首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Subunit II (CyoA) of cytochrome bo3 oxidase, which spans the inner membrane twice in bacteria, has several unusual features in membrane biogenesis. It is synthesized with an amino-terminal cleavable signal peptide. In addition, distinct pathways are used to insert the two ends of the protein. The amino-terminal domain is inserted by the YidC pathway whereas the large carboxyl-terminal domain is translocated by the SecYEG pathway. Insertion of the protein is also proton motive force (pmf)-independent. Here we examined the topogenic sequence requirements and mechanism of insertion of CyoA in bacteria. We find that both the signal peptide and the first membrane-spanning region are required for insertion of the amino-terminal periplasmic loop. The pmf-independence of insertion of the first periplasmic loop is due to the loop's neutral net charge. We observe also that the introduction of negatively charged residues into the periplasmic loop makes insertion pmf dependent, whereas the addition of positively charged residues prevents insertion unless the pmf is abolished. Insertion of the carboxyl-terminal domain in the full-length CyoA occurs by a sequential mechanism even when the CyoA amino and carboxyl-terminal domains are swapped with other domains. However, when a long spacer peptide is added to increase the distance between the amino-terminal and carboxyl-terminal domains, insertion no longer occurs by a sequential mechanism.  相似文献   

2.
The endangered anuran species, Odorrana ishikawae, is endemic to only two small Japanese Islands, Amami and Okinawa. To assess the innate immune system in this frog, we investigated antimicrobial peptides in the skin using artificially bred animals. Nine novel antimicrobial peptides containing the C-terminal cyclic heptapeptide domain were isolated on the basis of antimicrobial activity against Escherichia coli. The peptides were members of the esculentin-1 (two peptides), esculentin-2 (one peptide), palustrin-2 (one peptide), brevinin-2 (three peptides) and nigrocin-2 (two peptides) antimicrobial peptide families. They were named esculentin-1ISa, esculentin-1ISb, esculentin-2ISa, palustrin-2ISa, brevinin-2ISa, brevinin-2ISb, brevinin-2ISc, nigrocin-2ISa and nigrocin-2ISb. Peptide primary structures suggest a close relationship with the Asian odorous frogs, Odorrana grahami and Odorrana hosii. These antimicrobial peptides possessed a broad-spectrum of growth inhibition against five microorganisms (E. coli, Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis and Candida albicans). Nine different cDNAs encoding the precursor proteins were also cloned and showed that the precursor proteins exhibited a signal peptide, an N-terminal acidic spacer domain, a Lys-Arg processing site and an antimicrobial peptide at the C-terminus.  相似文献   

3.
A series of our previously described BH3 peptide mimetics derived from Bim-BH3 domain core region were found to exhibit weak to potent PTP1B binding affinity and inhibitory activities via target-based drug screening. Among these compounds, a 12-aa Bim-BH3 core sequence peptide conjugated to palmitic acid (SM-6) displayed good PTP1B binding affinity (KD?=?8.38?nmol/L), inhibitory activity (IC50?=?1.20?μmol/L) and selectivity against other PTPs (TCPTP, LAR, SHP-1 and SHP-2). Furthermore, SM-6 promoted HepG2 cell glucose uptake and inhibited the expression of PTP1B, indicating that SM-6 could improve the insulin resistance effect in the insulin-resistant HepG2 cell model. These results may indicate a new direction for the application of BH3 peptide mimetics and promising PTP1B peptide inhibitors could be designed and developed based on SM-6.  相似文献   

4.
Bone morphogenetic protein 2 (BMP2) plays an important role in skeletogenesis, osteoblastic differentiation and limb patterning. Its protein coding region consists of the signal peptide, the pro-domain (that regulates post-translational control of synthesis) and the mature domain (that carries out gene function). This gene has been considered previously to be conserved. By re-analyzing the coding region of BMP2 in 31 species of vertebrates, we found that the mature domain region is indeed conserved in mammals, but not among non-mammalian taxa. Moreover, compared to the mature domain, the signal peptide and pro-domain have experienced dramatic variation in all vertebrates. Six amino acid sites in the pro-domain were identified to be under diversifying Darwinian selection in mammals. These results indicate that the signal peptide and pro-domain of BMP2 may be involved in skeletal poly-morphology during mammal evolution and the mature domain may also contribute to this function in non-mammals. This supports the hypothesis that morphological variations in mammals result mainly from a change in post-translational control of synthesis, whereas in non-mammals they result mainly from gene functional change.  相似文献   

5.
SCUBE1 (signal peptide-CUB-EGF domain-containing protein 1) is a novel, secreted, cell surface glycoprotein expressed during early embryogenesis and found in platelet and endothelial cells. This protein is composed of an N-terminal signal peptide sequence followed by nine tandemly arranged epidermal growth factor (EGF)-like repeats, a spacer region, three cysteine-rich repeat motifs, and one CUB domain at the C terminus. However, little is known about its domain and biological function. Here, we generated a comprehensive panel of domain deletion constructs and a new genetic mouse model with targeted disruption of Scube1 (Scube1(Delta cub/Delta cub)) to investigate the domain function and biological significance. A number of cell-based assays were utilized to define the critical role of the spacer region for membrane association and establish that the EGF-like repeats 7-9 are sufficient for the formation of SCUBE1-mediated homophilic adhesions in a calcium-dependent fashion. Biochemical and molecular analyses showed that the C-terminal cysteine-rich motifs and CUB domain could directly bind and antagonize the bone morphogenetic protein activity. Furthermore, genetic ablation of this C-terminal region resulted in brain malformation in the Scube1(Delta cub/Delta cub) embryos. Together, our results support the dual roles of SCUBE1 on brain morphogenesis and cell-cell adhesions through its distinct domain function.  相似文献   

6.
The p53 core domain binds to response elements (REs) that contain two continuous half-sites as a cooperative tetramer, but how p53 recognizes discontinuous REs is not well understood. Here we describe the crystal structure of the p53 core domain bound to a naturally occurring RE located at the promoter of the Bcl-2-associated X protein (BAX) gene, which contains a one base-pair insertion between the two half-sites. Surprisingly, p53 forms a tetramer on the BAX-RE that is nearly identical to what has been reported on other REs with a 0-bp spacer. Each p53 dimer of the tetramer binds in register to a half-site and maintains the same protein–DNA interactions as previously observed, and the two dimers retain all the protein–protein contacts without undergoing rotation or translation. To accommodate the additional base pair, the DNA is deformed and partially disordered around the spacer region, resulting in an apparent unwinding and compression, such that the interactions between the dimers are maintained. Furthermore, DNA deformation within the p53-bound BAX-RE is confirmed in solution by site-directed spin labeling measurements. Our results provide a structural insight into the mechanism by which p53 binds to discontinuous sites with one base-pair spacer.  相似文献   

7.
Altered proteolytic activities of ADAMTS-4 expressed by C-terminal processing   总被引:10,自引:0,他引:10  
ADAMTS-4 (a disintegrin and metalloprotease with thrombospondin motifs) is a multidomain metalloproteinase belonging to the reprolysin family. The enzyme cleaves aggrecan core protein at several sites. Here we report that the non-catalytic ancillary domains of the enzyme play a major role in regulating aggrecanase activity, with the C-terminal spacer domain masking the general proteolytic activity. Expressing a series of domain deletion mutants in mammalian cells and examining their aggrecan-degrading and general proteolytic activities, we found that full-length ADAMTS-4 of 70 kDa was the most effective aggrecanase, but it exhibited little activity against the Glu(373)-Ala(374) bond, the site originally characterized as a signature of aggrecanase activity. Little activity was detected against reduced and carboxymethylated transferrin (Cm-Tf), a general proteinase substrate. However, it readily cleaved the Glu(1480)-Gly(1481) bond in the chondroitin sulfate-rich region of aggrecan. Of the constructed mutants, the C-terminal spacer domain deletion mutant more effectively hydrolyzed both the Glu(373)-Ala(374) and Glu(1480)-Gly(1481) bonds. It also revealed new activities against Cm-Tf, fibromodulin, and decorin. Further deletion of the cysteine-rich domain reduced the aggrecanase activity by 80% but did not alter the activity against Cm-Tf or fibromodulin. Further removal of the thrombospondin type I domain drastically reduced all tested proteolytic activities, and very limited enzymatic activity was detected with the catalytic domain. Full-length ADAMTS-4 binds to pericellular and extracellular matrix, but deletion of the spacer domain releases the enzyme. ADAMTS-4 lacking the spacer domain has promiscuous substrate specificity considerably different from that previously reported for aggrecan core protein. Finding of ADAMTS-4 in the interleukin-1alpha-treated porcine articular cartilage primarily as a 46-kDa form suggests that it exhibits a broader substrate spectrum in the tissue than originally considered.  相似文献   

8.
9.
Sec secretory proteins are distinguished from cytoplasmic ones by N-terminal signal peptides with multiple roles during post-translational translocation. They contribute to preprotein targeting to the translocase by slowing down folding, binding receptors and triggering secretion. While signal peptides get cleaved after translocation, mature domains traffic further and/or fold into functional states. How signal peptides delay folding temporarily, to keep mature domains translocation-competent, remains unclear. We previously reported that the foldon landscape of the periplasmic prolyl-peptidyl isomerase is altered by its signal peptide and mature domain features. Here, we reveal that the dynamics of signal peptides and mature domains crosstalk. This involves the signal peptide’s hydrophobic helical core, the short unstructured connector to the mature domain and the flexible rheostat at the mature domain N-terminus. Through this cis mechanism the signal peptide delays the formation of early initial foldons thus altering their hierarchy and delaying mature domain folding. We propose that sequence elements outside a protein’s native core exploit their structural dynamics to influence the folding landscape.  相似文献   

10.
The SCUBE gene family encode secreted, extracellular proteins that share a distinct domain organization of at least five recognizable motifs, including an amino-terminal signal peptide sequence, multiple EGF-like domains, a large spacer region containing multiple N-linked glycosylation sites, three repeated stretches of six-cysteine residues and a carboxy-terminal CUB domain. We describe a Scube3(tm1Dge/H) targeted allele, which replaces the entire coding region for Exons 2 and 3 with a neomycin-lacZ selectable marker cassette predicted to delete the first two EGF-like domains of the transcribed protein. Scube3(+/tm1Dge/H) embryos demonstrate strong β-galactosidase activity in the early facial epithelium, including the branchial arches and facial processes, the otic vesicle, limb buds, and neural tube. In addition, strong reporter activity was identified in the epithelial compartments of developing teeth and hair follicles. However, analysis of the Scube3(tm1Dge/H) allele revealed that it encodes a truncated protein, which contains part of the spacer region and CUB domain. It is likely that this protein retains functionality because our analysis reveals that Scube3(tm1Dge/H; tm1Dge/H) mice are phenotypically normal. Whilst acting as a useful reporter, these mice do not provide any insight into the potential role of Scube3 during embryonic development.  相似文献   

11.
The human immunodeficiency virus (HIV) capsid (CA) protein assembles into a hexameric lattice that forms the mature virus core. Contacts between the CA N-terminal domain (NTD) of one monomer and the C-terminal domain (CTD) of the adjacent monomer are important for the assembly of this core. In this study, we have examined the effects of mutations in the NTD region associated with this interaction. We have found that such mutations yielded modest reductions of virus release but major effects on viral infectivity. Cell culture and in vitro assays indicate that the infectivity defects relate to abnormalities in the viral cores. We have selected second-site compensatory mutations that partially restored HIV infectivity. These mutations map to the CA CTD and to spacer peptide 1 (SP1), the portion of the precursor Gag protein immediately C terminal to the CTD. The compensatory mutations do not locate to the molecularly modeled intermolecular NTD-CTD interface. Rather, the compensatory mutations appear to act indirectly, possibly by realignment of the C-terminal helix of the CA CTD, which participates in the NTD-CTD interface and has been shown to serve an important role in the assembly of infectious virus.  相似文献   

12.
The trnL-trnF region is located in the large single-copy region of the chloroplast genome. It consists of the trnL gene, a group I intron, and the trnL-F intergenic spacer. We analyzed the evolution of the region in three gymnosperm families, Taxaceae, Cephalotaxaceae, and Podocarpaceae, with especially dense sampling in Taxaceae and Cephalotaxaceae, for which we sequenced 43 accessions, representing all species. The trnL intron has a conserved secondary structure and contains elements that are homologous across land plants, and the spacer is highly variable in length and composition. The spatial distribution of nucleotide diversity along the trnL-F region suggests that different portions of this region have different evolutionary patterns. Tandem repeats that form stem–loop structures were detected in both the trnL intron and the trnL-F spacer, and the spacer sequences contain promoter elements for the trnF gene. The presence of promoters and stem–loop structures in the trnL-F spacer and high sequence variation in this region suggest that trnL and trnF are independently transcribed. Stem–loop regions P6, P8, and P9 of the trnL intron and the trnL-F spacer (except the promoter elements) might undergo neutral evolution with respect to their escape from functional constraints.  相似文献   

13.
Activation of the high-osmolarity glycerol (HOG) pathway for osmoregulation in the yeast Saccharomyces cerevisiae involves interaction of the adaptor Ste50p with the cytoplasmic tail of single-transmembrane protein Opy2p. We have determined the solution structure of the Ste50p-RA (Ras association) domain, and it shows an atypical RA fold lacking the β1 and β2 strands of the canonical motif. Although the core of the RA domain is fully functional in the pheromone response, an additional region is required for the HOG pathway activation. Two peptide motifs within the intrinsically disordered cytoplasmic tail of Opy2p defined by NMR spectroscopy physically interact with the Step50p-RA domain. These Opy2p-derived peptides bind overlapping regions of the Step50p-RA domain with similarly weak affinities, suggesting a multivalent interaction of these proteins as a crucial point of control of the HOG pathway. As well, overall selection of signaling pathways depends on functionally distinct regions of the Ste50p-RA domain, implicating this element in the control of global regulatory decisions.  相似文献   

14.
《Gene》1998,216(1):103-111
A gene encoding a novel transmembrane protein was identified by DNA sequence analysis within the insulin-dependent diabetes mellitus (IDDM) locus IDDM4 on chromosome 11q13. Based on its chromosomal position, this gene is a candidate for conferring susceptibility to diabetes. The gene, termed low-density lipoprotein receptor related protein 5 (LRP5), encodes a protein of 1615 amino acids that contains conserved modules which are characteristic of the low-density lipoprotein (LDL) receptor family. These modules include a putative signal peptide for protein export, four epidermal growth factor (EGF) repeats with associated spacer domains, three LDL-receptor (LDLR) repeats, a single transmembrane spanning domain, and a cytoplasmic domain. The encoded protein has a unique organization of EGF and LDLR repeats; therefore, LRP5 likely represents a new category of the LDLR family. Both human and mouse LRP5 cDNAs have been isolated and the encoded mature proteins are 95% identical, indicating a high degree of evolutionary conservation.  相似文献   

15.
Prior studies suggested that the core 1 β3-galactosyltransferase (T-synthase) is a specific client of the endoplasmic reticulum chaperone Cosmc, whose function is required for T-synthase folding, activity, and consequent synthesis of normal O-glycans in all vertebrate cells. To explore whether the T-synthase encodes a specific recognition motif for Cosmc, we used deletion mutagenesis to identify a cryptic linear and relatively hydrophobic peptide in the N-terminal stem region of the T-synthase that is essential for binding to Cosmc (Cosmc binding region within T-synthase, or CBRT). Using this sequence information, we synthesized a peptide containing CBRT and found that it directly interacts with Cosmc and also inhibits Cosmc-assisted in vitro refolding of denatured T-synthase. Moreover, engineered T-synthase carrying mutations within CBRT exhibited diminished binding to Cosmc that resulted in the formation of inactive T-synthase. To confirm the general recognition of CBRT by Cosmc, we performed a domain swap experiment in which we inserted the stem region of the T-synthase into the human β4GalT1 and found that the CBRT element can confer Cosmc binding onto the β4GalT1 chimera. Thus, CBRT is a unique recognition motif for Cosmc to promote its regulation and formation of active T-synthase and represents the first sequence-specific chaperone recognition system in the ER/Golgi required for normal protein O-glycosylation.  相似文献   

16.
MUC1 mucin is a large transmembrane glycoprotein, the extracellular domain of which is formed by a repeating 20 amino acid sequence, GVTSAPDTRPAPGSTAPPAH. In normal breast epithelial cells, the extracellular domain is densely covered with highly branched complex carbohydrate structures. However, in neoplastic breast tissue, the extracellular domain is under-glycosylated, resulting in the exposure of a highly immunogenic core peptide epitope (PDTRP in bold above), as well as in the exposure of normally cryptic core Tn (GalNAc), STn (sialyl alpha2-6 GalNAc) and TF (Gal beta1-3 GalNAc) carbohydrates. Here, we report the results of 1H NMR structural studies, natural abundance 13C NMR relaxation measurements and distance-restrained MD simulations designed to probe the structural and dynamical effects of Tn-glycosylation within the PDTRP core peptide epitope. Two synthetic peptides were studied: a nine-residue MUC1 peptide of the sequence, Thr1-Ser2-Ala3-Pro4-Asp5-Thr6-Arg7-Pro8-Ala9, and a Tn-glycosylated version of this peptide, Thr1-Ser2-Ala3-Pro4-Asp5-Thr6(alphaGalNAc)-Arg7-Pro8-Ala9. The results of these studies show that a type I beta-turn conformation is adopted by residues PDTR within the PDTRP region of the unglycosylated MUC1 sequence. The existence of a similar beta-turn within the PDTRP core peptide epitope of the under-glycosylated cancer-associated MUC1 mucin protein might explain the immunodominance of this region in vivo, as the presence of defined secondary structure within peptide epitope regions has been correlated with increased immunogenicity in other systems. Our results have also shown that Tn glycosylation at the central threonine within the PDTRP core epitope region shifts the conformational equilibrium away from the type I beta-turn conformation and toward a more rigid and extended state. The significance of these results are discussed in relation to the possible roles that peptide epitope secondary structure and glycosylation state may play in MUC1 tumor immunogenicity.  相似文献   

17.
L T Hunt  W C Barker 《FEBS letters》1988,233(2):282-288
We observed a striking sequence similarity between precursors for promagainin and procaerulein type I (excluding the caerulein peptide region). Additional comparisons of the promagainin precursor with those of other procaeruleins, proxenopsin, and peptide-Gly-Leu-amide revealed that all possess one or more copies of a structurally similar spacer module, from which an amphiphilic spacer peptide is cleaved. Promagainin yields the magainins, spacer peptides with antimicrobial activity; we suggest other spacer peptides may have similar activity. We propose that the genes for the four kinds of hormones were derived from a common ancestral gene through gene and exon duplications and that the procaerulein and proxenopsin genes are mosaic genes in which the original 3'-ends were replaced by exon shuffling.  相似文献   

18.
Amphibian skin has proved repeatedly to be a largely untapped source of bioactive peptides and this is especially true of members of the Phyllomedusinae subfamily of frogs native to South and Central America. Tryptophyllins are a group of peptides mainly found in the skin of members of this genus. In this study, a novel tryptophyllin (TPH) type 3 peptide, named AcT-3, has been isolated and structurally-characterised from the skin secretion and lyophilised skin extract of the red-eye leaf frog, Agalychnis callidryas. The peptide was identified in and purified from the skin secretion by reverse-phase HPLC. MALDI-TOF mass spectrometry and MS/MS fragmentation sequencing established its primary structure as: pGlu-Gly-Lys-Pro-Tyr-Trp-Pro-Pro-Pro-Phe-Leu-Pro-Glu, with a non-protonated molecular mass of 1538.19Da. The mature peptide possessed the canonical N-terminal pGlu residue that arises from post-translational modification of a Gln residue. The deduced open-reading frame consisted of 63 amino acid residues encoding a highly-conserved signal peptide of approximately 22 amino acid residues, an intervening acidic spacer peptide domain, a single AcT-3 encoding domain and a C terminal processing site. A synthetic replicate of AcT-3 was found to antagonise the effect of BK on rat tail artery smooth muscle and to contract the intestinal smooth muscle preparations. It was also found that AcT-3 could dose-dependently inhibit the proliferation of human prostate cancer cell lines after 72h incubation.  相似文献   

19.
We tested the activity of a p53 carboxy-terminal peptide containing the PARC-interacting region in cancer cells with wild type cytoplasmic p53. Peptide delivery was achieved by fusing it to the TAT transduction domain (TAT-p53-C-ter peptide). In a two-hybrid assay, the tetramerization domain (TD) of p53 was necessary and sufficient to bind PARC. The TAT-p53-C-ter peptide disrupted the PARC-p53 complex. Peptide treatment caused p53 nuclear relocation, p53-dependent changes in gene expression and enhancement of etoposide-induced apoptosis. These studies suggest that PARC-interacting peptides are promising candidates for the enhancement of p53-dependent apoptosis in tumors with wt cytoplasmic p53.  相似文献   

20.
Placental alkaline phosphatase (PLAP) is anchored in the plasma membrane by a phosphatidylinositol-glycan moiety (PI-glycan). PI-glycan is added posttranslationally to the nascent peptide chain after the removal of 29 amino acids from the COOH-terminus. The contribution of selected COOH-terminal amino acids to the signal for PI-glycan addition was tested by creating a fusion protein with the COOH-terminus of PLAP and a secreted protein and by mutagenesis of specific PLAP COOH-terminal amino acids. The cDNA encoding the COOH-terminus of PLAP was fused in frame to the cDNA for human clotting Factor X and expressed in transfected COS-1 cells. Fusion proteins containing 32 amino acids of the PLAP COOH-terminus were modified by PI-glycan addition. Thus, the signal for PI-glycan modification must reside in these amino acids. Next, the region between the hydrophobic domain and the cleavage site was examined for additional determinants. Mutations of the hydrophilic residues in the spacer region demonstrated that these amino acids do not contribute to the signal for PI-glycan addition. Deletion of amino acids in the spacer region prevented the addition of PI-glycan suggesting that the length of the spacer domain or the amino acids around the cleavage site are important determinants. Finally, we demonstrated that interruption of the hydrophobic domain by a charged residue prevents PI-glycan addition and results in a protein that is secreted into the medium. The finding that a single Leu to Arg substitution in the hydrophobic domain converts a PI-glycan anchored, membrane protein to a secreted protein suggests that an essential signal for the correct sorting of PI-glycan anchored proteins versus secreted proteins resides in the hydrophobic domain. Substitution of a charged amino acid for a hydrophobic amino acid may be a mechanism for producing membrane bound and secreted forms of the same protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号