首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Understanding how the spectacular diversity of colour patterns on butterfly wings is shaped by natural selection, and how particular pattern elements are generated, has been the focus of both evolutionary and developmental biologists. The growing field of evolutionary developmental biology has now begun to provide a link between genetic variation and the phenotypes that are produced by developmental processes and that are sorted by natural selection. Butterfly wing patterns are set to become one of the few examples of morphological diversity to be studied successfully at many levels of biological organization, and thus to yield a more complete picture of adaptive morphological evolution.  相似文献   

2.
The external tissues of numerous eukaryote species show repeated colour patterns, usually characterized by units that are present at least twice on the body. These dotted, striped or more complex phenotypes carry out crucial biological functions, such as partner recognition, aposematism or camouflage. Very diverse mechanisms explaining the formation of repeated colour patterns in eukaryotes have been identified and described, and it is timely to review this field from an evolutionary and developmental biology perspective. We propose a novel classification consisting of seven families of primary mechanisms: Turing(-like), cellular automaton, multi-induction, physical cracking, random, neuromuscular and printing. In addition, we report six pattern modifiers, acting synergistically with these primary mechanisms to enhance the spectrum of repeated colour patterns. We discuss the limitations of our classification in light of currently unexplored extant diversity. As repeated colour patterns require both the production of a repetitive structure and colouration, we also discuss the nature of the links between these two processes. A more complete understanding of the formation of repeated colour patterns in eukaryotes will require (i) a deeper exploration of biological diversity, tackling the issue of pattern elaboration during the development of non-model taxa, and (ii) exploring some of the most promising ways to discover new families of mechanisms. Good starting points include evaluating the role of mechanisms known to produce non-repeated colour patterns and that of mechanisms responsible for repeated spatial patterns lacking colouration.  相似文献   

3.
In the last decades, researchers have been able to determine the molecular basis of some phenotypes, to test for evidence of natural selection upon them, and to demonstrate that the same genes or genetic pathways can be associated with convergent traits. Colour traits are often subject to natural selection because even small changes in these traits can have a large effect on fitness via camouflage, sexual selection or other mechanisms. The melanocortin‐1 receptor locus (MC1R) is frequently associated with intraspecific coat colour variation in vertebrates, but it has been far harder to demonstrate that this locus is involved in adaptive interspecific colour differences. Here, we investigate the contribution of the MC1R gene to the colour diversity found in toucans (Ramphastidae). We found divergent selection on MC1R in the clade represented by the genus Ramphastos and that this coincided with the evolution of darker plumage in members of this genus. Using phylogenetically corrected correlations, we show significant and specific relationships between the rate of nonsynonymous change in MC1R (dN) and plumage darkness across Ramphastidae, and also between the rate of functionally significant amino acid changes in MC1R and plumage darkness. Furthermore, three of the seven amino acid changes in MC1R that occurred in the ancestral Ramphastos branch are associated with melanism in other birds. Taken together, our results suggest that the dark colour of Ramphastos toucans was related to nonsynonymous substitutions in MC1R that may have been subject to positive selection or to a relaxation of selective pressure. These results also demonstrate a quantitative relationship between gene and phenotype evolution, representing an example of how MC1R molecular evolution may affect macroevolution of plumage phenotypes.  相似文献   

4.
Ocelli are serially repeated colour patterns on the wings of many butterflies. Eyespots are elaborate ocelli that function in predator avoidance and deterrence as well as in mate choice. A phylogenetic approach was used to study ocelli and eyespot evolution in Vanessa butterflies, a genus exhibiting diverse phenotypes among these serial homologs. Forty‐four morphological characters based on eyespot number, arrangement, shape and the number of elements in each eyespot were defined and scored. Ocelli from eight wing cells on the dorsal and ventral surfaces of the forewing and hindwing were evaluated. The evolution of these characters was traced over a phylogeny of Vanessa based on 7750 DNA base pairs from 10 genes. Our reconstruction predicts that the ancestral Vanessa had 5 serially arranged ocelli on all four wing surfaces. The ancestral state on the dorsal forewing and ventral hindwing was ocelli arranged in two heterogeneous groups. On the dorsal hindwing, the ancestral state was either homogenous or ocelli arranged in two heterogeneous groups. On the ventral forewing, we determined that the ancestral state was organized into three heterogeneous groups. In Vanessa, almost all ocelli are individuated and capable of independent evolution relative to other colour patterns except for the ocelli in cells ?1 and 0 on the dorsal and ventral forewings, which appear to be constrained to evolve in parallel. The genus Vanessa is a good model system for the study of serial homology and the interaction of selective forces with developmental architecture to produce diversity in butterfly colour patterns.  相似文献   

5.
Discrete colour morphs have provided important insights into the evolution of phenotypic diversity. One of the mechanisms that can help to explain coexistence of ecologically similar colour morphs and incipient species is (colour) biased aggression, which has the potential to promote continued existence of the morphs in a frequency-dependent manner. I addressed colour biases in territorial aggression in a field-based study on a Neotropical cichlid fish species, Amphilophus sagittae, which has two ecologically indistinguishable colour morphs that mate assortatively. I found that A. sagittae, in particular females, were more aggressive towards models of their own colour than those mimicking colours of the other morph. Such a behavioural pattern should result in a selection regime that benefits the rarer morph, and hence could help explain how novel, rare phenotypes may avoid competitive exclusion.  相似文献   

6.
Müllerian mimetic systems have uncovered some of the dynamic processes by which natural selection can drive the radiation of convergent and divergent phenotypes. We examined evolution involving Müllerian mimicry in bumble bees by documenting the distribution and evolution of colour patterns amongst three colour‐polymorphic lineages –Bombus trifasciatus Smith, Bombus haemorrhoidalis Smith, and Bombus breviceps Smith – that mimic each other across ~14 colour groups in South‐East Asia. Using mitochondrial DNA sequence data, we estimated relationships within each lineage to infer the processes that gave rise to the colour diversity and develop hypotheses on species recognition. We expanded on our assessment of species delineation in the B. trifasciatus lineage using three nuclear gene fragments and morphometrics. Comparison of colour patterns amongst georeferenced specimens showed considerable variation in the degree and geographical range of mimicry amongst mimicry groups. Phylogenetic estimates show high rates of colour pattern evolution, with colour variation often exceeding variation within the fast‐evolving mitochondrial genes. The molecular data, and to some degree the morphometric data, support unique histories for several taxa recognized previously within the B. trifasciatus lineage, which may include several species. Early vicariant events within the B. trifasciatus lineage are likely to have occurred ~2.2 Mya in the mountains of south‐west China. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 805–826.  相似文献   

7.
Within island archipelagos, repeated ecological settings may lead to radiations wherein similar niches are recurrently occupied. Although it has been shown that species with common habitat requirements share particular traits, it remains relatively unexplored to what extent this may lead to the repeated evolution of almost identical phenotypes (phenocopies) and how this correlates with traits subjected to sexual selection. Exploring divergence patterns of ecological and sexual relevant traits within spiders seem promising to enhance our understanding of the relative role of natural and sexual selection. Here, we conduct a detailed morphological analysis on a large set of genital and non‐genital traits (morphometrics, colour pattern) within a radiation of the wolf spider genus Hogna Simon, 1885 on Galápagos and interpret these data, taking into account their known phylogenetic relationship. Our results show that recurrent environmental gradients have led to the parallel evolution of almost identical phenotypes, which not only proves that natural selection has driven morphological divergence, but also suggests that a similar genetic or developmental basis most likely underlies this divergence. Among‐species variation in genital traits in contrast rather reflects the phylogenetic relationships on Santa Cruz and San Cristóbal. The combination of these data indicate that speciation in this system is driven by the combined effect of ecological mechanisms and allopatric divergence in sexual traits. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 123–136.  相似文献   

8.
This paper integrates genetical studies of variation in the wing patterns of Lepidoptera with experimental investigations of developmental mechanisms. Research on the tropical butterfly,Bicyclus anynana, is described. This work includes artificial selection of lines with different patterns of wing eyespots followed by grafting experiments on the lines to examine the phenotypic and genetic differences in terms of developmental mechanisms. The results are used to show how constraints on the evolution of this wing pattern may be related to the developmental organisation. The eyespot pattrn can be envisaged as a set of developmental homologues; a common developmental mechanism is associated with a quantitative genetic system involving high genetic correlations. However, individual genes which influence only subsets of the eyespots, thus uncoupling the interdependence of the eyespots, may be important in evolutionary change. The postulated evolutionary constraints are illustrated with respect to differences in wing pattern found among other species ofBicyclus.  相似文献   

9.
Most integrative studies involving phylogenetic, developmental and ecological trends showed that the diversity of developmental modifications among the Platyhelminthes was linked to transmission opportunity pressures. For parasitic flatworms with complex life cycles it was suggested that the evolutionary forces that constrained or enhanced developmental strategies implied heterochronic patterns. Similar patterns were also reported from the Monogenea with direct life cycles, especially for Polystomatidae, which infest amphibious Sarcopterygians. Polystoma, whose members are recovered almost exclusively from anuran hosts of the Neobatrachia, is capable of following two alternative developmental strategies depending on the physiological stage of its host. Processes by which parasites reach maturity are strikingly different, and lead to discrete adult phenotypes within the same parasite species. In the present study, we investigate the origin and evolution of developmental patterns of polystomatids in a phylogenetic framework, using an integrative approach of heterochrony and evolutionary ecology. The results suggest that both phenotypes have coexisted during the early stages of polystome evolution, and that neither of them can be considered as the ancestral one. The two developmental pathways, each associated with one life cycle, may have arisen independently prior to polystome diversification, when strictly aquatic sarcopterygians attempted colonization of temporary freshwater environments. The occurrence of these two patterns within species of the genus Polystoma is suggested to reflect the ancestral condition, and to have allowed both developmental strategies to be successful depending on shifts in transmission opportunities. Thus, host evolutionary ecology may be the main factor in shaping developmental strategies within polystomatids.  相似文献   

10.
Studying development in diverse taxa can address a central issue in evolutionary biology: how morphological diversity arises through the evolution of developmental mechanisms. Two of the best-studied developmental model organisms, the arthropod Drosophila and the nematode Caenorhabditis elegans, have been found to belong to a single protostome superclade, the Ecdysozoa. This finding suggests that a closely related ecdysozoan phylum could serve as a valuable model for studying how developmental mechanisms evolve in ways that can produce diverse body plans. Tardigrades, also called water bears, make up a phylum of microscopic ecdysozoan animals. Tardigrades share many characteristics with C. elegans and Drosophila that could make them useful laboratory models, but long-term culturing of tardigrades historically has been a challenge, and there have been few studies of tardigrade development. Here, we show that the tardigrade Hypsibius dujardini can be cultured continuously for decades and can be cryopreserved. We report that H. dujardini has a compact genome, a little smaller than that of C. elegans or Drosophila, and that sequence evolution has occurred at a typical rate. H. dujardini has a short generation time, 13–14 days at room temperature. We have found that the embryos of H. dujardini have a stereotyped cleavage pattern with asymmetric cell divisions, nuclear migrations, and cell migrations occurring in reproducible patterns. We present a cell lineage of the early embryo and an embryonic staging series. We expect that these data can serve as a platform for using H. dujardini as a model for studying the evolution of developmental mechanisms.  相似文献   

11.
The environmental variables that define a species ecological niche should be associated with the evolutionary patterns present in the adaptations that resulted from living in these conditions. Thus, when comparing across species, we can expect to find an association between phylogenetically independent phenotypic characters and ecological niche evolution. Few studies have evaluated how organismal phenotypes might mirror patterns of niche evolution if these phenotypes reflect adaptations. Doing so could contribute on the understanding of the origin and maintenance of phenotypic diversity observed in nature. Here, we show the pattern of niche evolution of the pinyon pine lineage (Pinus subsection Cembroides); then, we suggest morphological adaptations possibly related to niche divergence, and finally, we test for correlation between ecological niche and morphology. We demonstrate that niche divergence is the general pattern within the clade and that it is positively correlated with adaptation.  相似文献   

12.
13.
Development introduces structured correlations among traits that may constrain or bias the distribution of phenotypes produced. Moreover, when suitable heritable variation exists, natural selection may alter such constraints and correlations, affecting the phenotypic variation available to subsequent selection. However, exactly how the distribution of phenotypes produced by complex developmental systems can be shaped by past selective environments is poorly understood. Here we investigate the evolution of a network of recurrent nonlinear ontogenetic interactions, such as a gene regulation network, in various selective scenarios. We find that evolved networks of this type can exhibit several phenomena that are familiar in cognitive learning systems. These include formation of a distributed associative memory that can “store” and “recall” multiple phenotypes that have been selected in the past, recreate complete adult phenotypic patterns accurately from partial or corrupted embryonic phenotypes, and “generalize” (by exploiting evolved developmental modules) to produce new combinations of phenotypic features. We show that these surprising behaviors follow from an equivalence between the action of natural selection on phenotypic correlations and associative learning, well‐understood in the context of neural networks. This helps to explain how development facilitates the evolution of high‐fitness phenotypes and how this ability changes over evolutionary time.  相似文献   

14.
Colour pattern diversity can be due to random processes or to natural or sexual selection. Consequently, similarities in colour patterns are not always correlated with common ancestry, but may result from convergent evolution under shared selection pressures or drift. Neolamprologus brichardi and Neolamprologus pulcher have been described as two distinct species based on differences in the arrangement of two dark bars on the operculum. Our study uses DNA sequences of the mitochondrial control region to show that relatedness of haplotypes disagrees with species assignment based on head colour pattern. This suggests repeated parallel evolution of particular stripe patterns. The complete lack of shared haplotypes between populations of the same or different phenotypes reflects strong philopatric behaviour, possibly induced by the cooperative breeding mode in which offspring remain in their natal territory and serve as helpers until they disperse to nearby territories or take over a breeding position. Concordant phylogeographic patterns between N. brichardi/N. pulcher populations and other rock-dwelling cichlids suggest that the same colonization routes have been taken by sympatric species and that these routes were affected by lake level fluctuations in the past.  相似文献   

15.
16.
Plastic responses of embryos to developmental environments can shape phenotypes in ways that impact fitness. The mechanisms by which developmental conditions affect offspring phenotypes vary substantially among taxa and are poorly understood in most systems. In this study, we evaluate the effects of thermal and hydric conditions on patterns of egg water uptake, embryonic development and yolk metabolism in embryos of the lizard Anolis sagrei to gain insights into how these factors shape morphological variation in hatchlings. Our 3 × 2 experimental design (3 thermal and 2 hydric conditions) revealed that developmental temperature has strong effects on rates of development and yolk metabolism, but the impacts of moisture were minimal. Increased water uptake by eggs under relatively wet conditions resulted in larger hatchlings with less internalized residual yolk than hatchlings from dry‐incubated eggs. However, the relatively small phenotypic differences among treatments may have small fitness consequences. These results demonstrate that embryos of A. sagrei can tolerate a broad range of environmental conditions without substantial impacts on critical morphological traits. Such embryonic tolerances may facilitate colonization and establishment in novel environments. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 25–41.  相似文献   

17.
Here we investigate how development and evolution can affect each other by exploring what kind of phenotypic variation is produced by different types of developmental mechanisms. A limited number of developmental mechanisms are capable of pattern formation in development. Two main types have been identified. In morphodynamic mechanisms, induction events and morphogenetic processes, such as simple growth, act at the same time. In morphostatic mechanisms, induction events happen before morphogenetic mechanisms, and thus growth cannot influence the induction of a pattern. We present a study of the variational properties of these developmental mechanisms that can help to understand how and why a developmental mechanism may become involved in the evolution and development of a particular morphological structure. Using existing models of pattern formation in teeth, an extensive simulation analysis of the phenotypic variation produced by different types of developmental mechanisms is performed. The studied properties include the amount and diversity of the phenotypic variation produced, the complexity of the phenotypic variation produced, and the relationship between phenotype and genotype. These variational properties are so different between different types of mechanisms that the relative involvement of these types of mechanisms in evolutionary innovation and in different stages of development can be estimated. In addition, type of mechanism affects the tempo and mode of morphological evolution. These results suggest that the basic principles by which development is organized can influence the likelihood of morphological evolution.  相似文献   

18.
The architecture of gene action during development is relevant to phenotypic evolution as it links genotype to morphological phenotype. Analysis of development at the level of cell fate specification mechanisms illuminates some of the properties of developmental evolution. In this article, we first review examples of evolutionary change in mechanisms of cell fate specification, with an emphasis on evolution in the dependence on inductive signaling and on evolution of the mechanisms that result in spatial asymmetries. We then focus on properties of development that bias possible phenotypic change and present how the distribution of phenotypes that are available by mutational change of the starting genotype can be experimentally tested by systematic mutagenesis. We finally discuss ways in which selection pressures on phenotypes can be inferred from a comparison of the phenotypic spectrum found on mutation with that found in the wild.  相似文献   

19.
During development, signaling networks control the formation of multicellular patterns. To what extent quantitative fluctuations in these complex networks may affect multicellular phenotype remains unclear. Here, we describe a computational approach to predict and analyze the phenotypic diversity that is accessible to a developmental signaling network. Applying this framework to vulval development in C. elegans, we demonstrate that quantitative changes in the regulatory network can render ~500 multicellular phenotypes. This phenotypic capacity is an order-of-magnitude below the theoretical upper limit for this system but yet is large enough to demonstrate that the system is not restricted to a select few outcomes. Using metrics to gauge the robustness of these phenotypes to parameter perturbations, we identify a select subset of novel phenotypes that are the most promising for experimental validation. In addition, our model calculations provide a layout of these phenotypes in network parameter space. Analyzing this landscape of multicellular phenotypes yielded two significant insights. First, we show that experimentally well-established mutant phenotypes may be rendered using non-canonical network perturbations. Second, we show that the predicted multicellular patterns include not only those observed in C. elegans, but also those occurring exclusively in other species of the Caenorhabditis genus. This result demonstrates that quantitative diversification of a common regulatory network is indeed demonstrably sufficient to generate the phenotypic differences observed across three major species within the Caenorhabditis genus. Using our computational framework, we systematically identify the quantitative changes that may have occurred in the regulatory network during the evolution of these species. Our model predictions show that significant phenotypic diversity may be sampled through quantitative variations in the regulatory network without overhauling the core network architecture. Furthermore, by comparing the predicted landscape of phenotypes to multicellular patterns that have been experimentally observed across multiple species, we systematically trace the quantitative regulatory changes that may have occurred during the evolution of the Caenorhabditis genus.  相似文献   

20.
Hybridization can generate novel phenotypes distinct from those of parental lineages, a phenomenon known as transgressive trait variation. Transgressive phenotypes might negatively or positively affect hybrid fitness, and increase available variation. Closely related species of Heliconius butterflies regularly produce hybrids in nature, and hybridization is thought to play a role in the diversification of novel wing colour patterns despite strong stabilizing selection due to interspecific mimicry. Here, we studied wing phenotypes in first‐ and second‐generation hybrids produced by controlled crosses between either two co‐mimetic species of Heliconius or between two nonmimetic species. We quantified wing size, shape and colour pattern variation and asked whether hybrids displayed transgressive wing phenotypes. Discrete traits underlain by major‐effect loci, such as the presence or absence of colour patches, generate novel phenotypes. For quantitative traits, such as wing shape or subtle colour pattern characters, hybrids only exceed the parental range in specific dimensions of the morphological space. Overall, our study addresses some of the challenges in defining and measuring phenotypic transgression for multivariate traits and our data suggest that the extent to which transgressive trait variation in hybrids contributes to phenotypic diversity depends on the complexity and the genetic architecture of the traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号