative effects of soyabean meals with a low protein content could indicate antinutritive effects of NSP fractions in soyabean meal, as indicated by the elevated viscosity and the decrease in blood cholesterol content.  相似文献   

18.
The objective was to assess the ability of the in situ mobile nylon bag method for predicting small intestinal and total tract starch digestibility. Starch disappearance was measured for 18 samples of different cereals and legumes subjected to different physical and chemical processing methods and compared with coherent in vivo digestibility. Starch disappearance was measured both with and without initial ruminal pre-incubation during 4 h. Bags were retrieved from either the ileal cannula or faeces. Two dry Danish Holstein cows fitted with rumen cannulas were used for rumen pre-incubations and two lactating Danish Holstein cows fitted with duodenal and ileal cannulas were used for intestinal incubations. Rumen pre-incubation had no significant effect on disappearance from bags recovered in faeces. The disappearance of legume starch was lower, both in the rumen and small intestine, compared with starch from barley, wheat, oats, ear maize and maize. Transit times of the mobile bags from duodenum to ileum were not significantly different between feeds. A weak positive correlation was found between in vivo small intestinal and total tract digestibility of starch and disappearance obtained using the mobile bag technique across a broad range of starch sources. Omitting two less conventional starch sources (NaOH wheat and xylose-treated barley) resulted in a high (0.87) correlation between total tract in vivo digestibility and mobile bag disappearance. The use of the mobile bag method for estimation of in vivo starch digestibility will therefore depend on the starch type.  相似文献   

19.
The experiment was conducted to determine the effect of different protein sources on concentration of small peptides (Pro-Ala, Val-Val, Pro-Leu, Met-Met) in the rumen fluid of sheep. Four Inner Mongolia Sunite sheep fitted with permanent cannulas were used in a 4 x 4 Latin square design, and fed four different protein sources including soybean meal (SBM), casein (Casein), fish meal (FM) and corn gluten meal (CGM), respectively. The results showed that the concentration of Pro-Ala peaked in Casein, FM, CGM groups at 2 h after feeding, whereas the highest level was measured at 6 h after feeding in SBM group. Val-Val and Pro-Leu production were highest at 6 h after feeding Casein and CGM diets and 4 h after feeding SBM and FM diets, respectively. During 6 h after feeding the accumulative concentration of Pro-Ala (1.74 mg/l) and Pro-Leu (25.78 mg/l) in rumen was highest for the Casein diet. During the total sampling time, the highest amount of accumulated small peptides was measured for Pro-Leu, and lowest amount for Met-Met, which was independent of treatment groups. Experimental results proved that small peptides with N-terminal Pro and a hydrophobic structure could inhibit rumen degradation and may be available for post-ruminal absorption.  相似文献   

20.
The aim of the study was to generate a database of ruminal degradability of dry matter (DM), and organic matter (OM) of different sources of concentrate ingredients (classified as protein, energy or protein+energy feeds) commonly offered to ruminants in European countries. The ruminal disappearance of DM and OM was measured using the in situ nylon bag technique, where the test feedstuffs were subject to ruminal incubation in four Friesian steers offered grass silage and concentrate. Disappearance of DM and OM from the test feeds from the rumen was measured at 0, 2, 4, 8, 14, 24 and 48 h. The exponential model of Ørskov and McDonald (1979) was used to calculate degradation kinetics. Test protein feeds were sunflower meal (SUN), rapeseed meal (RAP), soyabean meal (SBM) and cottonseed meal (CSM). Test energy feeds were palm kernel meal (PK), pollard (PO), barley (BA) and beet pulp (BP). Test protein+energy feeds were maize distillers grains (MDG), maize gluten feed (MGF), copra meal (CO) and malt combings (MC).

The effective degradability (degradability of feed, whilst considering rate of flow of feed from rumen to small intestine) of DM (EDDM) and OM (EDOM) in the protein feed SBM, where outflow rate k=0.02, was not influenced (P>0.05) by the sample of feed used. For the feeds classified as protein+energy feeds, the EDDM in MGF and MC were not affected (P>0.05) by the sample of feed for k=0.02. For the remainder of the concentrate feedstuffs used in this study, the sample of feed used had a pronounced effect on in situ degradability values. These data have shown that for the majority of feeds examined in this study, the different sources of any one feed are not equal in nutritive value and it is necessary to screen feeds for nutritive value before using them in ration formulation systems.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号