首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rab11, an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In order to gain an insight into the role of this gene in myogenesis during embryonic development, we have studied the expression pattern of Rab11 in mesoderm during muscle differentiation in Drosophila embryo. When dominant-negative or constitutively active Drosophila Rab11 proteins are expressed or Rab11 is reduced via double-stranded RNA in muscle precursors, they cause partial failure of myoblast fusion and show anomalies in the shape of the muscle fibres. Our results suggest that Rab11 plays no role in cell fate specification in muscle precursors but is required late in the process of myoblast fusion. This work was supported by grants from the DST (to J.K.R.) and SRF from ICMR, New Delhi (to T.B.).  相似文献   

2.
In recent years it has become evident that the developmental regulatory genes involved in patterning the embryonic body plan are conserved throughout the animal kingdom. Striking examples are the orthodenticle (otd/Otx) gene family and the Hox gene family, both of which act in the specification of anteroposterior polarity along the embryonic body axis. Studies carried out in Drosophila and mouse now demonstrate that these genes are also involved in the formation of the insect and mammalian brain; the otd/Otx genes are involved in rostral brain development and the Hox genes are involved in caudal brain development. These studies also show that the genes of the otd/Otx family can functionally replace each other in cross-phylum rescue experiments and indicate that the genetic mechanisms underlying pattern formation in insect and mammalian brain development are evolutionarily conserved. BioEssays 21:677–684, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

3.
In the hot debate on arthropod relationships, Crustaceans and the morphology of their appendages play a pivotal role. To gain new insights into how arthropod appendages evolved, developmental biologists recently have begun to examine the expression and function of Drosophila appendage genes in Crustaceans. However, cellular aspects of Crustacean limb development such as myogenesis are poorly understood in Crustaceans so that the interpretative context in which to analyse gene functions is still fragmentary. The goal of the present project was to analyse muscle development in Crustacean appendages, and to that end, monoclonal antibodies against arthropod muscle proteins were generated. One of these antibodies recognises certain isoforms of myosin heavy chain and strongly binds to muscle precursor cells in malacostracan Crustacea. We used this antibody to study myogenesis in two isopods, Porcellio scaber and Idotea balthica (Crustacea, Malacostraca, Peracarida), by immunohistochemistry. In these animals, muscles in the limbs originate from single muscle precursor cells, which subsequently grow to form multinucleated muscle precursors. The pattern of primordial muscles in the thoracic limbs was mapped, and results compared to muscle development in other Crustaceans and in insects. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Newly hatched lobster larvae have biramous thoracic limbs composed of an endopodite, which is used for walking in the adult, and an exopodite used for swimming. Several behavioural and physiological aspects of larval locomotion as well the ontogeny of the neuromuscular system have been examined in developing decapod crustaceans. Nevertheless, the cellular basis of embryonic muscle formation in these animals is poorly understood. Therefore, the present report analyses muscle formation in embryos of the American lobster Homarus americanus Milne Edwards, 1837 (Malacostraca, Eucarida, Decapoda, Homarida) using the monoclonal antibody 016C6 that recognizes an isoform of myosin heavy chain. 016C6 labelling at 25% of embryonic development (E25%) revealed that syncytial muscle precursor cells establish the muscles in the endopodites. During subsequent embryogenesis, these muscle precursors subdivide into several distinct units thereby giving rise to pairs of antagonistic primordial muscles in each of the successive podomeres, the layout of which at E45% already resembles the arrangement in the adult thoracopods. The pattern of primordial muscles was also mapped in the exopodites of thoracic limbs three to eight. Immunohistochemistry against acetylated α-tubulin and against presynaptic vesicle-associated phosphoproteins at E45% demonstrated the existence of characteristic neural tracts within the developing limbs as well as putative neuromuscular synapses in both the embryonic exo- and endopodites. The results are compared to muscle development in other Crustacea.  相似文献   

5.
During insect myogenesis, myoblasts are organized into a pre-pattern by specialized organizer cells. In the Drosophila embryo, these cells have been termed founder cells and play important roles in specifying muscle identity and in serving as targets for myoblast fusion. A group of adult muscles, the dorsal longitudinal (flight) muscles, DLMs, is patterned by persistent larval scaffolds; the second set, the dorso-ventral muscles, DVMs is patterned by mono-nucleate founder cells (FCs) that are much larger than the surrounding myoblasts. Both types of organizer cells express Dumbfounded, which is known to regulate fusion during embryonic myogenesis. The role of DVM founder cells as well as the DLM scaffolds was tested in genetic ablation studies using the UAS/Gal4 system of targeted transgene expression. In both cases, removal of organizer cells prior to fusion, causes formation of supernumerary fibers, suggesting that cells in the myoblast pool have the capacity to initiate fiber formation, which is normally inhibited by the organizers. In addition to the large DVM FCs, some (smaller) cells in the myoblast pool also express Dumbfounded. We propose that these cells are responsible for seeding supernumerary fibers, when DVM FCs are eliminated prior to fusion. When these cells are also eliminated, myogenesis fails to occur. In the second set of studies, targeted expression of constitutively active RasV12 also resulted in the appearance of supernumerary fibers. In this case, the original DVM FCs are present, suggesting alterations in cell fate. Taken together, these data suggest that DVM myoblasts are able to respond to cues other than the original founder cell, to initiate fusion and fiber formation. Thus, the role of the large DVM founder cells is to generate the correct number of fibers, but they are not required for fiber formation itself. We also present evidence that the DVM FCs may arise from the leg imaginal disc.  相似文献   

6.
 Arthropods are the most diverse and speciose group of organisms on earth. A key feature in their successful radiation is the ease with which various appendages become readily adapted to new functions in novel environments. Arthropod limbs differ radically in form and function, from unbranched walking legs to multibranched swimming paddles. To uncover the developmental and genetic mechanisms underlying this diversification in form, we ask whether a three-signal model of limb growth based on Drosophila experiments is used in the development of arthropod limbs with variant shape. We cloned a Wnt-1 ortholog (Tlwnt-1) from Triops longicaudatus, a basal crustacean with a multibranched limb. We examined the mRNA in situ hybridization pattern during larval development to determine whether changes in wg expression are correlated with innovation in limb form. During larval growth and segmentation Tlwnt-1 is expressed in a segmentally reiterated pattern in the trunk. Unexpectedly, this pattern is restricted to the ventral portion of the epidermis. During early limb formation the single continuous stripe of Tlwnt-1 expression in each segment becomes ventrolaterally restricted into a series of shorter stripes. Some but not all of these shorter stripes correspond to what becomes the ventral side of a developing limb branch. We conclude that the Drosophila model of limb development cannot explain all types of arthropod proximodistal outgrowths, and that the multibranched limb of Triops develops from an early reorganization of the ventral body wall. In Triops, Tlwnt-1 plays a semiconservative role similar to that played by Drosophila wingless in segmentation and limb formation, and morphological innovation in limb form arises in part through an early modulation in the expression of the Tlwnt-1 gene. Received: 22 September 1998 / Accepted: 12 January 1999  相似文献   

7.
During development, skeletal muscles are established in a highly organized manner, which persists throughout life. Molecular and genetic experiments over the last decades have identified many developmental control genes critical for skeletal muscle formation. Developmental studies have shown that skeletal muscles of the body, limb and head have distinct embryonic and cellular origin, and the genetic regulation at work in these domains and during adult myogenesis are starting to be identified. In this review we will summarize the current knowledge on the regulatory circuits that lead to the establishment of skeletal muscle in these different anatomical regions.  相似文献   

8.
One of the goals in developmental biology is the identification of key regulatory genes that govern the transition of embryonic cells from a pluripotent potential to a specific, committed cell fate. During vertebrate skeletal myogenesis, this transition is regulated by the MyoD family of genes. C. elegans has muscle analogous to vertebrate skeletal muscle and has a gene(hlh-1) related to the MyoD family. The molecular and genetic characterization of hlh-1 shows that it is very similar to the vertebrate MyoD family in many respects, including its expression pattern and DNA binding activity. The hlh-1 product is required for proper myogenesis, but it is not required for myogenic commitment during embryogenesis in the nematode. The role of this MyoD-related gene in nematode myogenesis is discussed and compared to those of the vertebrate MyoD family.  相似文献   

9.
10.
11.
Myogenesis is a highly conserved process ending up by the formation of contracting muscles. In Drosophila embryos, myogenesis gives rise to a segmentally repeated array of thirty distinct fibres, each of which represents an individual muscle. Since Drosophila offers a large range of genetic tools for easily testing gene functions, it has become one of the most studied and consequently best-described model organisms for muscle development. Over the last two decades, the Drosophila model system has enabled major advances in our understanding of how the initially equivalent mesodermal cells become competent for entering myogenic differentiation and how each distinct type of muscle is specified. Here we present an overview of Drosophila muscle development with a special focus on the diversification of muscle types and the genes that control acquisition of distinct muscle properties.  相似文献   

12.
We are interested in identifying the regulatory genes involved in segmental pattern formation in annelids. The Drosophila segmentation gene hunchback (hb) is critical for the proper anteroposterior development of the fly embryo, but its function outside the diptera is currently unknown. Here, the protein expression pattern of Leech Zinc Finger II (LZF2), a leech orthologue of hb is characterized. In early embryogenesis, LZF2 protein is expressed in a subset of micromeres and is later expressed in the micromere-derived epithelium of the provisional epithelium and prostomium. LZF2 protein is detected in the ventral nerve cord during organogenesis, first in interganglionic muscle cells and later in subsets of neurons in each neuromere of the CNS. The location of immunoreactive cells during development and the similarity of the expression pattern of LZF2 to the expression of the Caenhorhabditis elegans hb homologue hbl-1 suggests that LZF2 plays a role in the morphogenetic movements of leech gastrulation and later in CNS specification but not in anteroposterior pattern formation. Received: 28 May 1999 / Accepted: 21 December 1999  相似文献   

13.
14.
Growth of limb muscle is dependent on skeletal-derived Indian hedgehog   总被引:1,自引:0,他引:1  
During embryogenesis, muscle and bone develop in close temporal and spatial proximity. We show that Indian Hedgehog, a bone-derived signaling molecule, participates in growth of skeletal muscle. In Ihh−/− embryos, skeletal muscle development appears abnormal at embryonic day 14.5 and at later ages through embryonic day 20.5, dramatic losses of hindlimb muscle occur. To further examine the role of Ihh in myogenesis, we manipulated Ihh expression in the developing chick hindlimb. Reduction of Ihh in chicken embryo hindlimbs reduced skeletal muscle mass similar to that seen in Ihh−/− mouse embryos. The reduction in muscle mass appears to be a direct effect of Ihh since ectopic expression of Ihh by RCAS retroviral infection of chicken embryo hindlimbs restores muscle mass. These effects are independent of bone length, and occur when Shh is not expressed, suggesting Ihh acts directly on fetal myoblasts to regulate secondary myogenesis. Loss of muscle mass in Ihh null mouse embryos is accompanied by a dramatic increase in myoblast apoptosis by a loss of p21 protein. Our data suggest that Ihh promotes fetal myoblast survival during their differentiation into secondary myofibers by maintaining p21 protein levels.  相似文献   

15.
The relatively simple central nervous system (CNS) of the Drosophila embryo provides a useful model system for investigating the mechanisms that generate and pattern complex nervous systems. Central to the generation of different types of neurons by precursor neuroblasts is the initial specification of neuroblast identity and the Drosophila segment polarity genes, genes that specify regions within a segment or repeating unit of the Drosophila embryo, have emerged recently as significant players in this process. During neurogenesis the segment polarity genes are expressed in the neuroectodermal cells from which neuroblasts delaminate and they continue to be expressed in neuroblasts and their progeny. Loss-of-function mutations in these genes lead to a failure in the formation of neuroblasts and/or specification of neuroblast identity. Results from several recent studies suggest that regulatory interactions between segment polarity genes during neurogenesis lead to an increase in the number of neuroblasts and specification of different identities to neuroblasts within a population of cells. BioEssays 21:472–485, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

16.
 Early pattern formation in the Drosophila embryo occurs in a syncytial blastoderm where communication between nuclei is unimpeded by cell walls. During the development of other insects, similar gene expression patterns are generated in a cellular environment. In Tribolium, for instance, pair-rule stripes are transiently expressed near the posterior end of the growing germ band. To elucidate how pattern formation in such a situation deviates from that of Drosophila, functional data about the genes involved are essential. In a genetic screen for Tribolium mutants affecting the larval cuticle pattern, we isolated 4 mutants (from a total of 30) which disrupt segmentation in the thorax and abdomen. Two of these mutants display clear pair-rule phenotypes. This demonstrates that not only the expression, but also the function of pair-rule genes in this short-germ insect is in principle similar to Drosophila. The other two mutants appear to identify gap genes. They provide the first evidence for the involvement of gap genes in abdominal segmentation of short-germ embryos. However, significant differences between the phenotypes of these mutants and those of known Drosophila gap mutants exist which indicates that evolutionary changes occurred in either the regulation or action of these genes. Received: 8 May 1998 / Accepted: 17 June 1998  相似文献   

17.
18.
19.

Background

The standard textbook information that annelid musculature consists of oligochaete-like outer circular and inner longitudinal muscle-layers has recently been called into question by observations of a variety of complex muscle systems in numerous polychaete taxa. To clarify the ancestral muscle arrangement in this taxon, we compared myogenetic patterns during embryogenesis of Ophryotrocha diadema with available data on oligochaete and polychaete myogenesis. This work addresses the conflicting views on the ground pattern of annelids, and adds to our knowledge of the evolution of lophotrochozoan taxa.

Results

Somatic musculature in Ophryotrocha diadema can be classified into the trunk, prostomial/peristomial, and parapodial muscle complexes. The trunk muscles comprise strong bilateral pairs of distinct dorsal and ventral longitudinal strands. The latter are the first to differentiate during myogenesis. They originate within the peristomium and grow posteriorly through the continuous addition of myocytes. Later, the longitudinal muscles also expand anteriorly and form a complex arrangement of prostomial muscles. Four embryonic parapodia differentiate in an anterior-to-posterior progression, significantly contributing to the somatic musculature. Several diagonal and transverse muscles are present dorsally. Some of the latter are situated external to the longitudinal muscles, which implies they are homologous to the circular muscles of oligochaetes. These circular fibers are only weakly developed, and do not appear to form complete muscle circles.

Conclusion

Comparison of embryonic muscle patterns showed distinct similarities between myogenetic processes in Ophryotrocha diadema and those of oligochaete species, which allows us to relate the diverse adult muscle arrangements of these annelid taxa to each other. These findings provide significant clues for the interpretation of evolutionary changes in annelid musculature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号