首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of plasmids harboring CTG.CAG repeats with double-strand breaks (DSB), single-strand nicks, or single-strand gaps (15 or 30 nucleotides) within the repeat regions were used to determine their capacity to induce genetic instabilities. These plasmids were introduced into Escherichia coli in the presence of a second plasmid containing a sequence that could support homologous recombination repair between the two plasmids. The transfer of a point mutation from the second to the first plasmid was used to monitor homologous recombination (gene conversion). Only DSBs increased the overall genetic instability. This instability took place by intramolecular repair, which was not dependent on RuvA. Double-strand break-induced instabilities were partially stabilized by a mutation in recF. Gaps of 30 nt formed a distinct 30 nt deletion product, whereas single strand nicks and gaps of 15 nt did not induce expansions or deletions. Formation of this deletion product required the CTG.CAG repeats to be present in the single-stranded region and was stimulated by E.coli DNA ligase, but was not dependent upon the RecFOR pathway. Models are presented to explain the intramolecular repair-induced instabilities and the formation of the 30 nt deletion product.  相似文献   

2.
Development of a cloning system in Mycoplasma pulmonis   总被引:4,自引:0,他引:4  
G G Mahairas  C Jian  F C Minion 《Gene》1990,93(1):61-66
A system suitable for recombinant DNA manipulation in mycoplasmas was developed using the cloned antibiotic-resistance genes of Tn4001 and Tn916. An integrative plasmid containing one of the resistance markers was inserted into the genome of Mycoplasma pulmonis to form a recipient strain. This was accomplished by transformation and homologous recombination between chromosomal DNA sequences cloned onto the integrative plasmid. A second vector, the cloning vector, containing the same plasmid replicon and alternate resistance marker, carried cloned foreign DNA. When transformed into mycoplasmal recipients, homologous recombination between plasmid sequences resulted in integration of the cloning vector and foreign DNA. A Brucella abortus gene coding for a 31-kDa protein and the P1 structural gene and operon from Mycoplasma pneumoniae were introduced to examine the feasibility of developing mycoplasma as cloning hosts. Recombinant plasmids as large as 20 kb were inserted into M. pulmonis, and the integrated foreign DNA was stably maintained. The maximum size of clonable DNA was not determined, but plasmids larger than 22 kb have not been transformed into mycoplasmas using polyethylene glycol. Also the size of genome (800-1200 kb) may affect the stability of larger inserts of foreign DNA. This system is applicable to any mycoplasma capable of transformation, homologous recombination and expression of these resistance markers. Because of their lack of a cell wall, mycoplasmas may be useful cloning hosts for membrane or excreted protein genes from other sources.  相似文献   

3.
Wild-type Escherichia coli are resistant to genetic transformation by purified linear DNA, probably in part because of exonuclease activity. We demonstrate that E. coli containing a recD mutation could be easily transformed by linearized plasmids containing a selectable marker. The marker was transferred to the chromosome by homologous recombination, whereas plasmid markers not in the region of homology were lost.  相似文献   

4.
A. Nussbaum  M. Shalit    A. Cohen 《Genetics》1992,130(1):37-49
To test the double-strand break (DSB) repair model in recombination by the RecE pathway of Escherichia coli, we constructed chimeric phages that allow restriction-mediated release of linear plasmid substrates of the bioluminescence recombination assay in infected EcoRI+ cells. Kinetics of DSB repair and expression of recombination products were followed by Southern hybridization and by the bioluminescence recombination assay, respectively. Plasmid recombinants were analyzed with restriction endonucleases. Our results indicate that a DSB can induce more than one type of RecE-mediated recombination. A DSB within the homology induced intermolecular recombination that followed the rules of the DSB repair model: (1) Recombination was enhanced by in vivo restriction. (2) Repair of the break depended on homologous sequences on the resident plasmid. (3) Break-repair was frequently associated with conversion of alleles that were cis to the break. (4) Conversion frequency decreased as the distance from the break increased. (5) Some clones contained a mixture of plasmid recombinants as expected by replication of a heteroduplex in the primary recombinant. The rules of the DSB repair model were not followed when recombination was induced by a DSB outside the homology. Both the cut and the uncut substrates were recipients in conversion events. Recombination events were associated with deletions that spanned the break site, but these deletions did not reach the homology. We propose that a break outside the homology may stimulate a RecE-mediated recombination pathway that does not involve direct participation of DNA ends in the homologous pairing reaction.  相似文献   

5.
Salmonella typhimurium bacteriophage P22 transduced plasmids having P22 sequences inserted in the vector pBR322 with high frequency. Analysis of the structure of the transducing particle DNA and the transduced plasmids indicates that this plasmid transduction involves two homologous recombination events. In the donor cell, a single recombination between the phage and the homologous sequences on the plasmid inserted the plasmid into the phage chromosome, which was then packaged by headfuls into P22 particles. The transducing particle DNA contained duplications of the region of homology flanking the integrated plasmid vector sequences and lacked some phage genes. When these defective phage genomes containing the inserted plasmid infected a recipient cell, recombination between the duplicated regions regenerated the plasmid. A useful consequence of this sequence of events was that genetic markers in the region of homology were readily transferred from phage to plasmid. Plasmid transduction required homology between the phage and the plasmid, but did not depend on the presence of any specific P22 sequence in the plasmid. When the infecting P22 carried a DNA sequence homologous to the ampicillin resistance region of pBR322, the vector plasmid having no P22 insert could be transduced. P22-mediated transduction is a useful way to transfer chimeric plasmids, since most S. typhimurium strains are poorly transformed by plasmid DNA.  相似文献   

6.
Intermolecular homologous recombination in plants.   总被引:16,自引:6,他引:10       下载免费PDF全文
To study DNA topological requirements for homologous recombination in plants, we have constructed pairs of plasmids that contain nonoverlapping deletions in the neomycin phosphotransferase gene [APH(3')II], which, when intact, confers kanamycin resistance to plant cells. Protoplasts isolated from Nicotiana tabacum were cotransformed with complementary pairs of plasmids containing these truncated gene constructs. Homologous recombination or gene conversion within the homologous sequences (6 to 405 base pairs) of the protein-coding region of the truncated genes led to the restoration of the functional APH(3')II gene, rendering these cells resistant to kanamycin. Circular plasmid DNAs recombined very inefficiently, independent of the length of the homologous region. A double-strand break in one molecule only slightly increased the recombination frequency. The most favorable substrates for recombination were linear molecules. In this case, the recombination frequency was positively correlated with the length of the homologous regions. The recombination frequency of plasmids linearized at sites proximal to the deletion-homology junction was significantly higher than when linearization was distal to the homologous region. Vector homology within cotransformed plasmid sequences also increased the recombination frequency.  相似文献   

7.
In this study, we examined homologous recombination in mammalian cells using a gene targeting assay in which the introduction of a double-strand-break (DSB) in the vector-borne region of homology to the chromosome resulted in targeted vector integration. The vector-borne DSB was flanked with small palindromic insertions that, when encompassed within heteroduplex DNA (hDNA) formed during targeted vector integration, were capable of avoiding the activity of the mismatch repair (MMR) system. When used in conjunction with an isolation procedure in which the product(s) of each targeted vector integration event were retained for molecular analysis, information about recombination mechanisms was obtained. The examination of marker segregation patterns in independent recombinants revealed the following, (i) hDNA tracts could form simultaneously on each side of the DSB and in both participating homologous regions. Clonal analysis of sectored recombinants revealed that, in the homologous repeats generated by the recombination event, vector-borne palindrome and chromosomal markers were linked in the expected way in each strand of the hDNA intermediate, (ii) hDNA tracts were subject to MMR processing that occurred on opposite sides of the DSB, and (iii) in the majority of recombinants, the vector-borne marker was replaced with the corresponding marker from the chromosome. Bidirectional hDNA formation and MMR processing of both sides of the DSB are consistent with the double-strand-break repair (DSBR) model of recombination.  相似文献   

8.
Homologous recombination in plants was studied using an extrachromosomal recombination assay in which intermolecular homologous recombination between two complementary plasmids restored a selectable marker gene. Several vectors containing an insertion into or deletions within the coding region of the neomycin phosphotransferase (NPT-II) gene were designed. Plasmids were introduced, in pairwise combinations, into protoplasts and homologous recombination events were measured by counting the number of NPT-ll-resistant colonies. A 10-fold increase in recombination frequency was observed in Petunia hybrids RL01 compared to Nicotiana tabacum SRI. This difference occurred when one or both of the co-transferred recombination plasmids was offered in a circular form. Apart from such specific differences between two cultivars from different species, a two-to fivefold increase in recombination frequencies was observed when the genomic TBS (transformation booster sequence) fragment from P. hybrids was added onto one of the transferred plasmids. TBS-specific stimulation of recombination was observed in Petunia RL01. These data suggest that two different recombination pathways may be present in plants.  相似文献   

9.
The hybrid plasmid pNov1 readily acquired genetic information from the chromosome of wild-type, but not rec-2, cells. Most of the recombination had taken place 1 h after entrance of the plasmid into the cell, as judged by transformation of rec-2 by lysates made from wild-type cells exposed to pNov1. Measurement of physical transfer from radioactively labeled cellular DNA to plasmids recombining in wild-type cells failed, since there was little more radioactivity in plasmids from such cells than from labeled rec-2 recipients, in which no recombination took place. EcoRI digestion of pNov1 divided the DNA into a 1.7-kilobase-pair fragment containing the novobiocin resistance marker and a 13-kilobase-pair fragment containing all of the original vector and considerable portions homologous to the chromosome. Transformation by the large fragment alone resulted in a plasmid the size of the original pNov1. Our hypothesis to explain the data is that genetic transfer from chromosome to plasmid took place by a copy choice mechanism.  相似文献   

10.
Bacillus subtilis has been a model for gram-positive bacteria and it has long been exploited for industrial and biotechnological applications. However, the availability of facile genetic tools for physiological analysis has generally lagged substantially behind traditional genetic models such as Escherichia coli and Saccharomyces cerevisiae. In this work, we have developed an efficient, precise and scarless method for rapid multiple genetic modifications without altering the chromosome of B. subtilis. This method employs upp gene as a counter-selectable marker, double-strand break (DSB) repair caused by exogenous endonuclease I-SceI and comK overexpression for fast preparation of competent cell. Foreign dsDNA can be simply and efficiently integrated into the chromosome by double-crossover homologous recombination. The DSB repair is a potent inducement for stimulating the second intramolecular homologous recombination, which not only enhances the frequency of resolution by one to two orders of magnitude, but also selects for the resolved product. This method has been successfully and reiteratively used in B. subtilis to deliver point mutations, to generate in-frame deletions, and to construct large-scale deletions. Experimental results proved that it allowed repeated use of the selectable marker gene for multiple modifications and could be a useful technique for B. subtilis.  相似文献   

11.
We examined the effect of double-strand breaks on homologous recombination between two plasmids in human cells and in nuclear extracts prepared from human and rodent cells. Two pSV2neo plasmids containing nonreverting, nonoverlapping deletions were cotransfected into cells or incubated with cell extracts. Generation of intact neo genes was monitored by the ability of the DNA to confer G418r to cells or Neor to bacteria. We show that double-strand breaks at the sites of the deletions enhanced recombination frequency, whereas breaks outside the neo gene had no effect. Examination of the plasmids obtained from experiments involving the cell extracts revealed that gene conversion events play an important role in the generation of plasmids containing intact neo genes. Studies with plasmids carrying multiple polymorphic genetic markers revealed that markers located within 1,000 base pairs could be readily coconverted. The frequency of coconversion decreased with increasing distance between the markers. The plasmids we constructed along with the in vitro system should permit a detailed analysis of homologous recombinational events mediated by mammalian enzymes.  相似文献   

12.
Loss of heterozygosity (LOH) is a common genetic alteration in tumors and often extends several megabases to encompass multiple genetic loci or even whole chromosome arms. Based on marker and karyotype analysis of tumor samples, a significant fraction of LOH events appears to arise from mitotic recombination between homologous chromosomes, reminiscent of recombination during meiosis. As DNA double-strand breaks (DSBs) initiate meiotic recombination, a potential mechanism leading to LOH in mitotically dividing cells is DSB repair involving homologous chromosomes. We therefore sought to characterize the extent of LOH arising from DSB-induced recombination between homologous chromosomes in mammalian cells. To this end, a recombination reporter was introduced into a mouse embryonic stem cell line that has nonisogenic maternal and paternal chromosomes, as is the case in human populations, and then a DSB was introduced into one of the chromosomes. Recombinants involving alleles on homologous chromosomes were readily obtained at a frequency of 4.6 x 10(-5); however, this frequency was substantially lower than that of DSB repair by nonhomologous end joining or the inferred frequency of homologous repair involving sister chromatids. Strikingly, the majority of recombinants had LOH restricted to the site of the DSB, with a minor class of recombinants having LOH that extended to markers 6 kb from the DSB. Furthermore, we found no evidence of LOH extending to markers 1 centimorgan or more from the DSB. In addition, crossing over, which can lead to LOH of a whole chromosome arm, was not observed, implying that there are key differences between mitotic and meiotic recombination mechanisms. These results indicate that extensive LOH is normally suppressed during DSB-induced allelic recombination in dividing mammalian cells.  相似文献   

13.
Deletions within E. coli plasmids carrying yeast rDNA.   总被引:4,自引:0,他引:4  
A Cohen  D Ram 《Gene》1978,3(2):135-147
Deletions occur in recombinant DNA plasmids that contain yeast ribosomal DNA (rDNA) inserted into the E. coli plasmids pSC101 and pMB9. Deletions within a pMB9 plasmid containing an insert longer than one tandem rDNA repeat apparently are due to homologous recombination because (1) all of the independently derived deletion products of this plasmid lost one complete rDNA repeat (8.6 kb) and retained only a single copy of the segment repeated at the ends of the original insert and (2) deletions were detected only when the insert had terminal redundancy. Deletions also occur within a pSC101 plasmid containing a tandem duplication of a segment (4.7 kb) including both pSC101 DNA and rDNA. Once again these deletions appear to be due to the presence of a duplicated region because all deletion products have lost one complete repeat. Deletions within both of these plasmids took place in both rec+ and recA- host cells, but occurred more frequently in rec+ cells. Oligomerization of the deletion products also occurred in both hosts and was more frequent in rec+ cells.  相似文献   

14.
Recombination occurs at high frequencies in all examined retroviruses. The previously determined homologous recombination rate in one retroviral replication cycle is 4% for markers 1.0 kb apart in spleen necrosis virus (SNV). This has often been used to suggest that approximately 30 to 40% of the replication-competent viruses with 7- to 10-kb genomes undergo recombination. These estimates were based on the untested assumption that a linear relationship exists between recombination rates and marker distances. To delineate this relationship, we constructed three sets of murine leukemia virus (MLV)-based vectors containing the neomycin phosphotransferase gene (neo) and the hygromycin phosphotransferase B gene (hygro). Each set contained one vector with a functional neo and an inactivated hygro and one vector with a functional hygro and an inactivated neo. The two inactivating mutations in the three sets of vectors were separated by 1.0, 1.9, and 7.1 kb. Recombination rates after one round of replication were 4.7, 7.4, and 8.2% with markers 1.0, 1.9, and 7.1 kb apart, respectively. Thus, the rate of homologous recombination with 1.0 kb of marker distance is similar in MLV and SNV. The recombination rate increases when the marker distance increases from 1.0 to 1.9 kb; however, the recombination rates with marker distances of 1.9 and 7.1 kb are not significantly different. These data refute the previous assumption that recombination is proportional to marker distance and define the maximum recombining population in retroviruses.  相似文献   

15.
The mechanism by which double-strand cleavages stimulate the joining of plasmid DNA fragments introduced into cultured mammalian cells was investigated by cotransfecting pairs of plasmids encoding deletion mutations in a dominant selectable gene into LMtk- cells. Plasmid recombination substrates were produced by creating deletions of different sizes within the neo coding region of the pSV2neo plasmid. Complementing pairs of deleted plasmid DNAs were linearized at specific unique sites before cotransfection into mouse LMtk- cells by the calcium phosphate precipitation method. Cleaving one donor plasmid produced a 4- to 10-fold stimulation in the production of colonies able to survive in medium containing G-418. The linearization of the second plasmid further increased the efficiency by another factor of 6 to 15 when the cut was made on the opposite side of the homology, approximately equidistant from the center of the overlap. Fifty-seven individual G-418-resistant colonies representing the products of individual crosses were isolated, and the genomic DNAs containing the presumably integrated, functional recombinant neo genes were analyzed on Southern blots. A band consistent with the exchange of markers flanking the neo gene was present in 90% of the DNAs examined. In only one case was the pattern indicative of either a double crossover or a gene conversion event. These results support the idea that homologous extrachromosomal DNA fragments are joined through annealing of overlapping single-stranded ends. This DNA-joining phenomenon may represent the activity of cellular DNA repair enzymes; its relationship to genetic recombination occurring at the chromosomal level remains to be determined.  相似文献   

16.
DNA damage-induced multiple recombination was studied by cotransforming yeast cells with pairs of nonreplicating plasmids carrying different genetic markers. Reaction of one of the plasmids with the interstrand crosslinking agent, psoralen, stimulated cellular transformation by the undamaged plasmid. The cotransformants carried copies of both plasmids cointegrated in tandem arrays at chromosomal sites homologous to either the damaged or the undamaged DNA. Plasmid linearization, by restriction endonuclease digestion, was also found to stimulate the cointegration of unmodified plasmids. Disruption of the RAD1 gene reduced the psoralen damage-induced cotransformation of intact plasmid, but had no effect on the stimulation by double strand breaks. Placement of the double strand breaks within yeast genes produced cointegration only at sequences homologous to the damaged plasmids, while digestion within vector sequences produced integration at chromosomal sites homologous to either the damaged or the undamaged plasmid molecules. These observations suggest a model for multiple recombination events in which an initial exchange occurs between the damaged DNA and homologous sequences on an undamaged molecule. Linked sequences on the undamaged molecule up to 870 base pairs distant from the break site participate in subsequent exchanges with other intact DNA molecules. These events result in recombinants produced by reciprocal exchange between three or more DNA molecules.  相似文献   

17.
Sequence homology is expected to influence recombination. To further understand mechanisms of recombination and the impact of reduced homology, we examined recombination during transformation between plasmid-borne DNA flanking a double-strand break (DSB) or gap and its chromosomal homolog. Previous reports have concentrated on spontaneous recombination or initiation by undefined lesions. Sequence divergence of approximately 16% reduced transformation frequencies by at least 10-fold. Gene conversion patterns associated with double-strand gap repair of episomal plasmids or with plasmid integration were analyzed by restriction endonuclease mapping and DNA sequencing. For episomal plasmids carrying homeologous DNA, at least one input end was always preserved beyond 10 bp, whereas for plasmids carrying homologous DNA, both input ends were converted beyond 80 bp in 60% of the transformants. The system allowed the recovery of transformants carrying mixtures of recombinant molecules that might arise if heteroduplex DNA--a presumed recombination intermediate--escapes mismatch repair. Gene conversion involving homologous DNAs frequently involved DNA mismatch repair, directed to a broken strand. A mutation in the PMS1 mismatch repair gene significantly increased the fraction of transformants carrying a mixture of plasmids for homologous DNAs, indicating that PMS1 can participate in DSB-initiated recombination. Since nearly all transformants involving homeologous DNAs carried a single recombinant plasmid in both Pms+ and Pms- strains, stable heteroduplex DNA appears less likely than for homologous DNAs. Regardless of homology, gene conversion does not appear to occur by nucleolytic expansion of a DSB to a gap prior to recombination. The results with homeologous DNAs are consistent with a recombinational repair model that we propose does not require the formation of stable heteroduplex DNA but instead involves other homology-dependent interactions that allow recombination-dependent DNA synthesis.  相似文献   

18.
PCR fragments and linear vectors containing overlapping ends are easily assembled into a propagative plasmid by homologous recombination in Escherichia coli. Although this gap-repair cloning approach is straightforward, its existence is virtually unknown to most molecular biologists. To popularize this method, we tested critical parameters influencing the efficiency of PCR fragments cloning into PCR-amplified vectors by homologous recombination in the widely used E. coli strain DH5α. We found that the number of positive colonies after transformation increases with the length of overlap between the PCR fragment and linear vector. For most practical purposes, a 20 bp identity already ensures high-cloning yields. With an insert to vector ratio of 2:1, higher colony forming numbers are obtained when the amount of vector is in the range of 100 to 250 ng. An undesirable cloning background of empty vectors can be minimized during vector PCR amplification by applying a reduced amount of plasmid template or by using primers in which the 5′ termini are separated by a large gap. DpnI digestion of the plasmid template after PCR is also effective to decrease the background of negative colonies. We tested these optimized cloning parameters during the assembly of five independent DNA constructs and obtained 94% positive clones out of 100 colonies probed. We further demonstrated the efficient and simultaneous cloning of two PCR fragments into a vector. These results support the idea that homologous recombination in E. coli might be one of the most effective methods for cloning one or two PCR fragments. For its simplicity and high efficiency, we believe that recombinational cloning in E. coli has a great potential to become a routine procedure in most molecular biology-oriented laboratories.  相似文献   

19.
Birmingham EC  Lee SA  McCulloch RD  Baker MD 《Genetics》2004,168(3):1539-1555
In yeast, four-stranded, biparental "joint molecules" containing a pair of Holliday junctions are demonstrated intermediates in the repair of meiotic double-strand breaks (DSBs). Genetic and physical evidence suggests that when joint molecules are resolved by the cutting of each of the two Holliday junctions, crossover products result at least most of the time. The double-strand break repair (DSBR) model is currently accepted as a paradigm for acts of DSB repair that lead to crossing over. In this study, a well-defined mammalian gene-targeting assay was used to test predictions that the DSBR model makes about the frequency and position of hDNA in recombinants generated by crossing over. The DSBR model predicts that hDNA will frequently form on opposite sides of the DSB in the two homologous sequences undergoing recombination [half conversion (HC); 5:3, 5:3 segregation]. By examining the segregation patterns of poorly repairable small palindrome genetic markers, we show that this configuration of hDNA is rare. Instead, in a large number of recombinants, full conversion (FC) events in the direction of the unbroken chromosomal sequence (6:2 segregation) were observed on one side of the DSB. A conspicuous fraction of the unidirectional FC events was associated with normal 4:4 marker segregation on the other side of the DSB. In addition, a large number of recombinants displayed evidence of hDNA formation. In several, hDNA was symmetrical on one side of the DSB, suggesting that the two homologous regions undergoing recombination swapped single strands of the same polarity. These data are considered within the context of modified versions of the DSBR model.  相似文献   

20.
W H Bingle 《Plasmid》1988,19(3):242-250
The non-nitrogen-fixing (Nif-) strain UW10 of Azotobacter vinelandii OP (UW) was naturally induced to competence and transformed with broad host range plasmid pKT210 containing the cloned wild-type nif-10 locus from A. vinelandii UW (Nif+); this marker was unable to complement the nif-10 mutation in trans, but could through recombination with the chromosome. The most frequent type of transformation event observed was recombination between the homologous regions of the plasmid and chromosome (producing Nif+ transformants) with loss of the plasmid vector. At a substantially lower frequency, transformants expressing the plasmid-encoded antibiotic resistance determinants were isolated which were phenotypically Nif-. Agarose gel electrophoresis showed that these transformants contained a plasmid migrating with the same mobility as the original donor plasmid. During culture these transformants acquired a Nif+ phenotype without the loss of the plasmid, as judged by the use of a hybridization probe specific for the cloned nif-DNA fragment. These data indicate that plasmids carrying sequences homologous to chromosomal sequences could be maintained in recombination-proficient A. vinelandii UW. The introduction of plasmids containing sequences homologous to chromosomal sequences was facilitated by prelinearization of the plasmid using a restriction endonuclease generating cohesive ends. Because the site of linearization could be chosen outside the region of shared homology, it was unlikely that the route of plasmid establishment occurred via a homology-facilitated transformation mechanism. The data also indicated that A. vinelandii UW could harbor broad host range cloning vectors based on plasmid RSF1010 without significant impairment of its nitrogen-fixation ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号