首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using synchronized Dictyostelium discoideum Ax-2 cells and the differential display method, a mitochondrial gene cluster (referred to as differentiation-associated gene 3; dia3) was isolated as one of the genes expressed specifically during the transition of Ax-2 cells from growth to differentiation. The dia3 gene encodes for a mitochondrial protein cluster (NADH dehydrogenase (NAD) subunit 11, 5, ribosomal protein S4 (RPS4), RPS2, and NAD4L). Northern blot analysis using nonsynchronized Ax-2 cells has shown that the dia3 RNA of about 8 kb is scarcely expressed during the vegetative growth phase, and the maximal expression was attained at 2 h after starvation. To analyze the gene function of dia3, we tried inactivation of rps4 by means of homologous recombination and obtained several transformed clones showing mitochondrial DNA heteroplasmy. The transformed cells grew normally in nutrient medium, but their development after starvation was greatly impaired, thus resulting in the failure of many cells to differentiate. In this connection, the cAMP receptor 1 (car1) expression, which is one of the earliest markers of differentiation, was found to be markedly reduced in the rps4-inactivated cells.  相似文献   

2.
Hosoya K  Amagai A  Chida J  Maeda Y 《Zoological science》2003,20(12):1455-1465
Certain proteins encoded by mitochondrial DNA (mt-DNA), including mt-ribosomal protein S4 (rps4), appear to play important roles in the initiation of cell differentiation. Partial disruption of rps4 in Dictyostelium discoideum Ax-2 cells by means of homologous recombination greatly impairs the progression of differentiation, while the the rps4(OE) cells in which the rps4 mRNA was overexpressed in the extra-mitochondrial cytoplasm exhibit enhanced differentiation (Inazu et al., 1999). We have prepared a specific anti-RPS4 antibody and generated transformants (rps4(AS) cells) by antisense-mediated gene inactivation of rps4. Surprisingly, in the rps4(AS) cells the progress of differentiation was found to be markedly inhibited, suggesting that the antisense rps4 RNA synthesized in the extra-mitochondrial cytoplasm might be as effective as the partial disruption of rps4 gene. Immunostaining of the rps4(OE) cells with the anti-RPS4 antibody demonstrated that the RPS4 protein synthesized in the extra-mitochondrial cytoplasm is capable of moving to the nucleus, as predicted by PSORTII. Taken together with the results obtained using immunostained Ax-2 cells, we propose a possible pathway of RPS4 translocation coupled with differentiation.  相似文献   

3.
4.

Background  

Gene duplication has been a fundamental process in the evolution of eukaryotic genomes. After duplication one copy (or both) can undergo divergence in sequence, expression pattern, and function. Two divergent copies of the ribosomal protein S13 gene (rps13) of chloroplast origin are found in the nucleus of the rosids Arabidopsis, Gossypium, and Glycine. One encodes chloroplast-imported RPS13 (nucp rps13), while the other encodes mitochondria-imported RPS13 (numit rps13). The rps13 gene has been lost from mitochondrial DNA (mt rps13) of many rosids.  相似文献   

5.
  • Mitochondrial function is critical for cell vitality in all eukaryotes including plants. Although plant mitochondria contain many proteins, few have been studied in the context of plant development and physiology.
  • We used knock‐down mutant RPS9M to study its important role in male gametogenesis and seed development in Arabidopsis thaliana.
  • Knock‐down of RPS9M in the rps9m‐3 mutant led to abnormal pollen development and impaired pollen tube growth. In addition, both embryo and endosperm development were affected. Phenotype analysis revealed that the rps9m‐3 mutant contained a lower amount of endosperm and nuclear proteins, and both embryo cell division and embryo pattern were affected, resulting in an abnormal and defective embryo. Lowering the level of RPS9M in rps9m‐3 affects mitochondrial ribosome biogenesis, energy metabolism and production of ROS.
  • Our data revealed that RPS9M plays important roles in normal gametophyte development and seed formation, possibly by sustaining mitochondrial function.
  相似文献   

6.
A gene (rps2) coding for ribosomal protein S2 (RPS2) is present in the mitochondrial (mt) genome of several monocot plants, but absent from the mtDNA of dicots. Confirming that in dicot plants the corresponding gene has been transferred to the nucleus, a corresponding Arabidopsis thaliana nuclear gene was identified that codes for mitochondrial RPS2. As several yeast and mammalian genes coding for mt ribosomal proteins, the Arabidopsis RPS2 apparently has no N-terminal targeting sequence. In the maize mt genome, two rps2 genes were identified and both are transcribed, although at different levels. As in wheat and rice, the maize genes code for proteins with long C-terminal extensions, as compared to their bacterial counterparts. These extensions are not conserved in sequence. Using specific antibodies against one of the maize proteins we found that a large protein precursor is indeed synthesized, but it is apparently processed to give the mature RPS2 protein which is associated with the mitochondrial ribosome.  相似文献   

7.
A gene coding for a protein that shows homologies to prokaryotic ribosomal protein S2 is present in the mitochondrial (mt) genome of wheat (Triticum aestivum). The wheat gene is transcribed as a single mRNA which is edited by C-to-U conversions at seven positions, all resulting in alteration of the encoded amino acid. Homologous gene sequences are also present in the mt genomes of rice and maize, but we failed to identify the corresponding sequences in the mtDNA of all dicotyledonous species tested; in these species the mitochondrial RPS2 is probably encoded in the nucleus. The protein sequence deduced from the wheat rps2 gene sequence has a long C-terminal extension when compared to other prokaryotic RPS2 sequences. This extension presents no similarity with any known sequence and is not conserved in the maize or rice mitochondrial rps2 gene. Most probably, after translation, this peptide extension is processed by a specific peptidase to give rise to the mature wheat mitochondrial RPS2. Received: 20 November 1997 / Accepted: 29 January 1998  相似文献   

8.
9.
10.
11.
A gene coding for a protein that shows homologies to prokaryotic ribosomal protein S2 is present in the mitochondrial (mt) genome of wheat (Triticum aestivum). The wheat gene is transcribed as a single mRNA which is edited by C-to-U conversions at seven positions, all resulting in alteration of the encoded amino acid. Homologous gene sequences are also present in the mt genomes of rice and maize, but we failed to identify the corresponding sequences in the mtDNA of all dicotyledonous species tested; in these species the mitochondrial RPS2 is probably encoded in the nucleus. The protein sequence deduced from the wheat rps2 gene sequence has a long C-terminal extension when compared to other prokaryotic RPS2 sequences. This extension presents no similarity with any known sequence and is not conserved in the maize or rice mitochondrial rps2 gene. Most probably, after translation, this peptide extension is processed by a specific peptidase to give rise to the mature wheat mitochondrial RPS2.  相似文献   

12.
13.
14.
Pathogenic strains of Pseudomonas syringae pv. tomato carrying the avrRpt2 avirulence gene specifically induce a hypersensitive cell death response in Arabidopsis plants that contain the complementary RPS2 disease resistance gene. Transient expression of avrRpt2 in Arabidopsis plants having the RPS2 gene has been shown to induce hypersensitive cell death. In order to analyze the effects of conditional expression of avrRpt2 in Arabidopsis plants, transgenic lines were constructed that contained the avrRpt2 gene under the control of a tightly regulated, glucocorticoid-inducible promoter. Dexamethasone-induced expression of avrRpt2 in transgenic lines having the RPS2 gene resulted in a specific hypersensitive cell death response that resembled a Pseudomonas syringae-induced hypersensitive response and also induced the expression of a pathogenesis-related gene (PR1). Interestingly, high level expression of avrRpt2 in a mutant rps2–101C background resulted in plant stress and ultimately cell death, suggesting a possible role for avrRpt2 in Pseudomonas syringae virulence. Transgenic RPS2 and rps2 plants that contain the glucocorticoid-inducible avrRpt2 gene will provide a powerful new tool for the genetic, physiological, biochemical, and molecular dissection of an avirulence gene-specified cell death response in both resistant and susceptible plants.  相似文献   

15.

Background  

Many mitochondrial genes, especially ribosomal protein genes, have been frequently transferred as functional entities to the nucleus during plant evolution, often by an RNA-mediated process. A notable case of transfer involves the rps14 gene of three grasses (rice, maize, and wheat), which has been relocated to the intron of the nuclear sdh2 gene and which is expressed and targeted to the mitochondrion via alternative splicing and usage of the sdh2 targeting peptide. Although this transfer occurred at least 50 million years ago, i.e., in a common ancestor of these three grasses, it is striking that expressed, nearly intact pseudogenes of rps14 are retained in the mitochondrial genomes of both rice and wheat. To determine how ancient this transfer is, the extent to which mitochondrial rps14 has been retained and is expressed in grasses, and whether other transfers of rps14 have occurred in grasses and their relatives, we investigated the structure, expression, and phylogeny of mitochondrial and nuclear rps14 genes from 32 additional genera of grasses and from 9 other members of the Poales.  相似文献   

16.
The mitochondrial ribosomal protein S3 (rps3) gene within the fungi is extremely diverse in location and organization, some versions of this gene have been incorporated into a group I intron, others appear to have gained large insertions, microsatellite expansions, or have been invaded by homing endonucleases. Among the ascomycetes fungi the group I intron encoded version of rps3 appears to have a rather complex evolutionary history including first the acquisition of rps3 by a group I intron (mL2449), the loss of the mL2499 intron and the establishment of rps3 as a free-standing gene, and the eventual loss of the intron derived version of rps3.  相似文献   

17.
18.
Many eukaryotic genomes have experienced ancient whole-genome duplication (WGD) followed by massive gene loss. These eliminations were not random since some gene families were preferentially retained as duplicates. The gene balance hypothesis suggests that those genes with dosage reduction can imbalance their interacting partners or complex, resulting in decreased fitness. In Arabidopsis, the cytoplasmic ribosomal proteins (RP) are encoded by gene families with at least two members. We have focused our study on the two RPS6 genes in an attempt to understand why they have been retained as duplicates. We demonstrate that RPS6 function is vital for the plant. We also show that reducing the level of RPS6 accumulation (in the knock-out rps6a or rps6b single mutants, or in the double heterozygous RPS6A/rps6a,RPS6B/rps6b), confers a slow growth phenotype (haplodeficiency). Importantly, we demonstrate that the functions of two RPS6 genes are redundant and interchangeable. Finally, like in most other described Arabidopsis rp mutants, we observed that a reduced RPS6 level slightly alters the dorsoventral leaf patterning. Our results support the idea that the Arabidopsis RPS6 gene duplicates were evolutionarily retained in order to maintain an expression level necessary to sustain the translational demand of the cell, in agreement with the gene balance hypothesis.  相似文献   

19.
The protozoan Trypanosoma cruzi has a complicated dual-host life cycle, and starvation can trigger transition from the replicating insect stage to the mammalian-infectious nonreplicating insect stage (epimastigote to trypomastigote differentiation). Abundance of some mature RNAs derived from its mitochondrial genome increase during culture starvation of T. cruzi for unknown reasons. Here, we examine T. cruzi mitochondrial gene expression in the mammalian intracellular replicating life stage (amastigote), and uncover implications of starvation-induced changes in gene expression. Mitochondrial RNA levels in general were found to be lowest in actively replicating amastigotes. We discovered that mitochondrial respiration decreases during starvation in insect stage cells, despite the previously observed increases in mitochondrial mRNAs encoding electron transport chain (ETC) components. Surprisingly, T. cruzi epimastigotes in replete medium grow at normal rates when we genetically compromised their ability to perform insertion/deletion editing and thereby generate mature forms of some mitochondrial mRNAs. However, these cells, when starved, were impeded in the epimastigote to trypomastigote transition. Further, they experience a short-flagella phenotype that may also be linked to differentiation. We hypothesize a scenario where levels of mature RNA species or editing in the single T. cruzi mitochondrion are linked to differentiation by a yet-unknown signaling mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号