首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coat protein subunit of the RNA bacteriophage ZIK/1 has a molecular weight of 12100 and does not contain histidine, methionine and cysteine. The amino acid composition of the coat protein is different from that of other RNA bacteriophage coat proteins. Bacteriophage ZIK/1 belongs to a class of RNA bacteriophages distinct from the f2 type, which lack histidine in their coat proteins, and the Qβ type, which lack histidine and methionine. Bacteriophage ZIK/1 RNA is an efficient template in the Escherichia coli cell-free system producing coat protein as the major product and a number of non-coat proteins. This result is similar to that obtained with RNA from f2-type bacteriophages. It is probable that the genomes of RNA bacteriophages are structurally similar and that differences between the types of RNA bacteriophage arise from minor differences in RNA sequence.  相似文献   

2.
We have developed a system for directly isolating foreign peptides displayed on the N-terminus of the major coat protein of bacteriophage M13. The phage particle in this system is formed as a mixture of wild type and modified coat proteins. The N-terminal segment of the modified coat protein was mutated for chemical cleavage, in order to obtain the displayed peptide from the major coat protein. Using 13C, 15N- labeled medium, we introduced stable isotopes, 13C and/or 15N, into the coat proteins. The NMR spectra for the cleaved peptides from the phage particles could be recorded within a few days after the selection of the phage clone.  相似文献   

3.
A dense complex has been isolated from bacteria infected with gene V amber mutant f 1 bacteriophage. The major protein in this complex is the f 1 bacteriophage-specific gene II protein. Other proteins in the complex include the f 1 bacteriophage coat protein and proteins which migrate on sodium dodecyl sulfate/polyacrylamide gel electrophoresis with the f1 bacteriophage-specific gene III, gene IV and X protein. A protein of approximately 20,000 Mr is also present in the complex. Examination of bacteria infected with gene V mutant f1 bacteriophage revealed the complex as a densely staining amorphous body which appears to be associated with the cytoplasmic membrane. Bacteria infected with f1 bacteriophage that contain amber mutations in genes other than gene V do not contain this complex.  相似文献   

4.
For early detection of many diseases, it is critical to be able to diagnose small amounts of biomarkers in blood or serum. One of the most widely used sensing assays is the enzyme-linked immunosorbent assay (ELISA), which typically uses detection monoclonal antibodies conjugated to enzymes to produce colorimetric signals. To increase the overall sensitivities of these sensors, we demonstrate the use of a dually modified version of filamentous bacteriophage Fd that produces significantly higher colorimetric signals in ELISAs than what can be achieved using antibodies alone. Because only a few proteins at the tip of the micron-long bacteriophage are involved in antigen binding, the approximately 4000 other coat proteins can be augmented—by either chemical functionalization or genetic engineering—with hundreds to thousands of functional groups. In this article, we demonstrate the use of bacteriophage that bear a large genomic fusion that allows them to bind specific antibodies on coat protein 3 (p3) and multiple biotin groups on coat protein 8 (p8) to bind to avidin-conjugated enzymes. In direct ELISAs, the anti-rTNFα (recombinant human tumor necrosis factor alpha)-conjugated bacteriophage show approximately 3- to 4-fold gains in signal over that of anti-rTNFα, demonstrating their use as a platform for highly sensitive protein detection.  相似文献   

5.
Incorporation of numerous copies of a heterologous protein (bovine pancreatic trypsin inhibitor; BPTI) fused to the mature major coat protein (gene VIII product; VIII) of bacteriophage M13 has been demonstrated. Optimization of the promoter, signal peptide and host bacterial strain allowed for the construction of a working vector consisting of the M13 genome, into which was cloned a synthetic gene composed of a lac (or tac) promoter, and sequences encoding the bacterial alkaline phosphatase signal peptide, mature BPTI and the mature coat protein. Processing of the BPTI-VIII fusion protein and its incorporation into the bacteriophage were found to be maximal in a host bacterial strain containing a prlA/secY mutation. Functional protein is displayed on the surface of M13 phage, as judged by specific interactions with antiserum, anhydrotrypsin, and trypsin. Such display vectors can be used for epitope mapping, production of artificial vaccines and the screening of diverse libraries of proteins or peptides having affinity for a chosen ligand. The VIII display phage system has practical advantages over the III display phage system in that many more copies of the fusion protein can be displayed per phage particle and the presence of the VII fusion protein has little or no effect on the infectivity of the resulting bacteriophage.  相似文献   

6.
Nine mutants of bacteriophage Qβ were studied, each having an amber mutation in the coat protein gene. The N-terminal coat protein fragments synthesized in vitro by a non-suppressing Escherichia coli cell extract directed by the mutant RNA's were characterized by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, agarose column gel filtration, and their relative content of certain amino acids. These methods permitted the mutant codon in the coat protein gene to be identified unambiguously; in three cases the amber mutation was at position 17; in five cases, at position 37, and in one case at position 86.Phage-specific uracil incorporation and Qβ replicase activities were measured in infected, non-suppressing cells. Their amounts for each mutant were related to the position of the amber mutation, indicating that across the coat protein gene of Qβ there exists a gradient of polarity for the expression of the replicase gene.  相似文献   

7.
Bacteriophage lambda (λ) permits the display of many foreign peptides and proteins on the gpD major coat protein. However, some recombinant derivatives of gpD are incompatible with the assembly of stable phage particles. This presents a limitation to current λ display systems. Here we describe a novel, plasmid-based expression system in which gpD deficient λ lysogens can be co-complemented with both wild-type and recombinant forms of gpD. This dual expression system permits the generation of mosaic phage particles that contain otherwise recalcitrant recombinant gpD fusion proteins. Overall, this improved gpD display system is expected to permit the expression of a wide variety of peptides and proteins on the surface of bacteriophage λ and to facilitate the use of modified λ phage vectors in mammalian gene transfer applications.  相似文献   

8.
The size distribution of bacteriophage MS2 coat protein nascent chains purified from MS2-infected Escherichia coli has been determined. Accumulations of nascent chains of discrete sizes were observed, providing evidence that the rate of chain elongation during coat protein biosynthesis is not uniform. A correlation of the size of nascent peptides which accumulate during MS2 coat protein biosynthesis and the position on the MS2 coat protein mRNA of the ribosome carrying those lengths of nascent peptides may be made. This correlation leads to the hypothesis that regions of mRNA secondary structure impede the movement of ribosomes during chain elongation and thus serve as the origin of the accumulation of nascent chains of discrete sizes.  相似文献   

9.
M13 bacteriophage display presents polypeptides as fusions to phage coat proteins. Such phage-displayed ligands offer useful reagents for biosensors. Here, we report a modified phage propagation protocol for the consistent and robust display of two different genetically encoded ligands on the major coat protein, P8. The results demonstrate that the phage surface reaches a saturation point for maximum peptide display.  相似文献   

10.
Previously, we obtained a new viral vector based on the Alternanthera mosaic virus strain MU (AltMV-MU). The gene of interest was placed under control of two subgenomic promoters (sgp). Viral vector provided the superexpression of target proteins in Nicotiana benthamiana. In the present work, to increase the level of protein expression, this viral vector was modified and the coat protein gene was placed under control of three sgp. The new viral vector provided superexpression of the protein of interest in plants, and its amount was more than 50% of the total soluble protein in cells. The efficiency of the target protein expression in the plants transformed with viral vectors containing two and three sgp was compared.  相似文献   

11.
The membrane insertion of single bacteriophage Pf3 coat proteins was observed by confocal fluorescence microscopy. Within seconds after addition of the purified and fluorescently labeled protein to liposomes or proteoliposomes containing the purified and reconstituted membrane insertase YidC of Escherichia coli, the translocation of the labeled residue was detected. The 50-amino-acid-long Pf3 coat protein was labeled with Atto520 and inserted into the proteoliposomes. Translocation of the dye into the proteoliposome was revealed by quenching the fluorescence outside of the vesicles. This allowed us to distinguish single Pf3 coat proteins that only bound to the surface of the liposomes from proteins that had inserted into the bilayer and translocated the dye into the lumen. The Pf3 coat protein required the presence of the YidC membrane insertase, whereas mutants that have a membrane-spanning region with an increased hydrophobicity were autonomously inserted into the liposomes without YidC.  相似文献   

12.
Studies were made of the N-terminal formylmethionine content of nascent and complete coat protein of bacteriophage Qβ synthesized in an Escherichia coli cell-free system. Under normal conditions of cell-free protein synthesis the formylmethionine residue was retained by all the nascent chains but by only about 50% of the completed coat protein molecules. If 2-mercaptoethanol was omitted from the cell-free system, the formylmethionine residue was cleaved during the course of peptide chain elongation. All nascent peptides which contained fewer than 40±5 amino acids retained the formylmethionine residue. Thereafter, the proportion of nascent peptides lacking the residue increased with peptide length to about 70% for nearly full length nascent peptides and complete released coat protein molecules.  相似文献   

13.
We describe here two systems for encoding foreign amino acid sequences in the exposed N-terminal segment of the major coat protein of bacteriophage fd. Small peptides can be encoded directly; larger peptides are encoded in hybrid bacteriophage particles, in which the capsid is formed from a mixture of wild-type and modified coat proteins. In both cases, the peptides are present in multiple copies per phage particle. Peptides that represent the circumsporozoite protein, the major surface antigen of the sporozoites of the malaria parasite, Plasmodium falciparum, were inserted in this way and found to be highly immunogenic. These systems should prove to be valuable in displaying specific or random peptides as antigens, and could lead to cheap and effective vaccines. They will also allow rapid screening of peptides as potential agents of other biological effects, with important applications in biomolecular design.  相似文献   

14.
The coat and scaffolding proteins of bacteriophage P22 procapsids have been purified in soluble form. By incubating both purified proteins with a mutant-infected cell extract lacking procapsids, but competent for DNA packaging in vitro (Poteete et al., 1979), we were able to obtain assembly of biologically active procapsids in vitro. The active species for complementation in vitro in both protein preparations copurified with the soluble subunits, indicating that these subunits represent precursors in procapsid polymerization.When the purified coat and scaffolding subunits were mixed directly, they polymerized into double-shelled procapsid-like structures during dialysis from 1.5 m-guanidine hydrochloride to buffer. When dialyzed separately under the same conditions, the scaffolding subunits did not polymerize but remained as soluble subunits, as did most of the coat subunits. No evidence was found for self-assembly of the scaffolding protein in the absence of the coat protein.The unassembled coat subunits sedimented at 3.9 S and the unassembled scaffolding subunits sedimented at 2.4 S in sucrose gradients. The Stokes' radius, determined by gel filtration, was 25 Å for the coat subunits and 34 Å for the scaffolding subunits. These results indicate that the scaffolding subunits are relatively slender elongated molecules, whereas the coat subunits are more globular.The experiments suggest that the procapsid is built by copolymerization of the two protein species. Their interaction on the growing surface of the shell structure, and not in solution, appears to regulate successive binding interactions.  相似文献   

15.
Translation of bacteriophage R17 and Qbeta RNA in a mammalian cell-free system   总被引:11,自引:0,他引:11  
The polycistronic RNAs from both bacteriophage R17 and Qβ are translated in a mammalian cell-free system of purified and partially purified components. The requirement of one of the partially purified initiation factors (IF-E3 from rabbit reticulocytes) for the phage RNA translation is strikingly different from that for rabbit globin messenger RNA translation. The phage RNA-directed products are characterized by acrylamide gel electrophoresis and compared with those synthesized in an Escherichia coli cell-free system. There is good agreement between the respective coat proteins and the presumptive synthetase proteins. R17 RNA directs the synthesis of two additional defined polypeptides. However, their possible relationship with the A-protein cistron has not yet been investigated. The RNA from the amB2 mutant of R17, which carries an amber triplet at position 6 in the coat protein cistron, directs the synthesis of the same polypeptides as the wild-type RNA with the exception of the coat protein which is completely abolished. This identifies the product made with wild-type RNA as coat protein and provides a direct in vitro assay for the suppression of nonsense mutations in eukaryotic cells.  相似文献   

16.
17.
We have genetically modified filamentous bacteriophage to deliver genes to mammalian cells. In previous studies we showed that noncovalently attached fibroblast growth factor (FGF2) can target bacteriophage to COS-1 cells, resulting in receptor-mediated transduction with a reporter gene. Thus, bacteriophage, which normally lack tropism for mammalian cells, can be adapted for mammalian cell gene transfer. To determine the potential of using phage-mediated gene transfer as a novel display phage screening strategy, we transfected COS-1 cells with phage that were engineered to display FGF2 on their surface coat as a fusion to the minor coat protein, pIII. Immunoblot and ELISA analysis confirmed the presence of FGF2 on the phage coat. Significant transduction was obtained in COS-1 cells with the targeted FGF2-phage compared with the nontargeted parent phage. Specificity was demonstrated by successful inhibition of transduction in the presence of excess free FGF2. Having demonstrated mammalian cell transduction by phage displaying a known gene targeting ligand, it is now feasible to apply phage-mediated transduction as a screen for discovering novel ligands.  相似文献   

18.
Improved method for selecting RNA-binding activities in vivo.   总被引:1,自引:1,他引:0       下载免费PDF全文
RNA challenge phages are modified versions of bacteriophage P22 that allow one to select directly for a specific RNA-protein interaction in vivo. The original construction method for generating a bacteriophage that encodes a specific RNA target requires two homologous recombination reactions between plasmids and phages in bacteria. An improved method is described that enables one to readily construct RNA challenge phages through a single homologous recombination reaction in vivo. We have applied the new method to construct a derivative of P22R17, an RNA challenge phage that undergoes lysogenic development in bacterial cells that express the bacteriophage R17/MS2 coat protein.  相似文献   

19.
The coat proteins of single-stranded RNA bacteriophages specifically recognize and bind to a hairpin structure in their genome at the beginning of the replicase gene. The interaction serves to repress the synthesis of the replicase enzyme late in infection and contributes to the specific encapsidation of phage RNA. While this mechanism is conserved throughout the Leviviridae family, the coat protein and operator sequences from different phages show remarkable variation, serving as prime examples for the co-evolution of protein and RNA structure. To better understand the protein–RNA interactions in this virus family, we have determined the three-dimensional structure of the coat protein from bacteriophage Qβ bound to its cognate translational operator. The RNA binding mode of Qβ coat protein shares several features with that of the widely studied phage MS2, but only one nucleotide base in the hairpin loop makes sequence-specific contacts with the protein. Unlike in other RNA phages, the Qβ coat protein does not utilize an adenine-recognition pocket for binding a bulged adenine base in the hairpin stem but instead uses a stacking interaction with a tyrosine side chain to accommodate the base. The extended loop between β strands E and F of Qβ coat protein makes contacts with the lower part of the RNA stem, explaining the greater length dependence of the RNA helix for optimal binding to the protein. Consequently, the complex structure allows the proposal of a mechanism by which the Qβ coat protein recognizes and discriminates in favor of its cognate RNA.  相似文献   

20.
The three-dimensional structure of the membrane-bound form of the major coat protein of Pf1 bacteriophage was determined in phospholipid bilayers using orientation restraints derived from both solid-state and solution NMR experiments. In contrast to previous structures determined solely in detergent micelles, the structure in bilayers contains information about the spatial arrangement of the protein within the membrane, and thus provides insights to the bacteriophage assembly process from membrane-inserted to bacteriophage-associated protein. Comparisons between the membrane-bound form of the coat protein and the previously determined structural form found in filamentous bacteriophage particles demonstrate that it undergoes a significant structural rearrangement during the membrane-mediated virus assembly process. The rotation of the transmembrane helix (Q16-A46) around its long axis changes dramatically (by 160°) to obtain the proper alignment for packing in the virus particles. Furthermore, the N-terminal amphipathic helix (V2-G17) tilts away from the membrane surface and becomes parallel with the transmembrane helix to form one nearly continuous long helix. The spectra obtained in glass-aligned planar lipid bilayers, magnetically aligned lipid bilayers (bicelles), and isotropic lipid bicelles reflect the effects of backbone motions and enable the backbone dynamics of the N-terminal helix to be characterized. Only resonances from the mobile N-terminal helix and the C-terminus (A46) are observed in the solution NMR spectra of the protein in isotropic q > 1 bicelles, whereas only resonances from the immobile transmembrane helix are observed in the solid-state 1H/15N-separated local field spectra in magnetically aligned bicelles. The N-terminal helix and the hinge that connects it to the transmembrane helix are significantly more dynamic than the rest of the protein, thus facilitating structural rearrangement during bacteriophage assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号