首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
One of the major unresolved questions in B cell biology is how the B cell Ag receptor (BCR) differentially signals to transduce anergy, apoptosis, proliferation, or differentiation during B cell maturation. We now report that extracellularly regulated kinase-mitogen-activated protein kinase (Erk-MAP kinase) can play dual roles in the regulation of the cell fate of the immature B cell lymphoma, WEHI-231, depending on the kinetics and context of Erk-MAP kinase activation. First, we show that the BCR couples to an early (< or =2 h) Erk-MAP kinase signal which activates a phospholipase A(2) pathway that we have previously shown to mediate collapse of mitochondrial membrane potential, resulting in depletion of cellular ATP and cathepsin B execution of apoptosis. Rescue of BCR-driven apoptosis by CD40 signaling desensitizes such early extracellularly regulated kinase (Erk) signaling and hence uncouples the BCR from the apoptotic mitochondrial phospholipase A(2) pathway. A second role for Erk-MAP kinase in promoting the growth and proliferation of WEHI-231 immature B cells is evidenced by data showing that proliferating and CD40-stimulated WEHI-231 B cells exhibit a sustained cycling pattern (8-48 h) of Erk activation that correlates with cell growth and proliferation. This growth-promoting role for Erk signaling is supported by three key pieces of evidence: 1) signaling via the BCR, under conditions that induce growth arrest, completely abrogates sustained Erk activation; 2) CD40-mediated rescue from growth arrest correlates with restoration of cycling Erk activation; and 3) sustained inhibition of Erk prevents CD40-mediated rescue of BCR-driven growth arrest of WEHI-231 immature B cells. Erk-MAP kinase can therefore induce diverse biological responses in WEHI-231 cells depending on the context and kinetics of activation.  相似文献   

2.
The cell cycle is negatively regulated by diverse molecular events which originate in part from the interaction of secreted proteins with specific cell surface receptors. By exerting negative control on cell proliferation, these factors can help maintain cell number balance both through growth restraints and the induction of apoptosis and may thus contribute to prevent or control tumourigenesis. Here we report that βGBP, a negative growth factor which controls transition from S phase into G2, causes an S/G2 growth arrest in both normal and leukaemic T cells. However, in leukaemic T cells but not in normal T lymphocytes, growth arrest is followed by apoptosis. Analysis of possible mechanisms of induction of apoptosis does not support Fas and Fas L as having a main role but points instead to Bcl-2 and Bax. The induction of apoptosis in leukaemic T cells is characterised by the decrease of Bcl-2 and consequent predominance of Bax. By contrast, in the normal T cells, which do not enter apoptosis, the quantitative relationship of Bcl-2 to Bax remains unchanged. The ability of βGBP to selectively induce apoptosis in leukaemic cells suggests that βGBP may play a role in cancer surveillance and that its use has potential therapeutic implications. J Cell Physiol 178:102–108, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

3.
Chromatin is a dynamic macromolecular structure epigenetically modified to regulate specific gene expression. Altered chromatin function can lead to aberrant expression of growth regulators and may, ultimately, cause cancer. That many human diseases have epigenetic etiology has stimulated the development of 'epigenetic' therapies. Inhibitors of histone deacetylases (HDACIs) induce proliferation arrest, maturation and apoptosis of cancer cells, but not normal cells, in vitro and in vivo, and are currently being tested in clinical trials. We investigated the mechanism(s) underlying this tumor selectivity. We report that HDACIs induce, in addition to p21, expression of TRAIL (Apo2L, TNFSF10) by directly activating the TNFSF10 promoter, thereby triggering tumor-selective death signaling in acute myeloid leukemia (AML) cells and the blasts of individuals with AML. RNA interference revealed that the induction of p21, TRAIL and differentiation are separable activities of HDACIs. HDACIs induced proliferation arrest, TRAIL-mediated apoptosis and suppression of AML blast clonogenicity irrespective of French-American-British (FAB) classification status, karyotype and immunophenotype. No apoptosis was seen in normal CD34(+) progenitor cells. Our results identify TRAIL as a mediator of the anticancer action of HDACIs.  相似文献   

4.
The mitogen-activated protein kinase/ERK kinase (MEK)/ERK pathway was shown to be constitutively activated in a large number of acute myelogenous leukemia (AML) cells, suggesting the important roles of this pro-survival signaling in leukemogenesis and proliferation of AML cells. This study explored the impact of the MEK inhibitor AZD6244 on the effect of cytarabien (AraC), one of the most commonly used anti-leukemia agents, to induce growth arrest and apoptosis of AML cells. AZD6244 effectively blocked AraC-induced MEK/ERK activation and enhanced its ability to induce growth arrest and apoptosis of NB4 and HL60 cells in parallel with induction of DNA damage as measured by detection of γ-H2AX by Western Blot analysis, resulting in enhanced expression of p21 waf1 and downregulation of c-Myc and Bcl-xl in these cells. Enhanced induction of apoptosis mediated by combination of AZD6244 and AraC was also shown in freshly isolated AML cells (n = 3). Taken together, concomitant administration of AraC and the inhibitor of MEK/ERK signaling may be useful for treatment of individuals with AML.  相似文献   

5.
Peroxisome proliferator-activated receptor gamma (PPARgamma) ligands inhibit cell proliferation and induce apoptosis in cancer cells. Here we wished to determine whether the PPARgamma ligand induces apoptosis and cell cycle arrest of the MDA-MB-231 cell, an estrogen receptor alpha negative breast cancer cell line. The treatment of MDA-MB-231 cell with PPARgamma ligands was shown to induce inhibition of cell growth in a dose-dependent manner as determined by MTT assay. Cell cycle analysis showed a G1 arrest in MDA-MB-231 cells exposed to troglitazone. An apoptotic effect by troglitazone demonstrated that apoptotic cells elevated by 2.5-fold from the control level at 10 microM, to 3.1-fold at 50 microM and to 3.5-fold at 75 microM. Moreover, troglitazone treatment, applied in a dose-dependent manner, caused a marked decrease in pRb, cyclin D1, cyclin D2, cyclin D3, Cdk2, Cdk4 and Cdk6 expression as well as a significant increase in p21 and p27 expression. These results indicate that troglitazone causes growth inhibition, G1 arrest and apoptotic death of MDA-MB-231 cells.  相似文献   

6.
Wang Y  Liu Q  Liu Z  Li B  Sun Z  Zhou H  Zhang X  Gong Y  Shao C 《Mutation research》2012,734(1-2):20-29
Berberine has been shown to possess anti-tumor activity against a wide spectrum of cancer cells. It inhibits cancer cell proliferation by inducing cell cycle arrest, at G1 and/or G2/M, and apoptosis. While it has been documented that berberine induces G1 arrest by activating the p53-p21 cascade, it remains unclear what mechanism underlies the berberine-induced G2/M arrest, which is p53-independent. In this study, we tested the anti-proliferative effect of berberine on murine prostate cancer cell line RM-1 and characterized the underlying mechanisms. Berberine dose-dependently induced DNA double-strand breaks and apoptosis. At low concentrations, berberine was observed to induce G1 arrest, concomitant with the activation of p53-p21 cascade. Upon exposure to berberine at a higher concentration (50μM) for 24h, cells exhibited G2/M arrest. Pharmacological inhibition of ATM by KU55933, or Chk1 by UCN-01, could efficiently abrogate the G2/M arrest in berberine-treated cells. Downregulation of Chk1 by RNA interference also abolished the G2/M arrest caused by berberine, confirming the role of Chk1 in the pathway leading to G2/M arrest. Abrogation of G2/M arrest by ATM inhibition forced more cells to undergo apoptosis in response to berberine treatment. Chk1 inhibition by UCN-01, on the other hand, rendered cells more sensitive to berberine only when p53 was inhibited. Our results suggest that combined administration of berberine and caffeine, or other ATM inhibitor, may accelerate the killing of cancer cells.  相似文献   

7.
8.
p53-mediated cell death: relationship to cell cycle control.   总被引:35,自引:8,他引:27       下载免费PDF全文
M1 clone S6 myeloid leukemic cells do not express detectable p53 protein. When stably transfected with a temperature-sensitive mutant of p53, these cells undergo rapid cell death upon induction of wild-type (wt) p53 activity at the permissive temperature. This process has features of apoptosis. In a number of other cell systems, wt p53 activation has been shown to induce a growth arrest. Yet, wt 53 fails to induce a measurable growth arrest in M1 cells, and cell cycle progression proceeds while viability is being lost. There exists, however, a relationship between the cell cycle and p53-mediated death, and cells in G1 appear to be preferentially susceptible to the death-inducing activity of wt p53. In addition, p53-mediated M1 cell death can be inhibited by interleukin-6. The effect of the cytokine is specific to p53-mediated death, since apoptosis elicited by serum deprivation is refractory to interleukin-6. Our data imply that p53-mediated cell death is not dependent on the induction of a growth arrest but rather may result from mutually incompatible growth-regulatory signals.  相似文献   

9.
10.
Both growth-factor deprivation and contact inhibition suppress cell growth; however, the mechanisms by which they inhibit cell proliferation may not be identical. The function of antiproliferative genes and the induction of programmed cell death are among the potential differences between these growth-arrest mechanisms. Specifically, an inverse relation between the expression of cyclin-dependent kinase inhibitors (CDKIs) and the susceptibility to apoptosis has been reported. To test this relation, we examined the features of growth arrest in a canine melanoma cell line, TLM1. Both contact inhibition and serum deprivation halted cell-cycle progression of TLM1 cells in the G1 phase. Prolonged growth arrest of the cells without restimulation resulted in apoptosis; conversely, the cells reentered the cell cycle after release from contact inhibition or on restimulation with serum. Cell-to-cell contact, but not serum deprivation, led to the expression of p53 and p21/Waf-1. The expression of p21/Waf-1 did not prevent apoptosis. Moreover, the ectopic overexpression of CDKIs increased apoptosis. These results support the premise that growth arrest induced by contact inhibition and serum deprivation are mediated through distinct mechanisms. Furthermore, CDKIs are not universal inhibitors of apoptosis, and in some cases, they may initiate or enhance the apoptotic program.  相似文献   

11.
Insulin-like growth factor binding protein-3 (IGFBP-3) is a multi-functional protein known to induce apoptosis of various cancer cells in an insulin-like growth factor (IGF)-dependent and IGF-independent manner. In our previous study, we found that IGFBP-3 induced apoptosis through the activation of caspases in 786-O cells. In this study, we further examined that whether IGFBP-3 induced apoptosis through the induction of cell cycle arrest in 786-O, A549 and MCF-7 cells. Our results showed that overexpressed IGFBP-3 resulted in typical apoptotic ultrastructures in A549 cells under transmission electron microscope. The result of flow cytometry analysis indicated that IGFBP-3 arrested the cell cycle at G1-S phase in 786-O, A549 and MCF-7 cells. In A549 cells, quantitative real-time PCR and Western blot analysis showed a significant change in the expression of cell cycle-regulated proteins—a decrease in cyclin E1 expression, an increase in p21 expression. These results indicate a possible mechanism for G1 cell cycle arrest by IGFBP-3. Taken together, cyclin E1 and p21 may play important roles in the IGFBP-3-inducing G1 cell cycle arrest and apoptosis in several human cancer cells.  相似文献   

12.
The proliferation of human melanoma cell line A375-6 cells is inhibited by several cytokines, including interleukin-1 (IL-1). A375-R8 cells, a subclone of A375-6, are resistant to IL-1-induced growth inhibition. The proliferation of both cell lines is inhibitable by tumor necrosis factor (TNF). In this study, we characterized the mechanisms of TNF-induced growth inhibition. TNF-induced growth inhibition in both cell lines was partially suppressed by a selective p38 mitogen-activated protein kinase (MAPK) inhibitor (SB203580), whereas a combination of SB203580 and Z-VAD-fmk, an inhibitor for a wide range of caspases, completely blocked TNF-induced growth inhibition, indicating that TNF-induced growth inhibition is mediated by both p38 MAPK and caspases. However, Z-VAD-fmk alone suppressed TNF-induced growth inhibition in A375-R8, but not A375-6, cells, suggesting that there may exist a TNF-induced anti-apoptotic mechanism in A375-6 cells which is lost or mutated in A375-R8 cells. Evidence in support of this notion includes (1) TNF-induced apoptosis only in A375-R8, but not A375-6 cells; (2) cycloheximide enabled TNF to induce apoptosis even in A375-6 cells; and (3) somatic hybrid cells between A375-6 and A375-R8 cells are resistant to TNF-induced apoptosis. Since TNF-induced NF-kappa B activation, cell cycle arrest, RB dephosphorylation, and E2F downregulation are indistinguishable in both cell lines, none of these factors is likely to be involved in the TNF-induced anti-apoptotic mechanism in A375-6 cells. Our results indicate that TNF activates two distinct anti-proliferative pathways including p38 MAPK-dependent cell cycle arrest and caspase-mediated apoptosis, as well as an anti-apoptotic mechanism in melanoma cells.  相似文献   

13.
Triple-negative breast cancer (TNBC) is defined as a group of primary breast cancers lacking expression of estrogen, progesterone, and human epidermal growth factor receptor-2 (HER-2) receptors, characterized by higher relapse rate and lower survival compared with other subtypes. Due to lack of identified targets and molecular heterogeneity, conventional chemotherapy is the only available option for treatment of TNBC, but non-discordant positive therapeutic efficacy could not be achieved. Here, we demonstrated that these TNBC cells were sensitive to teriflunomide, which was a well-known immunomodulatory drug for treatment of relapsing multiple sclerosis (MS). Potent anti-cancer effects in TNBC in vitro, including proliferation inhibition, cell cycle delay, cell apoptosis, and suppression of cell motility and invasiveness, could be achieved with this agent. Of note, we showed that multiple signals involved in TNBC proliferation, survival, migratory, and invasive potential were under regulation by teriflunomide. Among them, we identified down-regulation of growth factor receptors to abolish growth maintenance, suppression of c-Myc, and cyclin D1 to contribute to its anti-proliferative effect, modulation of components of cell cycle to induce S-phase arrest, degradation of Bcl-xL, and up-regulation of BAX via activation of MAPK pathway to induce apoptosis, and inhibition of epithelial-mesenchymal transition (EMT) process, matrix metalloproteinase-9 (MMP9) expression, and inactivation of Src/FAK to reduce TNBC migration and invasion. The results identified teriflunomide may be of therapeutic benefit for the more aggressive and difficult-to-treat breast cancer subtype, indicating the use of teriflunomide for clinical trials for treatment of TNBC patients.  相似文献   

14.
Transforming growth factor beta (TGF-beta) induces cell cycle arrest of most nontransformed epithelial cell lines. In contrast, many human carcinomas are refractory to the growth-inhibitory effect of TGF-beta. TGF-beta overexpression inhibits tumorigenesis, and abolition of TGF-beta signaling accelerates tumorigenesis, suggesting that TGF-beta acts as a tumor suppressor in mouse models of cancer. A screen to identify agents that potentiate TGF-beta-induced growth arrest demonstrated that the potential anticancer agent rapamycin cooperated with TGF-beta to induce growth arrest in multiple cell lines. Rapamycin also augmented the ability of TGF-beta to inhibit the proliferation of E2F1-, c-Myc-, and (V12)H-Ras-transformed cells, even though these cells were insensitive to TGF-beta-mediated growth arrest in the absence of rapamycin. Rapamycin potentiation of TGF-beta-induced growth arrest could not be explained by increases in TGF-beta receptor levels or rapamycin-induced dissociation of FKBP12 from the TGF-beta type I receptor. Significantly, TGF-beta and rapamycin cooperated to induce growth inhibition of human carcinoma cells that are resistant to TGF-beta-induced growth arrest, and arrest correlated with a suppression of Cdk2 kinase activity. Inhibition of Cdk2 activity was associated with increased binding of p21 and p27 to Cdk2 and decreased phosphorylation of Cdk2 on Thr(160). Increased p21 and p27 binding to Cdk2 was accompanied by decreased p130, p107, and E2F4 binding to Cdk2. Together, these results indicate that rapamycin and TGF-beta cooperate to inhibit the proliferation of nontransformed cells and cancer cells by acting in concert to inhibit Cdk2 activity.  相似文献   

15.
The proliferation rate of a cell population reflects a balance between cell division, cell cycle arrest, differentiation and apoptosis. The regulation of these processes is central to development and tissue homeostasis, whereas dysregulation may lead to overt pathological outcomes, notably cancer and neurodegenerative disorders. We report here the cloning of a novel zinc finger protein which regulates apoptosis and cell cycle arrest and was accordingly named Zac1. In vitro Zac1 inhibited proliferation of tumor cells, as evidenced by measuring colony formation, growth rate and cloning in soft agar. In vivo Zac1 abrogated tumor formation in nude mice. The antiproliferative activity of Zac1 was due to induction of extensive apoptosis and of G1 arrest, which proceeded independently of retinoblastoma protein and of regulation of p21(WAF1/Cip1), p27Kip1, p57Kip2 and p16INK4a expression. Zac1-mediated apoptosis was unrelated to cell cycle phase and G1 arrest was independent of apoptosis, indicating separate control of apoptosis and cell cycle arrest. Zac1 is thus the first gene besides p53 which concurrently induces apoptosis and cell cycle arrest.  相似文献   

16.
Recent studies demonstrated that simvastatin has antitumor properties in several types of cancer cells, mainly by inducing apoptosis and inhibiting growth. The arrest of proliferation is a feature of cellular senescence; however, the occurrence of senescence in melanoma cells upon simvastatin treatment has not been investigated until now. Our results demonstrated that exposure of human metastatic melanoma cells (WM9) to simvastatin induces a senescent phenotype, characterized by G1 arrest, positive staining for senescence-associated β-galactosidase assay, and morphological changes. Also, the main pathways leading to cell senescence were examined in simvastatin-treated human melanoma cells, and the expression levels of phospho-p53 and p21 were upregulated by simvastatin, suggesting that cell cycle regulators and DNA damage pathways are involved in the onset of senescence. Since simvastatin can act as a pro-oxidant agent, and oxidative stress may be related to senescence, we measured the intracellular ROS levels in WM9 cells upon simvastatin treatment. Interestingly, we found an increased amount of intracellular ROS in these cells, which was accompanied by elevated expression of catalase and peroxiredoxin-1. Collectively, our results demonstrated that simvastatin can induce senescence in human melanoma cells by activation of p53/p21 pathway, and that oxidative stress may be related to this process.  相似文献   

17.
Our previous study demonstrates that a juxtamembrane 2 (JM2) mimic peptide can inhibit proliferation and induce apoptosis of tumor cells. However, the mechanism remains unclear. In this study, JM2 is found to suppress the growth of 4T1 breast tumors by inducing apoptosis and inhibiting the proliferation of 4T1 tumor cells. Further study indicates that JM2 can stimulate the mitochondria to gather near the microtubule-organizing center of tumor cells and subsequently induce ROS-induced ROS release responses, which results in mitochondrial dysfunction and mitochondria-mediated apoptosis. In addition, JM2 can arrest cell cycle in S phase by regulating the expression of cell cycle-related proteins and consequently inhibit proliferation of tumor cells. Then, a previously designed JM2 grafted hyaluronic acid (HA) injectable hydrogel system (HA-JM2) is injected in a breast tumor-resected model and the HA-JM2 hydrogel can inhibit the malignant proliferation of residual tumor cells and suppress the breast tumor recurrence. These findings not only confirm the application potentials of JM2 in anti-tumor therapy and tumor post-surgery treatments but also provide greater understanding on the mechanisms by which JM2 inhibits tumor growth.Subject terms: Biomedical materials, Breast cancer, Apoptosis, Peptide nucleic acid oligo, Chemotherapy  相似文献   

18.
PPARgamma ligands inhibit growth and induce apoptosis of various cancer cells. 4-Hydroxynonenal (HNE), a product of lipid peroxidation, inhibits proliferation and induces differentiation or apoptosis in neoplastic cells. The aim of this work was to investigate the effects of PPARgamma ligands (rosiglitazone and 15-deoxy-prostaglandin J2 (15d-PGJ2)) and HNE, alone or in association, on proliferation, apoptosis, differentiation, and growth-related and apoptosis-related gene expression in colon cancer cells (CaCo-2 cells). PPARgamma ligands inhibited cell proliferation (IC50 was 37.47+/-6.6 microM, for 15d-PGJ2, and 170.34+/-20 microM for rosiglitazone). HNE (1 microM) inhibited cell growth by 70%. Apoptosis was induced by 15d-PGJ2 and HNE and, to a minor extent, rosiglitazone. Differentiation was induced by rosiglitazone and by 15d-PGJ2, but not by HNE. PPARgamma ligands inhibited c-myc expression. HNE induced a transitory increase in c-myc expression and a subsequent down-regulation. HNE induced p21 expression, whereas PPARgamma ligands did not. Expression of the bax gene was increased by HNE and 15d-PGJ2, but not by rosiglitazone. No synergism or antagonism was found between HNE and PPARgamma ligands. Both apoptosis and differentiation induction may be responsible for the inhibition of proliferation by PPARgamma ligands; apoptosis and c-myc and p21 expression seem to be involved in the inhibition of proliferation by HNE.  相似文献   

19.
摘要 目的:探讨长链非编码RNA(LncRNA)MYU对胶质瘤细胞周期分布、细胞增殖、迁移、侵袭和凋亡的影响,并初步探讨其作用机制。方法:实时荧光定量PCR(RT-qPCR)检测人脑正常胶质细胞HEB和胶质瘤细胞(U-251MG、A172、SHG139)中LncRNA MYU的表达情况。选取SHG139细胞,分为正常对照(NC)组、si-con组、si-LncRNA MYU组进行转染实验,行RT-qPCR检测转染效果。分别采用流式细胞术、细胞计数试剂盒(CCK-8)、Transwell实验检测沉默LncRNA MYU对SHG139细胞周期分布和凋亡、细胞增殖、细胞迁移和侵袭的影响。蛋白免疫印迹(Western blot)法检测基质金属蛋白酶2(MMP-2)、MMP-9、裂解的半胱氨酸天冬氨酸蛋白酶3(Cleaved caspase-3)、Cleaved caspase-9以及磷脂酰肌醇-3-羟激酶/蛋白激酶B(PI3K/Akt)信号通路相关蛋白表达情况。结果:LncRNA MYU在胶质瘤细胞株中比人脑正常胶质细胞中的表达水平显著升高(P<0.05),因此选择表达量最高的SHG139细胞进行转染实验。沉默LncRNA MYU能够显著诱导SHG139细胞G0-G1期阻滞、抑制细胞增殖、迁移和侵袭并诱导细胞凋亡(P<0.05)。沉默LncRNA MYU可显著抑制MMP-2、MMP-9、p-PI3K和p-AKT表达并促进Cleaved caspase-3、Cleaved caspase-9表达(P<0.05)。结论:沉默LncRNA MYU可诱导胶质瘤细胞G0-G1期阻滞,抑制细胞增殖、迁移和侵袭,促进细胞凋亡,其机制可能与抑制PI3K/AKT信号通路有关。  相似文献   

20.
IL-21 costimulates B cell proliferation and cooperatively with IL-4 promotes T cell-dependent Ab responses. Somewhat paradoxically, IL-21 also induces apoptosis of B cells. The present study was undertaken to more precisely define the expression of the IL-21R, using a novel mAb, and the circumstances by which IL-21 promotes B cell growth vs death. The IL-21R was first detected during T and B cell development, such that this receptor is expressed by all mature lymphocytes. The IL-21R was further up-regulated after B and T activation, with the highest expression by activated B cells. Functional studies demonstrated that IL-21 substantially inhibited proliferation and induced Bim-dependent apoptosis for LPS or CpG DNA-activated B cells. In contrast, IL-21 induced both costimulation and apoptosis for anti-CD40-stimulated B cells, whereas IL-21 primarily costimulated B cells activated by anti-IgM or anti-IgM plus anti-CD40. Upon blocking apoptosis using C57BL/6 Bim-deficient or Bcl-2 transgenic B cells, IL-21 readily costimulated responses to anti-CD40 while proliferation to LPS was still inhibited. Engagement of CD40 or the BCR plus CD40 prevented the inhibitory effect by IL-21 for LPS-activated B cells. Collectively, these data indicate that there are three separable outcomes for IL-21-stimulated B cells: apoptosis, growth arrest, or costimulation. We favor a model in which IL-21 promotes B cell maturation during a productive T cell-dependent B cell response, while favoring growth arrest and apoptosis for nonspecifically or inappropriately activated B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号