首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The direct HPLC enantioseparation of Mianserin and a series of aptazepine derivatives is accomplished on polysaccharide-based chiral stationary phases (CSPs). The resolutions are performed on the coated-type Chiralcel OD and Chiralpak AD CSPs and on the first commercially available immobilized-type Chiralpak IA CSP, in normal-phase and polar-organic modes. The complete separation of enantiomers of all racemates investigated was successfully achieved under at least one of CSP/eluent combinations employed. Pure alcohols such ethanol or 2-propanol, with a fixed percentage of DEA added, serve as valuable alternatives to the more common n-hexane-based normal-phase eluents in resolution of Mianserin on the AD CSP. In order to study the chiroptical properties of aptazepine derivatives, chromatographic resolutions are carried out at semipreparative scale using Chiralpak AD and Chiralpak IA as CSPs. Nonconventional dichloromethane-based eluents have permitted to expand the chiral resolving ability of the immobilized Chiralpak IA CSP and to perform mg-scale enantioseparations with an analytical-size column. Assignment of the absolute configuration of the separated enantiomers is empirically established by comparing their chiroptical data with those of structurally related Mianserin.  相似文献   

2.
The chromatographic chiral resolution of two new series of racemic 4‐substituted‐1,4‐dihydropyridine derivatives was studied on a commercial Chiralpak AD‐H column. Analytes without 5,5‐dimethyl substituents ( 1–15 ) are more efficiently resolved than analytes with 5,5‐dimethyl groups ( 16–30 ). The AD‐H column discriminated between enantiomers through both hydrogen bonding attractions and π–π interactions. This interpretation is in accord with plots of the logarithm of separation factors, log(α), versus σ (Hammett–Swain substituent parameter) and σ+ (Brown substituent constant) plots. By elucidating the effects of the remote substituents on these chiral separations, it was shown that the influence of π–π interaction forces increase when steric bulk effects act to decrease the hydrogen bonding attractive forces on the AD‐H column. Chirality 24:854–859, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Chiral functionalization of 2,4,5,6‐tetrachloro‐1,3‐dicyanobenzene (1) by regioselective nucleophilic substitution of one or two chlorine atoms by optically pure (R)‐(+)‐1‐naphthylethylamine (NEA), or by a glycine unit as a spacer to (R)‐NEA, enables the preparation of brush‐type chiral selectors (2, 3, 9, 13). By the introduction of the 3‐aminopropyltriethoxysilyl (APTES) group, reactive intermediates 4a/b, 5, 10a/b, and 14a/b are obtained ( a/b indicate a mixture of regioisomers with APTES in 6‐ and 2‐position). Binding of these to silica gel afforded four novel chiral stationary phases (CSPs) 6, 7, 15, and 16. HPLC columns containing CSPs with (R)‐NEA directly linked to polysubstituted aromatic ring (6, 7) are not very effective in resolution of most of the 23 racemic analytes, whereas the columns with distant π‐basic subunits (15, 16) exhibited higher resolving efficacy, in particular towards the isopropyl esters of racemic N‐3,5‐dinitrobenzoyl‐α‐amino acids. Effective resolution of test racemates reveals the importance of the presence of the hydrogen bond donor amido group and the distance between the persubstituted benzene ring in 1 and the π‐basic naphthalene ring of (R)‐NEA. Chirality 11:722–730, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

4.
In this study, a new Pirkle‐type chiral column stationary phase for resolution of β‐methylphenylethyl amine was described by using activated Sepharose 4B as a matrix, L ‐tyrosine as a spacer arm, and an aromatic amine derivative of L ‐glutamic acid as a ligand. The binding capacities of the stationary phase were determined at different pH values (pH = 6, 7, and 8) using buffer solutions as mobile phase, and enantiomeric excess (ee) was determined by HPLC equipped with chiral column. The ee was found to be 47%. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Patti A  Pedotti S  Sanfilippo C 《Chirality》2007,19(5):344-351
The direct HPLC enantiomeric separation of several ferrocenylalcohols on the commercially available Chiralcel OD and Chiralcel OJ columns has been evaluated in normal-phase mode. Almost all the compounds were resolved on one or both chiral stationary phases (CSPs) with separation factor (alpha) ranging from 1.06 to 2.88 while the resolution (R(s)) varied from 0.63 to 12.70 In the separation of the alpha-ferrocenylalcohols 1a-e and the phenyl analogues 2a-e, which were all resolved except 1c, a similar trend in the retention behavior for the two series of alcohols was evidenced and the selectivity was roughly complementary on the two investigated CSP. For three ferrocenylacohols, chosen as model compounds, the influence of the mobile phase composition and temperature on the enantioseparation were investigated and additional information on the chiral recognition mechanism were deduced from the chromatographic behavior of their acetylderivatives.  相似文献   

6.
Park JY  Jin KB  Hyun MH 《Chirality》2012,24(5):427-431
3-Amino-5-phenyl (or 5-methyl)-1,4-benzodiazepin-2-ones, which are chiral precursors of anti-respiratory syncytial virus active agents, were resolved on three different chiral stationary phases (CSPs) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid or (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6. Among the three CSPs, the CSP that is based on (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 and containing residual silanol group-protecting n-octyl groups on the silica surface was found to be most effective with the use of 80% ethanol in water containing perchloric acid (10 mM) and ammonium acetate (1.0 mM) as a mobile phase. The separation factors (α) and resolutions (R(S) ) were in the range of 1.90-3.21 and 2.79-5.96, respectively. From the relationship between the analyte structure and the chromatographic resolution behavior, the chiral recognition mechanism on the CSP based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid was proposed to be different from that on the CSP based on (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6. In addition, the chromatographic resolution behavior of the most effective CSP was investigated as a function of the composition of aqueous mobile phase containing organic and acidic modifier and ammonium acetate.  相似文献   

7.
Dalbavancin is a new compound of the macrocyclic glycopeptide family. It was covalently linked to 5 μm silica particles using two different binding chemistries. Approximately 250 racemates including (a) heterocyclic compounds, (b) chiral acids, (c) chiral amines, (d) chiral alcohols, (e) chiral sulfoxides and sulfilimines, (f) amino acids and amino acid derivatives, and (g) other chiral compounds were tested on the two new chiral stationary phases (CSPs) using three different mobile phases. As dalbavancin is structurally related to teicoplanin, the same set of chiral compounds was screened on two commercially available teicoplanin CSPs for comparison. The dalbavancin CSPs were able to separate some enantiomers that were not separated by the teicoplanin CSPs and also showed improved separations for many racemates. However, there were other compounds only separated or better separated on teicoplanin CSPs. Therefore, the dalbavancin CSPs are complementary to the teicoplanin CSPs. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
The chromatographic parameters for 12 structurally related compounds in the 4a-methyl-2,3,4,4a-tetrahydro-1H-fluorene and 4a-methyl-1,2,3,4,4a,9a-hexahydro-fluoren-9-one series are reported on CTA-I and Chiralcel OJ chiral stationary phases. Arrangement of the k' values according to configurationally related enantiomer series (Class I and Class II) and not according to the actual order of elution, allows the treatment of the data by linear correlation with structure and substituent effect. A detailed analysis of the capacity factor variation with respect to the structural changes shows clearly that the framework and substitution effects do not result in the same response on the two cellulose ester chiral stationary phases. More interestingly, it emerges that chiral discimination may be attributed to certain areas of the molecule, these areas being different in the interaction within CTA-I and Chiralcel OJ. Furthermore, our analysis points out the relevance of attempting to develop quantitative relationships for configurationally related series of enantiomers (in our case Class I and Class II), the main effort being devoted to the understanding of the capacity factor variation in each class rather than of the α values, which are derived entities. Chirality 10:522–527, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
The drug chirality is attracting increasing attention because of different biological activities, metabolic pathways, and toxicities of chiral enantiomers. The chiral separation has been a great challenge. Optimized high‐performance liquid chromatography (HPLC) methods based on vancomycin chiral stationary phase (CSP) were developed for the enantioseparation of propranolol, atenolol, metoprolol, venlafaxine, fluoxetine, and amlodipine. The retention and enantioseparation properties of these analytes were investigated in the variety of mobile phase additives, flow rate, and column temperature. As a result, the optimal chromatographic condition was achieved using methanol as a main mobile phase with triethylamine (TEA) and glacial acetic acid (HOAc) added as modifiers in a volume ratio of 0.01% at a flow rate of 0.3 mL/minute and at a column temperature of 5°C. The thermodynamic parameters (eg, ΔH, ΔΔH, and ΔΔS) from linear van 't Hoff plots revealed that the retention of investigated pharmaceuticals on vancomycin CSP was an exothermic process. The nonlinear behavior of lnk′ against 1/T for propranolol, atenolol, and metoprolol suggested the presence of multiple binding mechanisms for these analytes on CSP with variation of temperature. The simulated interaction processes between vancomycin and pharmaceutical enantiomers using molecular docking technique and binding energy calculations indicated that the calculated magnitudes of steady combination energy (ΔG) coincided with experimental elution order for most of these enantiomers.  相似文献   

10.
Liquid chromatographic enantiomer separation of several N‐benzyloxycarbonyl (CBZ) and Ntert‐butoxycarbonyl (BOC) α‐amino acids and their corresponding ethyl esters was performed on covalently immobilized chiral stationary phases (CSPs) (Chiralpak IA and Chiralpak IB) and coated‐type CSPs (Chiralpak AD and Chiralcel OD) based on polysaccharide derivatives. The solvent versatility of the covalently immobilized CSPs in enantiomer separation of N‐CBZ and BOC‐α‐amino acids and their ester derivatives was shown and the chromatographic parameters of their enantioselectivities and resolution factors were greatly influenced by the nature of the mobile phase. In general, standard mobile phases using 2‐propanol and hexane on Chiralpak IA showed fairly good enantioselectivities for resolution of N‐CBZ and BOC‐α‐amino acids and their esters. However, 50% MTBE/hexane (v/v) for resolution of N‐CBZ‐α‐amino acids ethyl esters and 20% THF/hexane (v/v) for resolution of N‐BOC‐α‐amino acids ethyl esters afforded the greatest enantioselectivities on Chiralpak IA. Also, liquid chromatographic comparisons of the enantiomer resolution of these analytes were made on amylose tris(3,5‐dimethylphenylcarbamate)‐derived CSPs (Chiralpak IA and Chiralpak AD) and cellulose tris(3,5‐dimethylphenylcarbamate)‐derived CSPs (Chiralpak IB and Chiralcel OD). Chiralpak AD and/or Chiralcel OD showed the highest enantioselectivities for resolution of N‐CBZ‐α‐amino acids and esters, while Chiralpak AD or Chiralpak IA showed the highest resolution of N‐BOC‐α‐amino acids and esters. Chirality 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
Three fungicidal triazolyl alcohols (triadimenol, hexaconazole, and cis/trans‐1‐4‐chlorophenyl‐2‐1H‐1,2,4‐triazol‐1‐yl‐cycloheptanol) were completely separated into enantiomers by chiral HPLC using polysaccharide‐based chiral stationary phases. A better separation was achieved on cellulose and amylose carbamate phases compared with a cellulose ester phase. Peak shapes were almost symmetrical except for two cases, where tailing of the first eluted enantiomer and unusual symmetric peak broadening were observed. The effect of eluents on enantioseparation was also investigated. Chirality 11:195–200, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
3,5‐Dinitrobenzoyl chloride was previously used for the preparation of (R)‐phenylglycinol‐ and (S)‐leucinol‐derived chiral stationary phases. In this study, 3,5‐bis(trifluoromethyl)benzoyl chloride, 2‐furoyl chloride, 2‐theonyl chloride, 10,11‐dihydro‐5H‐dibenzo[b,f]azepine‐5‐carbonyl chloride, diphenylcarbamoyl chloride, and 1‐adamantanecarbonyl chloride were used to prepare six new phenylglycinol‐derived chiral stationary phases (CSPs) and five new leucinol‐derived CSPs. Using these 11 CSPs, chiral separation of nine π‐acidic amino acid derivatives and five π‐basic compounds was performed, and the separation results were compared. An adamantyl‐derived CSP showed good separation. Chirality 28:276–281, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
We recently reported a new C3‐symmetric (R)‐phenylglycinol N‐1,3,5‐benzenetricarboxylic acid‐derived chiral high‐performance liquid chromatography (HPLC) stationary phase (CSP 1) that demonstrated better results as compared to a previously described N‐3,5‐dintrobenzoyl (DNB) (R)‐phenylglycinol‐derived CSP. Over a decade ago, (S)‐leucinol, (R)‐phenylglycine, and (S)‐leucine derivatives were used as the starting materials of 3,5‐DNB‐based Pirkle‐type CSPs for chiral separation. In this study, three new C3‐symmetric CSPs (CSP 2, 3, and 4) were prepared by combining the ideas and results mentioned above. Here we describe the synthetic procedures and applications of the new C3‐symmetric CSPs (CSP 2–CSP 4).  相似文献   

14.
Hui Liu  Wei Ding 《Chirality》2019,31(3):219-229
Prothioconazole is a type of broad‐spectrum triazole thione fungicide developed by the Bayer Company. Prothioconazole‐desthio is the main metabolite of prothioconazole in the environment. In our study, enantiomeric separation of prothioconazole and prothioconazole‐desthio was performed on various chiral stationary phases (CSPs) by high‐performance liquid chromatography (HPLC). It was found that polysaccharide CSPs showed better ability than brushing CSPs in enantiomeric separation. The successful chiral separation of prothioconazole could be achieved on self‐made Chiralcel OD, commercialized Chiralcel OJ‐H and Lux Cellulose‐1. Chiralpak IA, Chiralpak IB, Chiralpak IC, Chiralcel OD, Chiralpak AY‐H, Chiralpak AZ‐H, and Lux Cellulose‐1 realized the baseline separation of prothioconazole‐desthio enantiomers. Simultaneous enantiomeric separation of prothioconazole and prothioconazole‐desthio was performed on Lux Cellulose‐1 using acetonitrile (ACN) and water as mobile phase. In most cases, low temperature favored the separation of two compounds. The influence of the mobile phase ratio or type was deeply discussed. We obtained larger Rs and longer analysis time with a smaller proportion of isopropanol (IPA) or ethanol and more water content at the same temperature. The ratio of ACN and water had influences on the outflow orders of prothioconazole‐desthio enantiomers. This work provides a new approach for chiral separation of prothioconazole and prothioconazole‐desthio with a discussion of chiral separation mechanism on different CSPs.  相似文献   

15.
《Chirality》2017,29(6):247-256
The enantioresolution and determination of the enantiomeric purity of 32 new xanthone derivatives, synthesized in enantiomerically pure form, were investigated on (S ,S )‐Whelk‐O1 chiral stationary phase (CSP). Enantioselectivity and resolution (α and RS) with values ranging from 1.41–6.25 and from 1.29–17.20, respectively, were achieved. The elution was in polar organic mode with acetonitrile/methanol (50:50 v/v ) as mobile phase and, generally, the (R )‐enantiomer was the first to elute. The enantiomeric excess (ee ) for all synthesized xanthone derivatives was higher than 99%. All the enantiomeric pairs were enantioseparated, even those without an aromatic moiety linked to the stereogenic center. Computational studies for molecular docking were carried out to perform a qualitative analysis of the enantioresolution and to explore the chiral recognition mechanisms. The in silico results were consistent with the chromatographic parameters and elution orders. The interactions between the CSP and the xanthone derivatives involved in the chromatographic enantioseparation were elucidated.  相似文献   

16.
《Chirality》2017,29(3-4):147-154
Separations of six dihydropyridine enantiomers on three commercially available cellulose‐based chiral stationary phases (Chiralcel OD‐RH, Chiralpak IB, and Chiralpak IC) were evaluated with high‐performance liquid chromatography (HPLC). The best enantioseparation of the six chiral drugs was obtained with a Chiralpak IC (250 × 4.6 mm i.d., 5 μm) column. Then the influence of the mobile phase including an alcohol‐modifying agent and alkaline additive on the enantioseparation were investigated and optimized. The optimal mobile phase conditions and maximum resolution for every analyte were as follows respectively: n‐hexane/isopropanol (85:15, v /v) for nimodipine (R  = 5.80) and cinildilpine (R  = 5.65); n‐hexane/isopropanol (92:8, v /v) for nicardipine (R  = 1.76) and nisoldipine (R  = 1.92); and n‐hexane/isopropanol/ethanol (97:2:1, v /v/v) for felodipine (R  = 1.84) and lercanidipine (R  = 1.47). Relative separation mechanisms are discussed based on the separation results, and indicate that the achiral parts in the analytes' structure showed an important influence on the separation of the chiral column.  相似文献   

17.
Kim BH  Lee SU  Kim KT  Lee JY  Choi NH  Han YK  Ok JH 《Chirality》2003,15(3):276-283
Enantiomeric separation of pyrethroic acid methyl and ethyl esters was examined on cellulose-based chiral stationary phases (CSPs): chiralcel OD (cellulose tris(3,5-dimethylphenyl carbamate)) and chiralcel OF (cellulose tris(4-chlorophenyl carbamate)). The good resolution of pyrethroic acid esters was achieved on chiralcel OD and OF. Separation factors ranged from 1.19-5.12 for Chiralcel OD and 1.00-1.59 for chiralcel OF. Hexane/2-propanol (100:0.15, v/v %) was used as the eluent. The resolution capability of CSPs was greater chiralcel OD than chiralcel OF in the case of the pyrethroic acid esters. The flow rate was 0.8 ml/min and detection was set at 230 nm. The results of the chromatographic data and molecular mechanics suggest that steric effect was a major factor in the enantioseparation. Furthermore, the hydrogen bond between analytes and CSP played an important role in the chiral recognition.  相似文献   

18.
The HPLC enantioseparation of the last generation antidepressive drug milnacipran (+/-)-1 was investigated on different cellulose-based chiral stationary phases (CSPs). On carbamate-type columns, Chiralcel OD and OD-H (+/-)-1 could be separated with alpha value about 1.20 but the resolution was quite low because of the tailing of the peaks. Direct determination of (+/-)-1 with high selectivity and resolution was obtained on Chiralcel OJ in normal phase mode elution. Precolumn derivatization of milnacipran with Fmoc-Cl gave compound (+/-)-2 which was enantioseparated on all the investigated CSPs and allowed enhanced UV or fluorimetric detection. The Chiralpak IB, that could be considered the immobilized version of Chiralcel OD-H, was found completely ineffective in the chiral recognition of (+/-)-1 and moderately efficient in the separation of (+/-)-2.  相似文献   

19.
In our recent work, a series of dendritic chiral stationary phases (CSPs) were synthesized, in which the chiral selector was L‐2‐(p‐toluenesulfonamido)‐3‐phenylpropionyl chloride (selector I), and the CSP derived from three‐generation dendrimer showed the best separation ability. To further investigate the influence of the structures of dendrimer and chiral selector on enantioseparation ability, in this work, another series CSPs ( CSPs 1‐4 ) were prepared by immobilizing (1S,2R)‐1,2‐diphenyl‐2‐(3‐phenylureido)ethyl 4‐isocyanatophenylcarbamate (selector II) on one‐ to four‐generation dendrimers that were prepared in previous work. CSPs 1 and 4 demonstrated the equivalent enantioseparation ability. CSPs 2 and 3 showed the best and poorest enantioseparation ability respectively. Basically, these two series of CSPs exhibited the equivalent enantioseparation ability although the chiral selectors were different. Considering the enantioseparation ability of the CSP derived from aminated silica gel and selector II is much better than that of the one derived from aminated silica gel and selector I, it is believed that the dendrimer conformation essentially impacts enantioseparation. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
The enantiomeric separation of several racemic aryloxyaminopropan-2-ol derivatives related to propranolol on normal and reversed phase of cellulose tris (3,5-dimethylphenylcarbamate) chiral stationary phases known as Chiralcel OD and Chiralcel OD-R were studied. It was observed that the chiral separation depends on the substitution pattern of the aryl group, i.e., 1-naphthyl, 2-naphthyl, and phenyl group and polarity on the basic nitrogen in the side chain. In both normal and reversed phase modes the (+)-R-enantiomer eluted first in all of the analogs resolved. It can be concluded that: (1) substituents on the side chain did affect the interaction of the enantiomers with the polar carbamate moiety in the CSP; and (2) the dipole-dipole stacking between the π-donor 3,5-dimethylphenyl carbamate group pending from the glucose rings of the CSP and π-acceptor aryl group of the analyte is crucial for the efficient chiral discrimination. The chiral recognition mechanism(s) between these analogs and the chiral stationary phases are proposed. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号