首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The modified hexose, sugar, amiprilose HCl [1, 2-O-isopropylinine-3-O-3′-(N′,N′-dimethylamino-n-propyl)-D-glucufuranose hydrochloride], has previously been shown to have antiinflamatory acitivies. The present study assessed whether eicosanoid biosynthesis is regulated by amiprilose HCl adn whether the regulation is influenced at the early stage of arachidonate liberation from the phospholipid by phospholipase A2 (PLA2). Secretiion of both prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) by peritoneal macrophages and neutrophils from amiprilose HCl-treated mice was reduced with neutrophils being slightly more sensitive to the inhibitory effects. Amiprilose HCl was less effective at inhibiting PGE2 and LTB4 secretion that it was . Amiprilose HCl did not have a direct inhibitory effect on the PLA2 enzyme or on secretion of the soluble form od PLA2. In contrast, amiprilose HCl modulated the phospholipid substrate for PLA2 as there was inhibition of label release from [1-14C]-oleic acid-labeled substrate source (i) when labeled substrate for pure PLA2 had been preincubated with amiprilose HCl, or (ii) when labeled peritoneal cells, which had been preincubated with amiprilose HCl, were used as a substrate source either for pure PLA2 or for their own PLA2. Amiprilose HCl was found to bind to peritoneal cells rapidly, but transiently, with maximal binding occurring within 5 min at 37°C. Thus, amiprilose HCl was shown to be inhibitory to secretion of PGE2 and LTB4, at least in part, by inhibiting the availability of substrate for PLA2.  相似文献   

2.
Summary Pinocytosis induced by Na+ was assayed by phase contrast microscopy in 8–12 days starvedAmoeba proteus. These cultures were inactive with respect to calcium-dependent Na+-induced pinocytosis, but treatment with amino acid methyl and ethyl esters increased their capacity for pinocytosis. Besides promoting pinocytosis these compounds also stimulated calcium-sensitive secretion of lysosomal enzymes from normal, 2–3 days starved, cells. Only uncharged 1-forms of the amino acid esters were effective. Also other lysosomotropic compounds including monodansylcadaverine, glycine-phenylalanine-2-naphthylamide, NH4Cl, and the ionophores monensin and A23187 activated starved cells. The effect of these agents (except A23187) was inhibited by the drug dantrolene suggesting that activation is a consequence of release of Ca2+ from intracellular stores. Several of the lysosomotropic agents also lost their activating effect in the presence of phospholipase A2 (PLA2) inhibitors. To investigate whether or not PLA2 activity in the cell culture could imitate the effect of the lysosomotropic agents, we incubated starved cells with snake venom PLA2s. These enzymes caused rapid, dantrolene-sensitive activation of the cells. Measurement of endogenous PLA2in normal cells revealed significant cellular activity but no significant secretion of the enzyme into the culture medium was observed. Together the studies with enzyme inhibitors and dantrolene suggest that the process by which lysosomotropic agents affect pinocytosis involves activation of PLA2 and release of Ca2+ from intracellular stores.Abbreviations AnBOMe amino-n-butyric acid methylester - Et ethylester - GPN glycine-1-phenylalanine-2-naphthylamide - MDC monodansylcadaverine - MDTC monodansylthiacadaverine - Me methylester - pBPB p-bromo phenacylbromide - PLA2 phospholipase A2  相似文献   

3.
Although the activation of phospholipase A2 (PLA2) in ras-transformed cells has been well documented, the mechanisms underlying this activation are poorly understood. In this study we tried to elucidate whether the membrane phospholipid composition and physical state influence the activity of membrane-associated PLA2 in ras-transformed fibroblasts. For this purpose membranes from non-transfected and ras-transfected NIH 3T3 fibroblasts were enriched with different phospholipids by the aid of partially purified lipid transfer protein. The results showed that of all tested phospholipids only phosphatidylcholine (PC) increased PLA2 activity in the control cells, whereas in their transformed counterparts both PC and phosphatidic acid (PA) induced such effect. Further we investigated whether the activatory effect was due only to the polar head of these phospholipids, or if it was also related to their acyl chain composition. The results demonstrated that the arachidonic acid-containing PC and PA molecules induced a more pronounced increase of membrane-associated PLA2 activity in ras-transformed cells compared to the corresponding palmitatestearate- or oleate- containing molecular species. However, we did not observe any specific effect of the phospholipid fatty acid composition in non-transformed NIH 3T3 fibroblasts. In ras-transformed cells incubated with increasing concentrations of arachidonic acid, PLA2 activity was altered in parallel with the changes of the cellular content of this fatty acid. The role of phosphatidic and arachidonic acids as specific activators of PLA2 in ras-transformed cells is discussed with respect to their possible role in the signal transduction pathways as well as in the processes of malignant transformation of cells.  相似文献   

4.
On the hypothesis that prostaglandins and other eicosanoids mediate nodulation responses to bacterial infections in insects, we describe an intracellular phospholipase A2 (PLA2) in homogenates prepared from hemocytes collected from the tobacco hornworm, Manduca sexta. PLA2 hydrolyzes fatty acids from the sn-2 position of phospholipids. Some PLA2s are thought to be the first and rate-limiting step in biosynthesis of prostaglandins and other eicosanoids. The hemocyte PLA2 activity was sensitive to hemocyte homogenate protein concentration (up to 250 μg protein/reaction), pH (optimal activity at pH 8.0), and the presence of a Ca2+ chelator. Like PLA2s from mammalian sources, the hemocyte PLA2 was inhibited by the phospholipid analog oleyoxyethyl phosphorylcholine. Whereas most intracellular PLA2s require Ca2+ for catalytic activity, some PLA2s, including the hemocyte enzyme, are Ca2+-independent. The hemocyte PLA2 exhibited a preference for arachidonyl-associated substrate over palmitoyl-associated substrate. These findings show that M. sexta hemocytes express a PLA2 that shows a marked preference for hydrolyzing arachidonic acid from phospholipids. The biological significance of this enzyme relates to cellular immune responses to bacterial infections. The hemocyte PLA2 may be the first biochemical step in synthesis of the eicosanoids that mediate cellular immunity in insects. © 1996 Wiley-Liss, Inc.  相似文献   

5.
The red sea bream (Pagrus major) was previously found to express mRNAs for two group IB phospholipase A2 (PLA2) isoforms, DE-1 and DE-2, in the digestive organs, including the hepatopancreas, pyloric caeca, and intestine. To characterize the ontogeny of the digestive function of these PLA2s, the present study investigated the localization and expression of DE-1 and DE-2 PLA2 genes in red sea bream larvae/juveniles and immature adults, by in situ hybridization. In the adults, DE-1 PLA2 mRNA was expressed in pancreatic acinar cells. By contrast, DE-2 PLA2 mRNA was detected not only in digestive tissues, such as pancreatic acinar cells, gastric glands of the stomach, epithelial cells of the pyloric caeca, and intestinal epithelial cells, but also in non-digestive ones, including cardiac and lateral muscle fibers and the cytoplasm of the oocytes. In the larvae, both DE-1 and DE-2 PLA2 mRNAs first appeared in pancreatic tissues at 3 days post-hatching (dph) and in intestinal tissue at 1 dph, and expression levels for both gradually increased after this point. In the juvenile stage at 32 dph, DE-1 PLA2 mRNA was highly expressed in pancreatic tissue, and DE-2 PLA2 mRNA was detected in almost all digestive tissues, including pancreatic tissue, gastric glands, pyloric caeca, and intestine, including the myomere of the lateral muscles. In conclusion, both DE-1 and DE-2 PLA2 mRNAs are already expressed in the digestive organs of red sea bream larvae before first feeding, and larvae will synthesize both DE-1 and DE-2 PLA2 proteins.  相似文献   

6.
Phospholipase A2 and Its Role in Brain Tissue   总被引:6,自引:4,他引:2  
Abstract: Phospholipase A2 (PLA2) is the name for the class of lipolytic enzymes that hydrolyze the acyl group from the sn-2 position of glycerophospholipids, generating free fatty acids and lysophospholipids. The products of the PLA2-catalyzed reaction can potentially act as second messengers themselves, or be further metabolized to eicosanoids, platelet-activating factor, and lysophosphatidic acid. All of these are recognized as bioactive lipids that can potentially alter many ongoing cellular processes. The presence of PLA2 in the central nervous system, accompanied by the relatively large quantity of potential substrate, poses an interesting dilemma as to the role PLA2 has during both physiologic and pathologic states. Several different PLA2 enzymes exist in brain, some of which have been partially characterized. They are classified into two subtypes, CA2+-dependent and Ca2+-independent, based on their catalytic dependence on Ca2+. Under physiologic conditions, PLA2 may be involved in phospholipid turnover, membrane remodeling, exocytosis, detoxification of phospholipid peroxides, and neurotransmitter release. However, under pathological situations, increased PLA2 activity may result in the loss of essential membrane glycerophospholipids, resulting in altered membrane permeability, ion homeostasis, increased free fatty acid release, and the accumulation of lipid peroxides. These processes, along with loss of ATP, may be responsible for the loss of membrane phospholipid and subsequent neuronal injury found in ischemia, spinal cord injury, and other neurodegenerative diseases. This review outlines the current knowledge of the PLA2 found in the central nervous system and attempts to define the role of PLA2 during both physiologic and pathologic conditions.  相似文献   

7.
Rat brain membranes were incubated with bee venom phospholipase A2 (PLA2) or phospholipase C (PLC) from Clostridium perfringens. PLA2 caused a significant increase in free polyunsaturated fatty acids concomitant with membrane phospholipid degradation as monitored by HPLC and by gas chromatography. Equal concentrations of PLC had a much lesser effect than PLA2. Divergent and differential effects were shown on deacylation and incorporation of [3H]arachidonic acid in membrane phospholipids. The incorporation of [3H]arachidonic acid into various phospholipids was greatly reduced by PLA2 (0.018 units/ml) whereas PLC at identical concentration was not effective. PLA2 inhibited (Na+ + K+)-ATPase but was not effective on p-nitrophenyl-phosphatase activity whereas PLC stimulated both enzymes. PLA2 induced swelling of cortical brain slices whereas PLC was not effective. Thus, the severity of the perturbation of membrane integrity, and the inhibition of (Na+ + K+)-ATPase in brain membranes may play an important role in cellular swelling of brain slices induced by PLA2.  相似文献   

8.
We report on phospholipase A2 (PLA2) activity in homogenates prepared from fat bodies of the tobacco hornworm Manduca sexta. PLA2 activity is responsible for hydrolyzing fatty acids from the sn-2 position of phospholipids. The rate of hydrolysis increased with increasing homogenate protein concentration up to ~? 320 μg protein/ml reaction volume. Higher protein concentrations did not appreciably increase the rate of PLA2 activity. As seen in some, but not all PLA2s from mammalian sources, hydrolyzing activity increased linearly with time. The fat body activity was sensitive to pH (optimal activity at pH 8–9) and temperature (optimal activity at ~?40°C). The activity was associated with fat body rather than hemolymph, because no activity was detected in cell-free serum. The fat body PLA2 activity differs from the majority of PLA2s with respect to calcium requirements. Whereas most PLA2s are calcium-independent. A few others are known to require submicromolar calcium concentrations. The fat body activity appears to be calcium independent. These data show that a PLA2 activity that can hydrolyze arachidonic acid from the sn-2 position of phospholipids is associated with the tobacco hornworm fat body. The biological significance of this activity relates to biosynthesis of eicosanoids. Pharmacological inhibition of PLA2 impairs the ability of this insect to respond to bacterial infections. Since the impairment can be reversed by treatment with exogenous arachidonic acid, the PLA2 activity may be an important step in eicosanoid biosynthesis. © 1993 Wiley-Liss, Inc.  相似文献   

9.
Atomic force microscopy (AFM) is employed to reveal the morphological changes of the supported phospholipid bilayers hydrolyzed by a phospholipase A2 (PLA2) enzyme in a buffer solution at room temperature. Based on the high catalytic selectivity of PLA2 toward l-enantiomer phospholipids, five kinds of supported bilayers made of l- and d-dipalmitoylphosphatidylcholines (DPPC), including l-DPPC (upper leaflet adjacent to solution)/l-DPPC (bottom leaflet) (or l/l in short), l/d, d/l, d/d, and racemic ld/ld, were prepared on a mica surface in gel-phase, to explicate the kinetics and mechanism of the enzyme-induced hydrolysis reaction in detail. AFM observations for the l/l bilayer show that the hydrolysis rate for l-DPPC is significantly increased by PLA2 and most of the hydrolysis products desorb from substrate surface in 40 min. As d-enantiomers are included in the bilayer, the hydrolysis rate is largely decreased in comparison with the l/l bilayer. The time used to hydrolyze the as-prepared bilayers by PLA2 increases in the sequence of l/l, l/d, ld/ld, and d/l (d/d is inert to the enzyme action). d-enantiomers in the enantiomer hybrid bilayers remain on the mica surface at the end of the hydrolysis reaction. It was confirmed that the hydrolysis reaction catalyzed by PLA2 preferentially occurs at the edges of pits or defects on the bilayer surface. The bilayer structures are preserved during the hydrolysis process. Based on these observations, a novel kinetics model is proposed to quantitatively account for the PLA2-catalyzed hydrolysis of the supported phospholipid bilayers. The model simulation demonstrates that PLA2 mainly binds with lipids at the perimeter of defects in the upper leaflet and leads to a hydrolysis reaction, yielding species soluble to the solution phase. The lipid molecules underneath subsequently flip up to the upper leaflet to maintain the hydrophilicity of the bilayer structure. Our analysis shows that d-enantiomers in the hybrid bilayers considerably reduce the hydrolysis rate by its ineffective binding with PLA2.  相似文献   

10.
The goal of the present study is to elucidate the effect of sphingomyelin on interfacial binding of Taiwan cobra phospholipase A2 (PLA2). Substitution of Asn-1 with Met caused a reduction in enzymatic activity and membrane-damaging activity of PLA2 toward phospholipid vesicles, while sphingomyelin exerted an inhibitory effect on the biological activities of native and mutated PLA2. Incorporation of sphingomyelin reduced membrane fluidity of phospholipid vesicles as evidenced by Laurdan fluorescence measurement. The results of self-quenching studies, binding of fluorescent probe, trinitrophenylation of Lys residues and fluorescence energy transfer between protein and lipid revealed that sphingomyelin altered differently membrane-bound mode of native and mutated PLA2. Moreover, it was found that PLA2 and N-terminally mutated PLA2 adopted different conformation and geometrical arrangement on binding with membrane bilayer. Nevertheless, the binding affinity of PLA2 and N-terminal mutant for phospholipid vesicles was not greatly affected by sphingomyelin. Together with the finding that mutation on N-terminus altered the gross conformation of PLA2, our data indicate that sphingomyelin modulates the mode of membrane binding of PLA2 at water/lipid interface, and suggest that the modulated effect of sphingomyelin depends on inherent structural elements of PLA2.  相似文献   

11.
Abstract An entomopathogenic bacterium, Xenorhabdus nematophila, has been known to induce significant immunosuppression of target insects by inhibiting immune‐associated phospholipase A2 (PLA2), which subsequently shuts down biosynthesis of eicosanoids that are critical in immune mediation in insects. Some metabolites originated from the bacterial culture broth have been identified and include benzylideneacetone, proline‐tyrosine and acetylated phenylalanine‐glycine‐valine, which are known to inhibit enzyme activity of PLA2 extracted from hemocyte and fat body. This study tested their effects on digestive PLA2 of the beet armyworm, Spodoptera exigua. Young larvae fed different concentrations of the three metabolites resulted in significant adverse effects on larval development even at doses below 100 μg/mL. In particular, they induced significant reduction in digestive efficiency of ingested food. All three metabolites significantly inhibited catalytic activity of digestive PLA2 extracted from midgut lumen of the fifth instar larvae at a low micromolar range. These results suggest that the inhibitory activities of the three bacterial metabolites on digestive PLA2 of S. exigua midgut may explain some of their oral toxic effects.  相似文献   

12.
We describe prostaglandin (PG) biosynthesis by isolated midgut preparations from tobacco hornworms, Manduca sexta. Microsomal-enriched midgut preparations yielded four PGs, PGA/B(2), PGD(2), PGE(2) and PGF(2alpha), all of which were confirmed by analysis on gas chromatography--mass spectrometry (GC--MS). PGA and PGB are double bond isomers which do not resolve on TLC but do resolve by GC; for convenience, we use the single term PGA(2) for this product. PGA(2) was the major product under most conditions. The midgut preparations were sensitive to reaction conditions, including radioactive substrate, protein concentration (optimal at 1mg/reaction), reaction time (optimal at 0.5 min), temperature (optimal at 22 degrees C), buffer pH (highest at pH 6), and the presence of a co-factor cocktail composed of reduced glutathione, hydroquinine and hemoglobin. In vitro PG biosynthesis was inhibited by two cyclooxygenase inhibitors, indomethacin and naproxen. Subcellular localization of PG biosynthetic activity in midgut preparations, determined by ultracentrifugation, revealed the presence of PG biosynthetic activity in the cytosolic and microsomal fractions, although most activity was found in the cytosolic fractions. This is similar to other invertebrates, and different from mammalian preparations, in which the activity is exclusively associated with the microsomal fractions. Midgut preparations from M. sexta pupae, adult cockroach, Periplaneta americana, and corn ear worms, Helicoverpa zea, also produced the same four major PG products. We infer that insect midguts are competent to biosynthesize PGs, and speculate they exert important, albeit unrevealed, actions in midgut physiology.  相似文献   

13.
Group I pancreatic phospholipase A2 (PLA2 I) is primarily a digestive enzyme. Recently, however, in addition to its catalytic activity a receptor-mediated function has been described for this enzyme. PLA2 I binding to its receptor induces cellular chemokinesis, proliferation, and smooth muscle contraction. This enzyme also induces the production of prostaglandin E2 in certain cells and may have a proinflammatory role. However, despite its ability to hydrolyze phospholipids in in vitro assays, PLA2-I does not efficiently catalyze release of AA from intact cells. Here, we demonstrate that while short-term exposure of NIH 3T3 cells to PLA2-I is ineffective, exposure of 6 h or longer significantly increases the basal release of AA. Dose-response curve of PLA2-I-induced AA release was saturable with an EC50 of 14.01 ± 1.36 nM (n = 3). [3H]-AA was preferentially released over [3H]-oleic acid by PLA2-I, inactivated with 4-bromophenacyl bromide, was fully capable of mediating AA release. These data suggest that a non-catalytic, receptor-mediated mechanism is involved in PLA2-I-induced AA release in NIH-3T3 cells. This relase of AA is not dependent on protein kinase C or Ca2+ concentration. Comparison of the effect of PLA2-I with those of ATP and platelet-derived growth factor indicates that each of these agonists regulates AA release via independent pathways. Neither the basal enzymatic activity of the 85-kDa cytosolic PLA2 nor the protein level of this enzyme was affected by treatment of cells with PLA2-I. However, the increase in basal enzymatic activity of 85 kDa PLA2 due to protein kinase C activation was further enhanced by pretreatment of cells with PLA2-I. We conclude that: (1) short-term exposure of cells to PLA2 I does not cause measurable AA release; (2) release of AA from intact cells by this enzyme requires long-term exposure; (3) AA release is not mediated by a direct catalytic effect of PLA2 I; and (4) AA release by PLA2 I is accomplished via a receptor-mediated process. Taken together, these results raise the possibility that PLA2 I, in addition to its digestive function, may also contribute to aggravate preexisting inflammatory processes and/or to initiate new ones when chronic exposure of cells to this enzyme occurs. © 1995 Wiley-Liss Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    14.
    Phospholipases A2 (PLA2s) are a diverse family of lipolytic enzymes which hydrolyze the acyl bond at the sn-2 position of glycerophospholipids to produce free fatty acids and lysophospholipids. These products are precursors of bioactive eicosanoids and platelet-activating factor which have been implicated in pathological states of numerous acute and chronic neurological disorders. To date, more than 27 isoforms of PLA2 have been found in the mammalian system which can be classified into four major categories: secretory PLA2, cytosolic PLA2, Ca2+-independent PLA2, and platelet-activating factor acetylhydrolases. Multiple isoforms of PLA2 are found in the mammalian spinal cord. Under physiological conditions, PLA2s are involved in diverse cellular responses, including phospholipid digestion and metabolism, host defense, and signal transduction. However, under pathological situations, increased PLA2 activity, excessive production of free fatty acids and their metabolites may lead to the loss of membrane integrity, inflammation, oxidative stress, and subsequent neuronal injury. There is emerging evidence that PLA2 plays a key role in the secondary injury process after traumatic spinal cord injury. This review outlines the current knowledge of the PLA2 in the spinal cord with an emphasis being placed on the possible roles of PLA2 in mediating the secondary SCI.  相似文献   

    15.
    An acidic phospholipase A2 (RVVA-PLA2-I) purified from Daboia russelli venom demonstrated dose-dependent catalytic, mitochondrial and erythrocyte membrane damaging activities. RVVA-PLA2-I was non‐lethal to mice at the tested dose, however, it affected the different organs of mice particularly the liver and cardiac tissues as deduced from the enzymatic activities measured in mice serum after injection of this PLA2 enzyme. RVVA-PLA2-I preferentially hydrolyzed phospholipids (phosphatidylcholine) of erythrocyte membrane compared to the liver mitochondrial membrane. Interestingly, RVVA-PLA2-I failed to hydrolyze membrane phospholipids of HT-29 (colon adenocarcinoma) cells, which contain an abundance of phosphatidylcholine in its outer membrane, within 24 h of incubation. The gas-chromatographic (GC) analysis of saturated/unsaturated fatty acids' release patterns from intact mitochondrial and erythrocyte membranes after the addition of RVVA-PLA2-I showed a distinctly different result. The results are certainly a reflection of differences in the outer membrane phospholipid composition of tested membranes owing to which they are hydrolyzed by the venom PLA2s to a different extent. The chemical modification of essential amino acids present in the active site, neutralization study with polyvalent antivenom and heat-inactivation of RVVA-PLA2-I suggested the correlation between catalytic and membrane damaging activities of this PLA2 enzyme. Our study advocates that the presence of a large number of PLA2-sensitive phospholipid domains/composition, rather than only the phosphatidylcholine (PC) content of that particular membrane may determine the extent of membrane damage by a particular venom PLA2 enzyme.  相似文献   

    16.
    In the acute phase of the inflammatory response, secretory phospholipase A2 (sPLA2) reaches its maximum levels in plasma, where it is mostly associated with high density lipoproteins (HDL). Overexpression of human sPLA2 in transgenic mice reduces both HDL cholesterol and apolipoprotein A-I (apoA-I) plasma levels through increased HDL catabolism by an unknown mechanism. To identify unknown PLA2-mediated activities on the molecular components of HDL, we characterized the protein and lipid products of the PLA2 reaction with HDL. Consistent with previous studies, hydrolysis of HDL phospholipids by PLA2 reduced the particle size without changing its protein composition. However, when HDL was destabilized in the presence of PLA2 by the action of cholesteryl ester transfer protein or by guanidine hydrochloride treatment, a fraction of apoA-I, but no other proteins, dissociated from the particle and was rapidly cleaved. Incubation of PLA2 with lipid-free apoA-I produced similar protein fragments in the range of 6–15 kDa, suggesting specific and direct reaction of PLA2 with apoA-I. Mass spectrometry analysis of isolated proteolytic fragments indicated at least two major cleavage sites at the C-terminal and the central domain of apoA-I. ApoA-I proteolysis by PLA2 was Ca2+-independent, implicating a different mechanism from the Ca2+-dependent PLA2-mediated phospholipid hydrolysis. Inhibition of proteolysis by benzamidine suggests that the proteolytic and lipolytic activities of PLA2 proceed through different mechanisms. Our study identifies a previously unknown proteolytic activity of PLA2 that is specific to apoA-I and may contribute to the enhanced catabolism of apoA-I in inflammation and atherosclerosis.  相似文献   

    17.
    A novel basic phospholipase A2 (PLA2) isoform was isolated from Bothrops jararacussu snake venom and partially characterized. The venom was fractionated by HPLC ion-exchange chromatography in ammonium bicarbonate buffer, followed by reverse-phase HPLC to yield the protein Bj IV. Tricine SDS-PAGE in the presence or absence of dithiothreitol showed that Bj IV had a molecular mass of 15 and 30 kDa, respectively. This enzyme was able to form multimeric complexes (30, 45, and 60 kDa). Amino acid analysis showed a high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The N-terminal sequence (DLWSWGQMIQETGLLPSYTTY . . .) showed a high degree of homology with basic D49 PLA2 myotoxins from other Bothrops venoms. Bj IV had high PLA2 activity and produced moderate myonecrosis in skeletal muscle, but showed no neuromuscular activity in mouse phrenic nerve-diaphragm preparations. Bj IV showed allosteric enzymatic behavior, with maximal activity at pH 8.2 and 35-45°C. Full PLA2 activity required Ca2+ but was inhibited by Cu2+ and Zn2+, and by Cu2+ and Mg2+ in the presence and absence of Ca2+, respectively. Crotapotins from Crotalus durissus terrificus rattlesnake venom significantly inhibited the enzymatic activity of Bj IV. The latter observation suggested that the binding site for crotapotin in this PLA2 was similar to that in the basic PLA2 of the crotoxin complex from C. d. terrificus venom. The presence of crotapotin-like proteins capable of inhibiting the catalytic activity of D49 PLA2 could partly explain the low PLA2 activity of Bothrops venoms.  相似文献   

    18.
    Neuronal and glial cells were isolated from the brains of 17-day old rats and incubated for 5 h with either radioactive inorganic phosphate, palmitate, serine, choline or ethanolamine in a tissue culture medium. A comparison of the results suggests that both neuronal and glial cells exhibit effective de novo, phospholipid synthesis and that the observed differences in the uptake are due more to quantitative rather than qualitative differences in phospholipid metabolism of both cell types. Incubations of the combined neuronal and glial fractions with 32PO4 and [3H]palmitate result in incorporations up to 100% higher than calculated from incubations of the separate fractions, suggesting that phospholipid metabolism of neuronal and glial cells may exhibit cooperativity.  相似文献   

    19.
    Hemocyte migration toward infection and wound sites is an essential component of insect defense reactions, although the biochemical signal mechanisms responsible for mediating migration in insect cells are not well understood. Here we report on the outcomes of experiments designed to test the hypotheses that (1) insect hemocytes are able to detect and migrate toward a source of N-formyl-Met-Leu-Phe (fMLP), the major chemotactic peptide from Escherichia coli and (2) that pharmaceutical modulation of eicosanoid biosynthesis inhibits hemocyte migration. We used primary hemocyte cultures prepared from fifth-instar tobacco hornworms, Manduca sexta in Boyden chambers to assess hemocyte migration toward buffer (negative control) and toward buffer amended with fMLP (positive control). Approximately 42% of negative control hemocytes migrated toward buffer and about 64% of positive control hemocytes migrated toward fMLP. Hemocyte migration was inhibited (by >40%) by treating hornworms with pharmaceutical modulators of cycloxygenase (COX), lipoxygenase and phospholipase A2 (PLA2) before preparing primary hemocyte cultures. The influence of the COX inhibitor, indomethacin, and the glucocorticoid, dexamethasone, which leads to inhibition of PLA2, was expressed in a dose-dependent way. The influence of dexamethasone was reversed by injecting arachidonic acid (precursor to eicosanoid biosynthesis) into hornworms before preparing primary hemocyte cultures. The saturated fatty acid, palmitic acid, did not reverse the inhibitor effect. These findings support both our hypotheses, first that insect hemocytes can detect and respond to fMLP, and second, that insect hemocyte migration is mediated by eicosanoids.  相似文献   

    20.
    Hydrolysis of dioleoylphosphatidylethanol (DOPEt) and dioleoylphosphatidylcholine (DOPC) catalyzed by phospholipase A2 (PLA2) from porcine pancreas has been studied in single-component and binary liposomes in the absence and in the presence of ethanol. DOPEt (an anionic phospholipid) was found to increase the rate of hydrolysis of zwitterionic DOPC in liposomes under the action of PLA2.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号