首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhomogeneous distribution of egg RNA sequences in the early embryo   总被引:6,自引:0,他引:6  
W H Rodgers  P R Gross 《Cell》1978,14(2):279-288
  相似文献   

2.
Development of the Asian amphioxus, Branchiostoma belcheri tsingtauense, was investigated by scanning and transmission electron microscopy (SEM and TEM) from the fertilized egg through the blastula stage. The fertilized egg is spherical (mean diameter 115 μm after SEM preparation) and is covered with microvilli. Throughout cleavage, the second polar body remains attached to the animal pole. The cleavage type in this species is essentially radial, as revealed by SEM observations. At the third cleavage or 8-cell stage, and at later stages, a size difference between blastomeres in the animal and the vegetal halves is clearly discernible, but less marked than that reported for the European amphioxus, B. lanceolatum. During the period spanning the third to the fifth cleavage (8–32-cell) stages, blastomeres are arranged in tiers along the animal-vegetal axis. After the sixth cleavage, or 64-cell stage, the tiered arrangement of the blastomeres is no longer seen. At the 4-cell stage, the blastocoel or cleavage cavity is seen as an intercellular space, opening to the outside. The blastocoel remains open at the animal and the vegetal poles in later stages. Throughout early development, the cytoplasm of the blastomeres includes yolk granules, mitochondria, Golgi complexes, and rough and smooth endoplasmic reticulum. Chromatin in the interphase nucleus is not clearly demonstrated, and chromosomes in the mitotic phase are also extremely difficult to detect. As yet, regional differences have not been found in distribution and organization of cytoplasmic components with respect to prospective ectodermal, mesodermal, and endodermal areas in the fertilized egg and later cleaved embryos, although there are possibly fewer yolk granules in the region of the animal pole than in the vegetal polar zone.  相似文献   

3.
The pattern of cleavage was examined during second and third furrowing of the rabbit egg. Two-cell eggs, collected just prior to onset of second cleavage, were continuously observed in a culture chamber, which was kept at 37 degrees C. Semi-cinematographic techniques were used to photograph progressive stages of cleavage. It was demonstrated that the pattern of cleavage in the rabbit differs from that in the sea urchin, because the blastomeres at the 4-cell stage are arranged crosswise in the former, while they are situated next to each other in the latter. The crosswise arrangement of the blastomeres in the rabbit at the 4-cell stage is a consequence of a 90 degree rotation of the polar axis in one hemisphere of the egg. Subsequently, due to the rotation of the original polar axis in one hemisphere, the third cleavage plane through one half of the egg is transverse to the third cleavage plane through the other half. Evidence is provided to show that the cross wise configuration of blastomeres at the 4-cell stage occurs in other eutherian mammals. It is proposed that this rotational cleavage pattern be recognized as distinct from those of radial, spiral and bilateral.  相似文献   

4.
Summary In Parascaris developmental commitment to the germ line and somatic lineages is indicated by the orientation of the mitotic spindle in blastomeres, the topology of cells in the embryo, and chromatin diminution in presomatic blastomeres. Using three different experimental techniques: transient pressure treatment, application of cytochalasin B, and isolation of blastomeres, we have succeeded in uncoupling several developmental processes during cleavage of P. univalens. The following results were obtained: (1) Following mitotic nondisjunction we observed identical behavior of all chromatids in each blastomere. Thus chromosome differentiation by differential replication does not occur. (2) Chromosome fragments obtained by pressure treatment of egg cells underwent chromatin diminution. Thus this process does not require an intact germ-line chromosome. However, chromosomes immobilized on a monopolar spindle did not undergo chromatin diminution. Thus diminution appears to require segregation of chromatids. (3) Blastomeres that completely lacked chromosomes as a result of mitotic nondisjunction underwent normal early cleavage divisions. (4) Pressure treatment or prolonged treatment with cytochalasin B caused egg cells or germ line blastomeres to lose their germ line quality, as deduced from the coincident occurrence of symmetrical (presomatic-like) cleavage and chromatin diminution. (5) Isolated blastomeres from 2-cell embryos, i.e. 1/2 blastomeres, usually cleaved according to their prospective fates in the whole embryo. However, in some partial embryos derived from such blastomeres, chromatin diminution was delayed for either one or two cleavage mitoses. An activation model as an alternative to a prelocalization model is presented, which can account for early blastomere topogenesis and chromatin diminution.  相似文献   

5.
To substantiate the assumption that the egg cell and blastomeres in planarian embryos influence surrounding yolk cells to form a syncytium, embryos at 1- to 8-cell stages were examined by electron microscopy. Within special areas of the endoplasmic reticulum both in the egg cell and in the blastomeres, a large number of vacuoles of various sizes formed and then disappeared at least four times over the period from egg-laying through the 8-cell stage as if their contents were being secreted. These activities diminished markedly at the 8-cell stage. Yolk cells surrounding the egg cell and blastomeres were aggregated in close contact with one another in a small clump shortly after egg-laying, and then, late in the 4-cell stage, became fused, forming a syncytium. The correlation between release of vacuoles by the egg cell and blastomeres and the formation of a syncytium by the yolk cells indicate that the cell fusion could be induced by a factor contained in the vacuoles.  相似文献   

6.
This study was undertaken to develop a new technique to produce identical offspring by aggregating a quarter or eighth embryo with a parthenogenetically activated egg in the mouse. One or two blastomeres from 8-cell embryos were aggregated with a parthenogenetic 4-cell egg from which one or two blastomeres had been removed. After micromanipulation and culture for 2 d in vitro, the morphologically normal blastocysts were transferred to the uterus of recipient females. The success rate in micromanipulation of eggs was 93 to 100%: aggregation of blastomeres occured about 60% of the time and the proportion of live young after transfer of aggregated eggs was 11 to 33% for the quarter and 2 to 24% for the eighth egg. The proportion of chimaeras as judged by coat color was 10% for the quarter and 20% for the eighth egg. However, GPI-1 analysis and progeny testing could not detect a parthenogenetic contribution in all offspring. The mean number of young obtained from one embryo was 1.7 for the quarter and 1.6 for the eighth embryo. The maximal number of young obtained from splitting one 8-cell embryo into quarters was three and into eighths was four. The mice of each set derived from a single embryo were of the same sex. Our study clearly demonstrates that the parthenogenone can assist development of the quarter and eighth mouse embryo to term. The proportion of chimaeras is low compared with that obtained when two fertilied eggs are combined.  相似文献   

7.
L V Riabova 《Ontogenez》1984,15(1):93-97
The cytoplasm of mature non-activated and cleaving eggs of A. stellatus and R. temporaria had no cytostatic effect. The cytoplasm treated with EGTA, being injected in one of two blastomeres of the cleaving egg of the same species, inhibits fully or partially the cleavage. The nuclei in the "arrested" blastomeres had, however, vesicular structure but were not blocked at metaphase, as could be expected if the cleavage was inhibited by a cytostatic factor described by Masui (1974). The portion of perished embryos and "arrested" blastomeres was shown to increase with the dose of EGTA injected in the egg, donor of cytoplasm. In the experiments with reciprocal injections of the intact cytoplasm of the mature non-activated eggs in one of two blastomeres of the recipient embryo carried out on R. temporaria and X. laevis, the cytoplasm of X. laevis only arested the cleavage but in this case as well only 4 out of 32 "arrested" blastomeres were at metaphase. The cytostatic effect observed in our experiments was not, hence, similar to that observed by Masui on R. pipiens.  相似文献   

8.
Embryos of amphibians, fish, sheep, cattle, swine and rabbits have been multiplied by nuclear transfer. Successful nuclear transfer in these species has been accomplished by transfer of a blastomere from a late stage embryo into an enucleated oocyte or egg with large scale multiplication achieved by serial repetition of the procedure using blastomeres from nuclear transfer embryos. This allows the production of clonal lines, which when appropriately selected for performance in a given trait, can be reproduced to capture in the offspring expression of both additive and nonadditive inheritance. The efficiency of producing offspring from nuclear transfer is low in mammals in both frequency of morula or blastocyst produced and maintenance of pregnancy after embryo transfer. In domestic animals the largest number of offspring from one embryo has been eight calves. Embryos as late as the 64-cell stage in cattle and 120-cell blastocyst in sheep have been used successfully as donors of blastomeres. Recloning has also been done in cattle. Potentially, nuclear transfer provides a mechanism for multiplication and production testing of clonal lines, a method for rapid genetic improvement and a means for rapid propagation of a selected genotype.  相似文献   

9.
The development of dorsoventral polarity in Dentalium dentale has been analyzed after inhibiting first polar lobe formation with cytochalasin B and bisecting the egg into two equal parts at an early trefoil stage. Cleavage pattern and morphogenesis have been studied in both in vivo and permanent cytological preparations. After bisecting the egg, each blastomere may fuse with its adhering polar lobe half and subsequently behave as a CD blastomere. The polar lobe substance may induce both halves to develop an apical tuft and probably also a posttrochal region. Cytochalasin B embryos which pass through an equal first cleavage form a four-cell stage in which the two D blastomeres are situated opposite or adjacent to each other (CDCD or CCDD embryos, respectively). During further development the larvae show a duplication of lobe-dependent structures. It is concluded that dorsoventral polarity originates epigenetically by fusion of the polar lobe with one of the first two blastomeres and is not preformed in the uncleaved egg.  相似文献   

10.
Long‐bone scaling has been analyzed in a large number of terrestrial mammals for which body masses were known. Earlier proposals that geometric or elastic similarity are suitable as explanations for long‐bone scaling across a large size range are not supported. Differential scaling is present, and large mammals on average scale with lower regression slopes than small mammals. Large mammals tend to reduce bending stress during locomotion by having shorter limb bones than predicted rather than by having very thick diaphyses, as is usually assumed. The choice of regression model used to describe data samples in analyses of scaling becomes increasingly important as correlation coefficients decrease, and theoretical models supported by one analysis may not be supported when applying another statistical model to the same data. Differences in limb posture and locomotor performance have profound influence on the amount of stress set up in the appendicular bones during rigorous physical activity and make it unlikely that scaling of long bones across a large size range of terrestrial mammals can be satisfactorily explained by any one power function. J. Morphol. 239:167–190, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

11.
Mechanism of Ca2+ release at fertilization in mammals.   总被引:5,自引:0,他引:5  
At fertilization in mammals the sperm triggers a series of oscillations in intracellular Ca2+ within the egg. These Ca2+ oscillations activate the development of the egg into an embryo. It is not known how the sperm triggers these Ca2+ oscillations. There are currently three different theories for Ca2+ signaling in eggs at fertilization. One idea is that the sperm acts as a conduit for Ca2+ entry into the egg after membrane fusion. Another idea is that the sperm acts upon plasma membrane receptors to stimulate a phospholipase C (PLC) within the egg which generates inositol 1,4, 5-trisphosphate (InsP(3)). We present a third idea that the sperm causes Ca2+ release by introducing a soluble protein factor into the egg after gamete membrane fusion. In mammals this sperm factor is also referred to as an oscillogen because, after microinjection, the factor causes sustained Ca2+ oscillations in eggs. Our recent data in sea urchin egg homogenates and intact eggs suggests that this sperm factor has phospholipase C activity that leads to the generation of InsP(3). We then present a new version of the soluble sperm factor theory of signaling at fertilization. J. Exp. Zool. (Mol. Dev. Evol.) 285:267-275, 1999.  相似文献   

12.
Blastomere transplantation into fish blastula embryos results in somatic chimeras, which generally provide null or a small proportion of gametes derived from the donor. This may partly explain why none of the ES‐like cell lines established from fish embryos has contributed to the germline of chimeras when transplanted at the blastula stage. Here, we report that a moderate gamma‐irradiation of recipient embryos, followed by transplantation of dispersed blastomeres, considerably enhances the proportion of donor‐derived gametes (53% versus 5% in average). In fish, the resulting protocol should maximise the pluripotency level measured in vivo for embryonic cell lines and for cultured germ cells. Mol. Reprod. Dev. 53:394–397, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

13.
A method of detecting blastomeres that carrying the determinant for archenteron formation was established, based on the reported localization of the determinant in the vegetal cytoplasm (17, 24). The essence of the method was to co-culture a selected blastomere with an animal egg fragment-derived cell cluster, so as to generate one joined embryo. The presence of the determinant in the blastomere was assessed by the formation of the archenteron in the developed joined embryos. The vegetal blastomeres that carried the determinant sometimes induced animal egg fragment-derived cells to form part of the archenteron.  相似文献   

14.
We counted cell numbers during embryogenesis of the ascidian, Halocynthia roretzi, every hour. Cell numbers were determined by counting the numbers of nuclei in squashed embryos. The cell number of a larva just after hatching was approximately 3000. Our study addresses the question of what factors control the number of rounds of cell division during development. Three kinds of egg fragments were prepared by cutting unfertilized eggs to alter the volume of cytoplasm and the amount of DNA. After the egg fragments were fertilized, the cell numbers were estimated at the hatching stage. The cell numbers of the resulting larvae differed from those of normal larvae. Precursor blastomeres of various tissues were then isolated from normal and manipulated embryos, and cultured as partial embryos. The cell numbers of the resulting partial embryos were counted to estimate the number of cell divisions in each larval tissue. The results suggested that the number of cell divisions is controlled by a distinct mechanism in each tissue. We propose that the number of rounds of cell division during ascidian embryogenesis is controlled by three mechanisms: the first depending on the volume of cytoplasm; the second on the nucleo-cytoplasmic ratio; and the third depending on neither of these parameters. J. Exp. Zool. 284:379-391, 1999.  相似文献   

15.
A culture system was devised to study the differentiation of bovine blastomeres. Blastomeres (2–13 per well) from embryos produced by in vitro maturation, fertilization, and culture of oocytes obtained from slaughterhouse ovaries were cultured for 10 days in 24-well culture plates on feeder layers in blastomere culture medium (BCM: equal parts tissue culture medium 199 and low-glucose Dulbecco's modified Eagle's medium with 10% fetal bovine serum). Ovine embryonic fibroblasts and STO cells were superior to bovine and mouse embryonic fibroblasts as mitotically inactivated feeder cells. Over five studies in which four blastomeres from an embryo were added to each culture well, an average of one colony per well formed from the blastomeres. The colonies continued to grow throughout the culture period, and most colonies resembled trophectoderm in their cellular characteristics, although some cultures contained a mixture of trophectoderm and endoderm. When the number of blastomeres cultured in each well was varied from 2–8, the number of colonies formed was proportional to the number of blastomeres added. Blastomeres from day 5 and day 6 embryos produced fewer colonies than did those from day 4 embryos, perhaps as a result of differentiation and tighter blastomere adhesion resulting in damage during their separation. The absence of serum did not alter the number of colonies formed. A number of growth factors, including LIF, OM, PDGFα, and FGF4, had no effect on the number of colonies, the size of colonies, or their alkaline phosphatase staining score beyond that provided by the feeder layer or serum when present. Blastomeres did not form colonies in the absence of feeder layers. Mol. Reprod. Dev. 48:238–245, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Summary

The mosaic behavior of blastomeres isolated from ascidian embryos has been taken as evidence that localized ooplasmic factors (cytoplasmic determinants) specify tissue precursor cells during embryogenesis. Experiments involving the transfer of egg cytoplasm have revealed the presence and localization of various kinds of cytoplasmic determinants in eggs of Halocynthia roretzi. Three cell fates, epidermis, muscle and endoderm, are fixed by cytoplasmic determinants. The three kinds of tissue determinants move in different directions during ooplasmic segregation. Prior to the onset of the first cleavage the three kinds of determinants reside in egg regions that correspond to the future fate map of the embryo and then they are differentially partitioned into specific blastomeres. In addition to tissue-specific determinants, there is evidence suggesting that ascidian eggs contain localized cytoplasmic factors that are responsible for controlling the cleavage pattern and morphogenetic movements. Transplantation of posterior-vegetal egg cytoplasm to an anterior-vegetal position causes a reversal of the anterior-posterior polarity of the cleavage pattern. Localized cytoplasmic factors in the posterior-vegetal region are involved in the generation of a unique cleavage pattern. When vegetal pole cytoplasm is transplanted to the animal pole or equatorial position of the egg, ectopic gastrulation occurs at the site of transplantation. This finding supports the idea that vegetal pole cytoplasm specifies the site of gastrulation. Recently, we started a cDNA project to analyze maternal mRNAs. An arrayed cDNA library of fertilized eggs of H. roretzi was constructed, and more than 2000 clones have been partially sequenced so far. To estimate the proportion of the maternal mRNAs that are localized in the egg and embryo, 150 randomly selected clones were examined by in situ hybridization. We found eight mRNAs that are localized in the eight-cell embryo, of which three were localized to the myoplasm (a specific region of the egg cytoplasm that is partitioned into muscle-lineage blastomeres) of the egg, and then to the postplasm of cleavage-stage embryos. These results indicate that the proportion of localized messages is much higher than we expected. These localized maternal messages may be involved in the regulation of various developmental processes.  相似文献   

17.
18.
The purpose of the present investigation was to test experimentally the possibility that division mechanism establishment at the equator of sand dollar eggs may be a consequence of cortical tension gradients between the equator and the poles. Cytochalasin has been shown to decrease tension at the sea urchin egg surface. The concave ends of cytochalasin D-containing agarose cylinders were held against regions of the surface of Echinarachnius parma blastomeres and enucleated fertilized egg fragments. The ability to interfere with normal furrowing activity was used as a biological indicator of the effectiveness of cytochalasin. When agarose containing 2 microg/mL cytochalasin contacted the equatorial region of the blastomeres resulting from the first cleavage, or the equatorial surfaces of nucleated fertilized egg halves, furrowing was blocked, stalled or delayed, indicating that the concentration of cytochalasin was effective. When the same concentration of cytochalasin was applied to the poles, the cells and nucleated fertilized egg fragments divided in the same way as the controls, indicating that the effectiveness of the cytochalasin did not spread from the poles to the equator and that bisection did not interfere with the division of nucleated fertilized egg fragments. When the same concentration of cytochalasin was applied to diametrically opposed surfaces of enucleated, spherical egg fragments, there was no evidence of furrowing activity between the areas that contacted the cytochalasin or in any other part of the surface. Because of the tension-reducing effect of cytochalasin, a tension gradient existed between the regions affected and unaffected by cytochalasin. The results strongly suggest that establishment of the division mechanism by simple gradients of tension at the surface is unlikely.  相似文献   

19.
Summary The blastomeres of sea urchin embryos have two surface regions with different properties. Numerous microvilli are present in the apical surface region, while the baso-lateral surface region, either on adjoining adjacent cells or facing the blastocoel, is smooth. When blastomeres are isolated from embryos and stained with fluorescein-isothiocyanate-labelled anti-(egg surface) antibody (anti-ES) prepared against membranes isolated from fertilized eggs, the apical microvillous region fluoresces while the smooth region does not [Yazaki I (1984) Acta Embryol Morphol Exp 5∶3–22]. In order to study quantitatively the ‘bindability’ of the membrane in the two regions to anti-ES, immunoelectron microscopy was used. Blastomeres isolated from embryos ofHemicentrotus pulcherrimus at the eight-cell stage were treated with rabbit anti-ES serum or pre-immune serum and then with ferritin-conjugated goat anti-(rabbit IgG) for 10 min at 0°C, mainly before fixation. About 10 times (maximally 45 times) more ferritin particles were counted per contour length in the microvillous surface region than in the smooth surface region. These results suggest that the membrane of the blastomeres of sea urchin embryos is a mosaic of two different membrane territories: one represented by the microvillous surface originating from the unfertilized egg, which binds anti-ES, the other by the smooth surface newly organized after the first cleavage, which does not react with anti-ES. The mechanism of segregation of the membrane into these two regions is discussed.  相似文献   

20.
Larvae of two species of sea urchins (Strongylocentrotus droebachiensis and S. purpuratus) differ in initial form and in the rate of development. To determine whether these differences are attributable to the large interspecific difference in egg size, we experimentally reduced egg size by isolating blastomeres from embryos. The rate of development of feeding larvae derived from isolated blastomeres was quantified using a novel morphometric method. If the differences early in the life histories of these two species are due strictly to differences in egg size, then experimental reduction of the size of S. droebachiensis eggs should yield an initial larval form and rate of development similar to that of S. purpuratus. Our experimental manipulations of egg size produced three clear results: 1) smaller eggs yielded larvae that were smaller and had simpler body forms, 2) smaller eggs resulted in slower development through the early feeding larval stages, and 3) effects of egg size were restricted to early larval stages. Larvae from experimentally reduced eggs of the larger species had rates of development similar to those of the smaller species. Thus, cytoplasmic volumes of the eggs, not genetic differences expressed during development, account for differences in larval form and the rate of form change. This is the first definitive demonstration of the causal relationship between egg size (parental investment per offspring) and life-history characteristics in marine benthic invertebrates. Because larval form influences feeding capability, the epigenetic effects of egg size on larval form are likely to have important functional consequences. Adaptive evolution of egg size may be constrained by the developmental relationships between egg size and larval form: evolutionary changes in egg size alone can result in concerted changes in larval form and function; likewise evolutionary changes in larval form and function can be achieved through changes in egg size. These findings may have broader implications for other taxa in which larval morphology and, consequently, performance may be influenced by changes in egg size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号