首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
利用GEO数据库(gene expression omnibus database)通过生物信息学分析方法探讨急性髓系白血病(acute myelogenous leukemia,AML)的发病机制。检索GEO数据库中AML相关芯片数据集GSE142698、GSE142699和GSE96535。利用GEO2R分析得到差异mRNAs、miRNAs以及差异lncRNAs。利用在线生物信息学分析工具DAVID对差异mRNAs进行GO富集分析和KEGG通路分析。利用miRWalk数据库预测AML相关miRNAs的靶向mRNAs,利用Spongescan数据库预测AML相关miRNAs的靶向lncRNAs,构建lncRNA-miRNA-mRNA竞争性内源RNA (competing endogenous RNA,ceRNA)调控网络。共筛选出29个显著差异mRNAs、70个显著差异miRNAs和20 005个显著差异lncRNAs。GO富集分析和KEGG通路分析显示,差异表达基因主要涉及蛋白磷酸化、细胞分裂、细胞增殖的负调控、基因表达的正向调节、周期蛋白依赖的丝氨酸/苏氨酸激酶活性的调节等生物过程以及细胞周期、细胞衰老、癌症通路、PI3K-Akt通路等信号通路。将miRWalk数据库预测的靶向mRNAs与差异mRNAs取交集,Spongescan数据库预测的靶向lncRNAs与差异lncRNAs取交集,分别确定了25个mRNAs、6个lncRNAs参与AML相关ceRNA调控网络的构建。结果表明,lncRNAs可能作为关键的ceRNA,通过调控miRNA和相关靶基因参与AML的发生与发展,研究结果为AML诊断和治疗的分子生物学研究提供了新的依据。  相似文献   

4.
5.
6.
This study aims to reveal the regulatory mechanism of lncRNAs–miRNAs–mRNAs network during the proliferative phase of liver regeneration (LR). High-throughput sequencing technology was performed, and a total of 1,738 differentially expressed lncRNAs (DE lncRNAs), 167 known differentially expressed miRNAs (DE miRNAs), and 2,727 differentially expressed mRNAs were identified. Then, the target DE lncRNAs and DE mRNAs regulated by the same miRNAs were screened and a ceRNA regulatory network containing 32 miRNAs, 107 lncRNAs, and 270 mRNAs was constructed. Insulin signaling pathway, pyrimidine metabolism, axon guidance, carbohydrate digestion and absorption, and pyruvate metabolism were significantly enriched in the network. Through literature review and the regulatory relationship between lncRNAs and miRNAs, nine core lncRNAs were identified, which might play important roles during the proliferative phase of rat LR. This study analyzed lncRNA–miRNA–mRNA regulatory network for the first time during the proliferative phase of rat LR, providing clues for exploring the mechanism of LR and the treatment of liver diseases.  相似文献   

7.
8.
ObjectivesAdult hepatocytes are quiescent cells that can be induced to proliferate in response to a reduction in liver mass (liver regeneration) or by agents endowed with mitogenic potency (primary hyperplasia). The latter condition is characterized by a more rapid entry of hepatocytes into the cell cycle, but the mechanisms responsible for the accelerated entry into the S phase are unknown.Materials and methodsNext generation sequencing and Illumina microarray were used to profile microRNA and mRNA expression in CD‐1 mice livers 1, 3 and 6 h after 2/3 partial hepatectomy (PH) or a single dose of TCPOBOP, a ligand of the constitutive androstane receptor (CAR). Ingenuity pathway and DAVID analyses were performed to identify deregulated pathways. MultiMiR analysis was used to construct microRNA‐mRNA networks.ResultsFollowing PH or TCPOBOP we identified 810 and 527 genes, and 102 and 10 miRNAs, respectively, differentially expressed. Only 20 genes and 8 microRNAs were shared by the two conditions. Many miRNAs targeting negative regulators of cell cycle were downregulated early after PH, concomitantly with increased expression of their target genes. On the contrary, negative regulators were not modified after TCPOBOP, but Ccnd1 targeting miRNAs, such as miR‐106b‐5p, were downregulated.ConclusionsWhile miRNAs targeting negative regulators of the cell cycle are downregulated after PH, TCPOBOP caused downregulation of miRNAs targeting genes required for cell cycle entry. The enhanced Ccnd1 expression may explain the more rapid entry into the S phase of mouse hepatocytes following TCPOBOP.  相似文献   

9.
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is one of the most important pathogens of silkworm. MicroRNAs (miRNAs) have been demonstrated to play key roles in regulating host-pathogen interaction. However, there are limited reports on the miRNAs expression profiles during insect pathogen challenges. In this study, four small RNA libraries from BmCPV-infected midgut of silkworm at 72 h post-inoculation and 96 h post-inoculation and their corresponding control midguts were constructed and deep sequenced. A total of 316 known miRNAs (including miRNA*) and 90 novel miRNAs were identified. Fifty-eight miRNAs displayed significant differential expression between the infected and normal midgut (P value < = 0.01 and fold change > = 2.0 or < = 0.5), among which ten differentially expressed miRNA were validated by qRT-PCR method. Further bioinformatics analysis of predicted target genes of differentially expressed miRNAs showed that the miRNA targets were involved in stimulus and immune system process in silkworm.  相似文献   

10.
Vascular injury, remodeling, as well as angiogenesis, are the leading causes of coronary or cerebrovascular disease. The blood vessel functional imbalance trends to induce atherosclerosis, hypertension, and pulmonary arterial hypertension. As several genes have been identified to be dynamically regulated during vascular injury and remodeling, it is becoming widely accepted that several types of non-coding RNA, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are involved in regulating the endothelial cell and vascular smooth muscle cell (VSMC) behaviors. Here, we review the progress of the extant studies on mechanistic, clinical and diagnostic implications of miRNAs and lncRNAs in vascular injury and remodeling, as well as angiogenesis, emphasizing the important roles of miRNAs and lncRNAs in vascular diseases. Furthermore, we introduce the interaction between miRNAs and lncRNAs, and highlight the mechanism through which lncRNAs are regulating the miRNA function. We envisage that continuous in-depth research of non-coding RNAs in vascular disease will have significant implications for the treatment of coronary or cerebrovascular diseases.  相似文献   

11.
12.
13.
Polyploidization, as a significant evolution force, has been considered to facilitate plant diversity. The expression levels of lncRNAs and how they control the expression of protein‐coding genes in allopolyploids remain largely unknown. In this study, lncRNA expression profiles were compared between Brassica hexaploid and its parents using a high‐throughput sequencing approach. A total of 2,725, 1,672, and 2,810 lncRNAs were discovered in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. It was also discovered that 725 lncRNAs were differentially expressed between Brassica hexaploid and its parents, and 379 lncRNAs were nonadditively expressed in this hexaploid. LncRNAs have multiple expression patterns between Brassica hexaploid and its parents and show paternal parent‐biased expression. These lncRNAs were found to implement regulatory functions directly in the long‐chain form, and acted as precursors or targets of miRNAs. According to the prediction of the targets of differentially expressed lncRNAs, 109 lncRNAs were annotated, and their target genes were involved in the metabolic process, pigmentation, reproduction, exposure to stimulus, biological regulation, and so on. Compared with the paternal parent, differentially expressed lncRNAs between Brassica hexaploid and its maternal parent participated in more regulation pathways. Additionally, 61 lncRNAs were identified as putative targets of known miRNAs, and 15 other lncRNAs worked as precursors of miRNAs. Some conservative motifs of lncRNAs from different groups were detected, which indicated that these motifs could be responsible for their regulatory roles. Our findings may provide a reference for the further study of the function and action mechanisms of lncRNAs during plant evolution.  相似文献   

14.
15.
Salt is one of the main environmental factors limiting plant growth and a better understanding of mechanisms of salt stress would aid efforts to bolster plant salt tolerance. MicroRNAs are well known for their important regulatory roles in response to abiotic stress in plants. In this study, high-throughput sequencing was employed to identify miRNAs in Populus tomentosa plantlets treated or not with salt (200 mM for 10 h). We found 141 conserved miRNAs belonging to 31 families, 29 non-conserved but previously-known miRNAs belonging to 26 families, and 17 novel miRNAs. Under salt stress, 19 miRNAs belonging to seven conserved miRNA families were significantly downregulated, and two miRNAs belonging to two conserved miRNA families were upregulated. Of seven non-conserved miRNAs with significantly altered expression, five were downregulated and two were upregulated. Furthermore, eight miRNAs were validated by qRT-PCR and their dynamic differential expressions were analyzed. In addition, 269 target genes of identified miRNAs were predicted and categorized by function. These results provide new insights into salt-responsive miRNAs in Populus.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号