首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The functional role of the ubiquitin‐proteasome pathway during maternal‐to‐zygotic transition (MZT) remains to be elucidated. Here we show that the E3 ubiquitin ligase, Rnf114, is highly expressed in mouse oocytes and that knockdown of Rnf114 inhibits development beyond the two‐cell stage. To study the underlying mechanism, we identify its candidate substrates using a 9,000‐protein microarray and validate them using an in vitro ubiquitination system. We show that five substrates could be degraded by RNF114‐mediated ubiquitination, including TAB1. Furthermore, the degradation of TAB1 in mouse early embryos is required for MZT, most likely because it activates the NF‐κB pathway. Taken together, our study uncovers that RNF114‐mediated ubiquitination and degradation of TAB1 activate the NF‐κB pathway during MZT, and thus directly link maternal clearance to early embryo development.  相似文献   

2.
3.
4.
5.
The placenta is composed of multiple trophoblast cell types that have diverse endocrine, vascular and nutrient transport functions. We have developed a transgenic system to investigate the developmental and functional roles of specific cell types using conditional expression of a cytotoxin to induce cell ablation in transgenic mice. The Tpbpa gene is expressed in ectoplacental cone cells starting between embryonic days (E) 7.5 and 8.5, and later in the spongiotrophoblast layer of the mature placenta. Tpbpa-positive cells are progenitors of many trophoblast subtypes including three subtypes of trophoblast giant cells (TGCs) and glycogen trophoblast cells. We used a Cre recombinase transgene driven by the Tpbpa promoter to irreversibly activate a diphtheria toxin A (DTA) transgene. Cre/DTA double transgenic placentas showed dramatic reduction of Tpbpa-positive spongiotrophoblast cells by E10.5 and conceptuses died by ~ E11.5. The number of cells associated with maternal blood spaces, spiral artery TGCs (SpA-TGCs) and canal TGCs, and glycogen trophoblast cells were reduced. The loss of these specific trophoblast subtypes, especially SpA-TGCs, was correlated with a decrease in maternal spiral artery diameters, indicating a critical role of these cells in modulating the maternal vasculature. In contrast, parietal TGCs were not significantly reduced by progenitor cell ablation, suggesting that there is compensatory growth of this population and indeed a population of Ascl2 (Mash2)-positive/Tpbpa-negative cells was increased in the spongiotrophoblast layer in the Cre/DTA double transgenics. Our work demonstrates that the Tpbpa-positive lineage is essential for placental function and particularly critical for maternal vasculature remodeling.  相似文献   

6.
7.
8.
9.
10.
11.
12.
ExoU is an important virulence factor in acute Pseudomonas aeruginosa infections. Here, we unveiled the mechanisms of ExoU‐driven NF‐κB activation by using human airway cells and mice infected with P. aeruginosa strains. Several approaches showed that PAFR was crucially implicated in the activation of the canonical NF‐κB pathway. Confocal microscopy of lungs from infected mice revealed that PAFR‐dependent NF‐κB activation occurred mainly in respiratory epithelial cells, and reduced p65 nuclear translocation was detected in mice PAFR?/? or treated with the PAFR antagonist WEB 2086. Several evidences showed that ExoU‐induced NF‐κB activation regulated PAFR expression. First, ExoU increased p65 occupation of PAFR promoter, as assessed by ChIP. Second, luciferase assays in cultures transfected with different plasmid constructs revealed that ExoU promoted p65 binding to the three κB sites in PAFR promoter. Third, treatment of cell cultures with the NF‐κB inhibitor Bay 11–7082, or transfection with IκBα negative‐dominant, significantly decreased PAFR mRNA. Finally, reduction in PAFR expression was observed in mice treated with Bay 11–7082 or WEB 2086 prior to infection. Together, our data demonstrate that ExoU activates NF‐κB by PAFR signalling, which in turns enhances PAFR expression, highlighting an important mechanism of amplification of response to this P. aeruginosa toxin.  相似文献   

13.
Many studies suggest that adenosine modulates cell responses in a wide array of tissues through potent and selective regulation of cytokine production. This study examined the effects of adenosine on interleukin (IL)‐6 expression and its related signal pathways in mouse embryonic stem (ES) cells. In this study, the adenosine analogue 5′‐N‐ethylcarboxamide (NECA) increased IL‐6 protein expression level. Mouse ES cells expressed the A1, A2A, A2B, and A3 adenosine receptors (ARs), whose expression levels were increased by NECA and NECA‐induced increase of IL‐6 mRNA expression or secretion level was inhibited by the non‐specific AR inhibitor, caffeine. NECA increased Akt and protein kinase C (PKC) phosphorylation, intracellular Ca2+ and cyclic adenosine monophosphate (cAMP) levels, which were blocked by caffeine. On the other hand, NECA‐induced IL‐6 secretion was partially inhibited by Akt inhibitor, bisindolylmaleimide I (PKC inhibitor), SQ 22536 (adenylate cyclate inhibitor) and completely blocked by the 3 inhibitor combination treatment. In addition, NECA increased mitogen activated protein kinase' (MAPK) phosphorylation, which were partially inhibited by the Akt inhibitor, bisindolylmaleimide I, and SQ 22536 and completely blocked by the 3 inhibitor combination treatment. NECA‐induced increases of IL‐6 protein expression and secretion levels were inhibited by MAPK inhibition. NECA‐induced increase of nuclear factor (NF)‐κB phosphorylation was inhibited by MAPK inhibitors. NECA also increased cAMP response element‐binding protein (CREB) phosphorylation, which was blocked by MAPK or NF‐κB inhibitors. Indeed, NECA‐induced increase of IL‐6 protein expression and secretion was blocked by NF‐κB inhibitors. In conclusion, NECA stimulated IL‐6 expression via MAPK and NF‐κB activation through Akt, Ca2+/PKC, and cAMP signaling pathways in mouse ES cells. J. Cell. Physiol. 219: 752–759, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Proper regulation of NF‐κB activity is critical to maintain and balance the inflammatory response. Inactivation of the NF‐κB complex relies in part on the proteasome‐mediated degradation of promoter‐bound NF‐κB, but the detailed molecular mechanism initiating this process remains elusive. Here, we show that the methylation of the RelA subunit of NF‐κB has an important function in this process. Lysine methyltransferase Set9 physically associates with RelA in vitro and in vivo in response to TNF‐α stimulation. Mutational and mass spectrometric analyses reveal that RelA is monomethylated by Set9 at lysine residues 314 and 315 in vitro and in vivo. Methylation of RelA inhibits NF‐κB action by inducing the proteasome‐mediated degradation of promoter‐associated RelA. Depletion of Set9 by siRNA or mutation of the RelA methylation sites prolongs DNA binding of NF‐κB and enhances TNF‐α‐induced expression of NF‐κB target genes. Together, these findings unveil a novel mechanism by which methylation of RelA dictates the turnover of NF‐κB and controls the NF‐κB‐mediated inflammatory response.  相似文献   

15.
16.
Bile at strongly acidic pH exerts a carcinogenic effect on the hypopharynx, based upon recent pre‐clinical studies that support its role as an independent risk factor. We recently demonstrated in vitro that curcumin can prevent oncogenic profile of bile in human hypopharyngeal cells, by inhibiting NF‐κB. We hypothesize that topically applied curcumin to the hypopharynx can similarly block early oncogenic molecular events of bile, by inhibiting NF‐κB and consequently altering the expression of genes with oncogenic function. Using Mus musculus (C57Bl/6J), we topically applied curcumin (250 μmol/L; three times per day; 10 days) to the hypopharynx, 15 minutes before, 15 minutes after or in combination with bile acids (pH 3.0). Immunohistochemical analysis and qPCR revealed that topically applied curcumin either before, after or in combination with acidic bile exposure significantly suppressed its induced NF‐κB activation in regenerating epithelial cells, and overexpression of Rela, Bcl2, Egfr, Stat3, Wnt5a, Tnf, Il6, Ptgs2. Akt1 was particularly inhibited by curcumin when applied simultaneously with bile. We provide novel evidence into the preventive and therapeutic properties of topically applied curcumin in acidic bile‐induced early oncogenic molecular events in hypopharyngeal mucosa, by inhibiting NF‐κB, and shaping future translational development of effective targeted therapies using topical non‐pharmacologic inhibitors of NF‐κB.  相似文献   

17.
Mammalian embryos have an intimate relationship with their mothers, particularly with the placental vasculature from which embryos obtain nutrients essential for growth. It is an interesting vascular bed because maternal vessel number and diameter change dramatically during gestation and, in rodents and primates, the terminal blood space becomes lined by placental trophoblast cells rather than endothelial cells. Molecular genetic studies in mice aimed at identifying potential regulators of these processes have been hampered by lack of understanding of the anatomy of the vascular spaces in the placenta and the general nature of maternal-fetal vascular interactions. To address this problem, we examined the anatomy of the mouse placenta by preparing plastic vascular casts and serial histological sections of implantation sites from embryonic day (E) 10.5 to term. We found that each radial artery carrying maternal blood into the uterus branched into 5-10 dilated spiral arteries located within the metrial triangle, populated by uterine natural killer (uNK) cells, and the decidua basalis. The endothelial-lined spiral arteries converged together at the trophoblast giant cell layer and emptied into a few straight, trophoblast-lined "canals" that carried maternal blood to the base of the placenta. Maternal blood then percolated back through the intervillous space of the labyrinth toward the maternal side of the placenta in a direction that is countercurrent to the direction of the fetal capillary blood flow. Trophoblast cells were found invading the uterus in two patterns. Large cells that expressed the trophoblast giant cell-specific gene Plf (encoding Proliferin) invaded during the early postimplantation period in a pattern tightly associated with spiral arteries. These peri/endovascular trophoblast were detected only approximately 150-300 microm upstream of the main giant cell layer. A second type of widespread interstitial invasion in the decidua basalis by glycogen trophoblast cells was detected after E12.5. These cells did not express Plf, but rather expressed the spongiotrophoblast-specific gene Tpbp. Dilation of the spiral arteries was obvious between E10.5 and E14.5 and was associated with a lack of elastic lamina and smooth muscle cells. These features were apparent even in the metrial triangle, a site far away from the invading trophoblast cells. By contrast, the transition from endothelium-lined artery to trophoblast-lined (hemochorial) blood space was associated with trophoblast giant cells. Moreover, the shaping of the maternal blood spaces within the labyrinth was dependent on chorioallantoic morphogenesis and therefore disrupted in Gcm1 mutants. These studies provide important insights into how the fetoplacental unit interacts with the maternal intrauterine vascular system during pregnancy in mice.  相似文献   

18.
19.
A pathogenic connection between autoreactive T cells, fungal infection, and carcinogenesis has been demonstrated in studies of human autoimmune polyendocrinopathy‐candidiasis‐ectodermal dystrophy (APECED) as well as in a mouse model in which kinase‐dead Ikkα knock‐in mice develop impaired central tolerance, autoreactive T cell–mediated autoimmunity, chronic fungal infection, and esophageal squamous cell carcinoma, which recapitulates APECED. IκB kinase α (IKKα) is one subunit of the IKK complex required for NF‐κB activation. IKK/NF‐κB is essential for central tolerance establishment by regulating the development of medullary thymic epithelial cells (mTECs) that facilitate the deletion of autoreactive T cells in the thymus. In this review, we extensively discuss the pathogenic roles of inborn errors in the IKK/NF‐κB loci in the phenotypically related diseases APECED, immune deficiency syndrome, and severe combined immunodeficiency; differentiate how IKK/NF‐κB components, through mTEC (stroma), T cells/leukocytes, or epithelial cells, contribute to the pathogenesis of infectious diseases, autoimmunity, and cancer; and highlight the medical significance of IKK/NF‐κB in these diseases.  相似文献   

20.
In this study, the role of Toll‐like receptor 2 (TLR2) in immune responses of murine peritoneal mesothelial cells against Bacteroides fragilis was investigated. Enzyme linked immunosorbent assay was used to measure cytokines and chemokines. Activation of nuclear factor κB (NF‐κB‐α) and mitogen‐activated protein kinases (MAP kinases) was investigated by western blot analysis. B. fragilis induced production of interleukin‐6, chemokine (C‐X‐C motif) ligand 1 (CXCL1) and chemokine (C‐C motif) ligand 2 (CCL2) in wild type peritoneal mesothelial cells; this was impaired in TLR2‐deficient cells. In addition, in response to B. fragilis, phosphorylation of inhibitory NF‐κB‐α and c‐Jun N‐terminal kinase mitogen‐activated protein kinase (MAPK) was induced in wild type mesothelial cells, but not in TLR2‐deficient cells,. Inhibitor assay revealed that NF‐κB and MAPKs are essential for B. fragilis‐induced production of CXCL1 and CCL2 in mesothelial cells. These findings suggest that TLR2 mediates immune responses in peritoneal mesothelial cells in response to B. fragilis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号