首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fusion gene containing the Bacillus subtilis -amylase gene and Aspergillus awamori glucoamylase cDNA was expressed in Saccharomyces cerevisiae. The resulting bifunctional fusion protein having both -amylase and glucoamylase activities secreted into the culture medium was purified to apparent homogeneity by affinity chromatography and gel filtration on Sephadex G-100. The enzyme had an apparent molecular mass of 150 kDa and showed an optimum pH and temperature of 6.0 and 60 °C, respectively. The main hydrolysis products from soluble starch were glucose and maltose.  相似文献   

2.
Monoterpenes are important aroma compounds in grape varieties such as Muscat, Gewürztraminer and Riesling, and are present as either odourless, glycosidically bound complexes or free aromatic monoterpenes. Commercial enzymes can be used to release the monoterpenes, but they commonly consist of crude extracts that often have unwanted and unpredictable side-effects on wine aroma. This project aims to address these problems by the expression and secretion of the Aspergillus awamoriα-l-arabinofuranosidase in combination with either the β-glucosidases from Saccharomycopsis fibuligera or from Aspergillus kawachii in the industrial yeast Saccharomyces cerevisiae VIN13. The concentration of five monoterpenes was monitored throughout alcoholic fermentation of Gewürztraminer grapes. The recombinant yeast strains that caused an early boost in the geraniol concentration led to a reduction in the final geraniol levels due to the downregulation of the sterol biosynthetic pathway. Monoterpene concentrations were also analysed 9 and 38 days after racking and the performance of the VB2 and VAB2 recombinant strains was similar, and in many cases, better than that of a commercial enzyme used in the same experiment. The results were backed by sensorial analysis, with the panel preferring the aroma of the wines produced by the VAB2 strain.  相似文献   

3.
Saccharomycescerevisiaeisanindustrialstrainwidelyusedintheproductionofethanol,breweryandsinglecellprotein(SCP).Butitisunabletofermentstarchduetothelackofamylolyticenzymes.Thestarchmustfirstbecooked,liquifiedandconvertedintoglucoseandthenutilizedincommer…  相似文献   

4.
Zhi P  Chia PZ  Chia C  Gleeson PA 《IUBMB life》2011,63(9):721-729
The main component of the amyloid plaques found in the brains of those with Alzheimer's disease (AD) is a polymerized form of the β-amyloid peptide (Aβ) and is considered to play a central role in the pathogenesis of this neurodegenerative disorder. Aβ is derived from the proteolytic processing of the amyloid precursor protein (APP). Beta site APP-cleaving enzyme, BACE1 (also known as β-secretase) is a membrane-bound aspartyl protease responsible for the initial step in the generation of Aβ peptide and is thus a prime target for therapeutic intervention. Substantive evidence now indicates that the processing of APP by BACE1 is regulated by the intracellular sorting of the enzyme and, moreover, perturbations in these intracellular trafficking pathways have been linked to late-onset AD. In this review, we highlight the recent advances in the understanding of the regulation of the intracellular sorting of BACE1 and APP and illustrate why the trafficking of these cargos represent a key issue for understanding the membrane-mediated events associated with the generation of the neurotoxic Aβ products in AD.  相似文献   

5.
α-Amyrin is a plant-originated high-valued triterpene that is highly effective against several pathological ailments. α-Amyrin production by engineered Saccharomyces cerevisiae has been achieved by introducing α-amyrin synthase (αAS). However, the low yield of α-amyrin highly limits its industrial application; the low catalytic activity of αAS and the toxic effect of α-amyrin have been considered key elements. In this study, the highest yield of α-amyrin was obtained in engineered S. cerevisiae by remodeling α-amyrin synthase MdOSC1 and expanding the storage pool. The yield of α-amyrin was increased to 11-fold higher than that of the control by the triple mutant MdOSC1N11T/P250H/P373A obtained based on the modeling analysis. Furthermore, key genes of MVA pathway were overexpressed to provide sufficient precursors, and DGA1 (Diacylglycerol acyltransferase) was overexpressed to expand the intracellular storage capacity. Finally, the as-constructed aAM12 strain produced 213.7 ± 12.4 mg/L α-amyrin in the shake flask and 1107.9 ± 76.8 mg/L in fed-batch fermentation; the fermentation yield was 106-fold higher than that of the original aAM1 strain under the same conditions, representing the highest α-amyrin yield in yeast reported to date. Microbial production of α-amyrin with over 1 g/L will be suitable for commercialization and can accelerate the industrial production of α-amyrin in yeast.  相似文献   

6.
Anorganism,S.cerevisiaewidelyusedinbrewing,bakingandinethanolproductionprocessesisnotabletohydrolysestarch.ThusthetraditionalconversionofstarchintoethanolandCO2dependsontheadditionoftheenzymespriortofermentation,whichleadstoliquificationandsaccharificat…  相似文献   

7.
Kang NY  Park JN  Chin JE  Lee HB  Im SY  Bai S 《Biotechnology letters》2003,25(21):1847-1851
The gene encoding Schwanniomyces occidentalis -amylase (AMY) was introduced into the chromosomal sequences of an industrial strain of Saccharomyces cerevisiae. To obtain a strain suitable for commercial use, an -integrative cassette devoid of bacterial DNA sequences was constructed that contains the AMY gene and aureobasidin A resistance gene (AUR1-C) as the selection marker. The AMY gene was expressed under the control of the alcohol dehydrogenase gene promoter (ADC1p). The -amylase activity of Sacc. cerevisiae transformed with this integrative cassette was 6 times higher than that of Sch. occidentalis. The transformants (integrants) were mitotically stable after 100 generations in nonselective medium.  相似文献   

8.
Summary 1. Alzheimer's disease is characterized by the deposition in the brain of extracellular amyloid plaques and vascular deposits consisting mostly of amyloid-peptide (A). A, a polypeptide of 39–43 amino acids (M r, 4 kDa), is derived proteolytically from a family of proteins of 695–770 amino acids (M r, 110–140 kDa) called-amyloid precursor protein (APP).2.APP, an integral membrane glycoprotein, is extensively posttranslationally modified within the endoplasmic reticulum (ER) and various Golgi compartments.APP is cleaved by proteases in either the trans-Golgi network or the post-Golgi apparatus and then secreted as a truncated soluble form into the conditioned media of cultured cells and cerebrospinal fluid samples from human subjects.APP can be processed either by an antiamyloidogenic secretory pathway or by an endosomal/lysosomal pathway.3. I studied the effect of two ionophores on the processing ofAPP in cultured cells. Monensin and, in some cases, ammonium chloride increase the intracellular accumulation ofAPP in several cell lines and may alter its processing. Monensin, which had the most consistent effects, also inhibited secretion ofAPP in a differentiated (growth factor mediated) cell line. Nigericin, with greater K+ selectivity, was less able to alter the accumulation and possible processing of the protein.4. These results suggest that the increase in the accumulation of intracellularAPP observed after treating cells with ionophores has some specificity. The selective effect of these ionophores on the metabolism ofAPP may provide a model system to analyze the pathways for studying maturation, secretion, and degradation ofAPP.  相似文献   

9.
Amyloid plaques are a hallmark of the aging and senile dementia brains, yet their mechanism of origins has remained elusive. A central issue is the regulatory mechanism and identity of α-secretase, a protease responsible for α-processing of amyloid-β precursor protein (APP). A remarkable feature of this enzyme is its high sensitivity to a wide range of cellular stimulators, many of which are agonists for Ca(2+) signaling. This feature, together with previous work in our laboratory, has suggested that calpain, a Ca(2+)-dependent protease, plays a key role in APP α-processing. In this study we report that overexpression of the μ-calpain gene in HEK293 cells resulted in a 2.7-fold increase of the protein levels. Measurements of intracellular calpain enzymatic activity revealed that the calpain overexpressing cells displayed a prominent elevation of the activity compared to wild-type cells. When the cells were stimulated by nicotine, glutamate or phorbol 12,13-dibutylester, the activity increase was even more remarkable and sensitive to calpeptin, a calpain inhibitor. Meanwhile, APP secretion from the calpain overexpressing cells was robustly increased under both resting and stimulated conditions over wild-type cells. Furthermore, cell surface biotinylation experiments showed that μ-calpain was clearly detected among the cell surface proteins. These data together support our view that calpain should be a reasonable candidate for α-secretase for further study. This model is discussed with an interesting fact that three other deposited proteins (tau, spectrin and crystalline) are also the known substrates of calpain. Finally we discuss some current misconceptions in senile dementia research.  相似文献   

10.
11.
Fatty acids may integrate into cell membranes to change physical properties of cell membranes, and subsequently alter cell functions in an unsaturation number-dependent manner. To address the roles of fatty acid unsaturation numbers in cellular pathways of Alzheimer's disease (AD), we systematically investigated the effects of fatty acids on cell membrane fluidity and α-secretase-cleaved soluble amyloid precursor protein (sAPP(α)) secretion in relation to unsaturation numbers using stearic acid (SA, 18:0), oleic acid (OA, 18:1), linoleic acid (LA, 18:2), α-linolenic acid (ALA, 18:3), arachidonic acid (AA, 20:4), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6). Treatments of differentiated human neuroblastoma (SH-SY5Y cells) with AA, EPA and DHA for 24h increased sAPP(α) secretion and membrane fluidity, whereas those treatments with SA, OA, LA and ALA did not. Treatments with AA and DHA did not alter the total expressions of amyloid precursor protein (APP) and α-secretases in SH-SY5Y cells. These results suggested that not all unsaturated fatty acids but only those with 4 or more double bonds, such as AA, EPA and DHA, are able to increase membrane fluidity and lead to increase in sAPP(α) secretion. This study provides insights into dietary strategies for the prevention of AD.  相似文献   

12.
Lim MH  Lee OH  Chin JE  Ko HM  Kim IC  Lee HB  Im SY  Bai S 《Biotechnology letters》2008,30(12):2125-2130
Phytase liberates inorganic phosphate from phytic acid (myo-inositol hexakisphosphate) which is the major phosphate reserve in plant-derived foods and feeds. An industrial strain of Saccharomyces cerevisiae expressing the Debaryomyces castellii phytase gene (phytDc) and D. occidentalis α-amylase gene (AMY) was developed. The phytDc and AMY genes were constitutively expressed under the ADC1 promoter in S. cerevisiae by using the δ-integration system, which contains DNA derived exclusively from yeast. The recombinant industrial strain secreted both phytase and α-amylase for the efficient degradation of phytic acid and starch as main components of plant seeds. This new strain hydrolyzed 90% of 0.5% (w/v) sodium phytate within 5 days of growth and utilized 100% of 2% (w/v) starch within 48 h simultaneously.  相似文献   

13.
Production of α-isopropylmalate (α-IPM) is critical for leucine biosynthesis and for the global control of metabolism. The budding yeast Saccharomyces cerevisiae has two paralogous genes, LEU4 and LEU9, that encode α-IPM synthase (α-IPMS) isozymes. Little is known about the biochemical differences between these two α-IPMS isoenzymes. Here, we show that the Leu4 homodimer is a leucine-sensitive isoform, while the Leu9 homodimer is resistant to such feedback inhibition. The leu4Δ mutant, which expresses only the feedback-resistant Leu9 homodimer, grows slowly with either glucose or ethanol and accumulates elevated pools of leucine; this phenotype is alleviated by the addition of leucine. Transformation of the leu4Δ mutant with a centromeric plasmid carrying LEU4 restored the wild-type phenotype. Bimolecular fluorescent complementation analysis showed that Leu4-Leu9 heterodimeric isozymes are formed in vivo. Purification and kinetic analysis showed that the hetero-oligomeric isozyme has a distinct leucine sensitivity behavior. Determination of α-IPMS activity in ethanol-grown cultures showed that α-IPM biosynthesis and growth under these respiratory conditions depend on the feedback-sensitive Leu4 homodimer. We conclude that retention and further diversification of two yeast α-IPMSs have resulted in a specific regulatory system that controls the leucine–α-IPM biosynthetic pathway by selective feedback sensitivity of homomeric and heterodimeric isoforms.  相似文献   

14.
The antimicrobial activity of ε-poly-l-lysine (EPL) has been documented, but its antifungal activity on yeast is not well defined and its mechanism of action has been vaguely explained. Our studies revealed that on both, Candida albicans and Saccharomyces cerevisiae, the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) were 250 μg·mL?1; EPL produced a K+ and Ca2+ efflux, and at higher concentrations also an efflux of material absorbing at 260 nm, small peptides, and phosphate is produced, along with the inhibition of fermentation and extracellular acidification and respiration. Moreover, growth was inhibited, reactive oxygen species (ROS) production increased, and cell viability decreased. The polycation also produced plasma membrane potential hyperpolarization. The effects were dependent both on the cell quantity and polycation concentration, as well as the media used. The plasma membrane disruption was confirmed by TEM and PI staining.  相似文献   

15.
16.
Prodomains of A disintegrin and metalloproteinase (ADAM) metallopeptidases can act as highly specific intra- and intermolecular inhibitors of ADAM catalytic activity. The mouse ADAM9 prodomain (proA9; amino acids 24-204), expressed and characterized from Escherichia coli, is a competitive inhibitor of human ADAM9 catalytic/disintegrin domain with an overall inhibition constant of 280 ± 34 nM and high specificity toward ADAM9. In SY5Y neuroblastoma cells overexpressing amyloid precursor protein, proA9 treatment reduces the amount of endogenous ADAM10 enzyme in the medium while increasing membrane-bound ADAM10, as shown both by Western and activity assays with selective fluorescent peptide substrates using proteolytic activity matrix analysis. An increase in membrane-bound ADAM10 generates higher levels of soluble amyloid precursor protein α in the medium, whereas soluble amyloid precursor protein β levels are decreased, demonstrating that inhibition of ADAM9 increases α-secretase activity on the cell membrane. Quantification of physiological ADAM10 substrates by a proteomic approach revealed that substrates, such as epidermal growth factor (EGF), HER2, osteoactivin, and CD40-ligand, are increased in the medium of BT474 breast tumor cells that were incubated with proA9, demonstrating that the regulation of ADAM10 by ADAM9 applies for many ADAM10 substrates. Taken together, our results demonstrate that ADAM10 activity is regulated by inhibition of ADAM9, and this regulation may be used to control shedding of amyloid precursor protein by enhancing α-secretase activity, a key regulatory step in the etiology of Alzheimer disease.  相似文献   

17.
18.
The ultrastructural localization of amyloidβ/ A4 protein precursor (APP) was studied immunohistochemically in normal rat brains using antibodies against different portions of APP. In cerebral cortical neurons and Purkinje cells, APP reaction products were located in the cytoplasm and on cell surface membranes. Some Golgi apparatuses and rough endoplasmic reticulum also showed APP immunoreactivity on their membranes and some vesicles near the trans face of the Golgi apparatuses were stained. In the neuropil of the cerebral cortex and the cerebellar molecular layer, many cell processes, which surrounded synapses and were considered to be astrocytic, were APP-positive. Foot processes around capillaries and subpial astrocytic processes were also immuno-positive. At the ultrastructural level, APP-positive astrocytic processes were identified.  相似文献   

19.
Naumov  G. I.  Borovkova  A. N.  Shnyreva  A. V.  Naumova  E. S. 《Microbiology》2019,88(1):39-45
Microbiology - Taking into account the accepted concept of the ancient whole genome duplication (WGD) in the yeast genus Saccharomyces, comparative analysis of the multiple α-glucosidases MAL...  相似文献   

20.
Antonie van Leeuwenhoek - The NCW2 gene was recently described as encoding a GPI-bounded protein that assists in the re-modelling of the Saccharomyces cerevisiae cell wall (CW) and in the repair of...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号