首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Species differences and substrate specificities for the stereoselective hydrolysis of fifteen O-acyl propranolol (PL) prodrugs were investigated in pH 7.4 Tris-HCl buffer and rat and dog plasma and liver subfractions. The (R)-isomers were preferentially converted to propranolol (PL) in both rat and dog plasma with the exception of isovaleryl-PL in rat plasma, although the hydrolytic activities of prodrugs in rat plasma were 5–119-fold greater than those in dog plasma. The prodrugs with promoieties (C(=O)CH(R)CH3) based on propionic acid showed marked preference for hydrolysis of the (R)-enantiomers in plasma from both species (R/S ratio 2.5–18.2). On the other hand, the hepatic hydrolytic activities of prodrugs were greater in dog than rat, especially in cytosolic fractions. The hydrolytic activity was predominantly located in microsomes of the liver in rat, while the cytosol also contributed to hepatic hydrolysis in dog. Hepatic microsomal hydrolysis in dog showed a preference for the (R)-isomers except acetyl- and propionyl-PL. Interestingly, in rat liver all types of prodrugs with substituents of small carbon number showed (S)-preference for hydrolysis. The hydrolyses of (R)- and (S)-isomers of straight chain acyl esters in rat liver microsomes were linearly and parabolically related with the carbon number of substituents, respectively, while these relationships were linear for both isomers in dogs. Chirality 9:661–666, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Native polyacrylamide gel electrophoresis showed carboxylesterase (CES) to be the most abundant hydrolase in the liver and small intestine of humans, monkeys, dogs, rabbits and rats. The liver contains both CES1 and CES2 enzymes in all these species. The small intestine contains only enzymes from the CES2 family in humans and rats, while in rabbits and monkeys, enzymes from both CES1 and CES2 families are present. Interestingly, no hydrolase activity at all was found in dog small intestine. Flurbiprofen derivatives were R-preferentially hydrolyzed in the liver microsomes of all species, but hardly hydrolyzed in the small intestine microsomes of any species except rabbit. Propranolol derivatives were hydrolyzed in the small intestine and liver microsomes of all species except dog small intestine. Monkeys and rabbits showed R-preferential and non-enantio-selective hydrolysis, respectively, for propranolol derivatives in both organs. Human and rat liver showed R- and S-preferential hydrolysis, respectively, in spite of non-enantio-selective hydrolysis in their small intestines. The proximal-to-distal gradient of CES activity in human small intestine (1.1-1.5) was less steep than that of CYP 3A4 and 2C9 activity (three-fold difference). These findings indicate that human small intestine and liver show extensive hydrolase activity attributed to CES, which is different from that in species commonly used as experimental animals.  相似文献   

3.
Benalaxyl (BX), methyl‐N‐phenylacetyl‐N‐2,6‐xylyl alaninate, is a potent acylanilide fungicide and consist of a pair of enantiomers. The stereoselective metabolism of BX was investigated in rat and rabbit microsomes in vitro. The degradation kinetics and the enantiomer fraction (EF) were determined using normal high‐performance liquid chromatography with diode array detection and a cellulose‐tris‐(3,5‐dimethylphenylcarbamate)‐based chiral stationary phase (CDMPC‐CSP). The t1/2 of (?)‐R‐BX and (+)‐S‐BX in rat liver microsomes were 22.35 and 10.66 min of rac‐BX and 5.42 and 4.03 of BX enantiomers. However, the t1/2 of (?)‐R‐BX and (+)‐S‐BX in rabbit liver microsomes were 11.75 and 15.26 min of rac‐BX and 5.66 and 9.63 of BX enantiomers. The consequence was consistent with the stereoselective toxicokinetics of BX in vitro. There was no chiral inversion from the (?)‐R‐BX to (+)‐S‐BX or inversion from (+)‐S‐BX to (?)‐R‐BX in both rabbit and rat microsomes. These results suggested metabolism of BX enantiomers was stereoselective in rat and rabbit liver microsomes. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
Previous studies have demonstrated that homogenates of the livers of rats contain a neutral retinyl ester hydrolase activity that requires millimolar concentrations of bile salts for maximal in vitro activity. The enzymatic properties of this neutral, bile salt-dependent retinyl ester hydrolase activity in liver homogenates are nearly identical to those observed in the present report for the in vitro hydrolysis of retinyl palmitate by purified rat pancreatic cholesteryl ester hydrolase (EC 3.1.1.13). Moreover, anti-rat pancreatic cholesteryl ester hydrolase IgG completely inhibits the bile salt-dependent retinyl ester hydrolase activity of rat liver homogenates whereas normal rabbit IgG does not. We also show that liver homogenates contain a neutral, bile salt-independent retinyl ester hydrolase activity that differs from the bile salt-dependent activity in that 1) its absolute activity does not vary markedly among individual rats, 2) it is not inhibited by antibodies to pancreatic cholesteryl ester hydrolase, and 3) it is localized in the microsomal fraction of liver homogenates. Subfractionation of microsomes demonstrates that the neutral, bile salt-independent retinyl ester hydrolase activity is associated with liver cell plasma membranes and thus may play a role in the hydrolysis of retinyl esters delivered to the liver by chylomicron remnants.  相似文献   

5.
S K Yang  K Liu  F P Guengerich 《Chirality》1990,2(3):150-155
Rates of hydrolysis of racemic and enantiomeric oxazepam 3-acetates (OXA) by esterases in human and rat liver microsomes and rat brain S9 fraction were compared. When rac-OXA was the substrate, esterases in human and rat liver microsomes were highly enantioselective toward (R)-OXA. In contrast, esterases in rat brain S9 fraction were highly enantioselective toward (S)-OXA. Hydrolysis rates of rac-OXA were highly dependent on the amount of esterases used. At 0.05 mg protein equivalent of esterases and 150 nmol of rac-OXA per ml of incubation mixture, the (R)-OXA was hydrolyzed 3.6-fold and 18.5-fold faster than (S)-OXA by rat and human liver microsomes, respectively. The specific activities (nmol of OXA hydrolyzed/mg microsomal protein/min) of liver microsomes in the hydrolysis of enantiomerically pure (R)-OXA were approximately 120 (rat) and 1,980 (human), and in the hydrolysis of enantiomerically pure (S)-OXA were 4 (rat) and 7 (human), respectively. In the incubation of rac-OXA with rat brain S9 fraction, (S)-OXA was hydrolyzed approximately 6-fold faster than (R)-OXA. Results also indicated an enantiomeric interaction in the hydrolysis of rac-OXA by esterases in rat and human liver microsomes; the presence of (R)-OXA stimulated the hydrolysis of (S)-OXA, whereas the presence of (S)-OXA inhibited the hydrolysis of (R)-OXA. In rat brain S9 fraction, the presence of (R)-OXA inhibited the hydrolysis of (S)-OXA, whereas the presence of (S)-OXA appeared to have stimulated the hydrolysis of (R)-OXA.  相似文献   

6.
7.
Apo-cellular retinol-binding protein (apoCRBP) activated the hydrolysis of endogenous retinyl esters in rat liver microsomes by a cholate independent retinyl ester hydrolase. A Michaelis-Menten relationship was observed between the apoCRBP concentration and the rate of retinol formation, with half-maximum stimulation at 2.6 +/- 0.6 microM (mean +/- S.D., n = 5). Two other retinol-binding proteins, bovine serum albumin and beta-lactoglobulin, acceptors for the rapid and spontaneous hydration of retinol from membranes, had no effect up to 90 microM. These data suggest activation of the hydrolase by apoCRBP directly, rather than by facilitating removal of retinol from membranes. The hydrolase responding was the cholate-independent/cholate-inhibited retinyl ester hydrolase as shown by: 60% inhibition of the apoCRBP effect by 3 mM cholate; apoCRBP enhancement of retinyl ester hydrolysis in liver microsomes that had no detectable cholate-enhanced activity; inhibition of cholate-dependent, but not apoCRBP-stimulated retinyl ester hydrolysis by rabbit anti-rat cholesteryl esterase. Compared to the rate (mean +/- S.D. of [n] different preparations) supported by 5 microM apoCRBP in liver microsomes of 6.7 +/- 3.7 pmol/min/mg protein [10], microsomes from rat lung, kidney, and testes had endogenous retinyl ester hydrolysis rates of 1.8 +/- 0.3 [5], 0.5 +/- 0.2 [3], and 0.3 +/- 0.2 [5] pmol/min/mg protein, respectively. N-Ethylmaleimide and N-tosyl-L-phenylalanine chloromethyl ketone were potent inhibitors of apoCRBP-stimulated hydrolysis with IC50 values of 0.25 and 0.15 mM, respectively, but phenylmethylsulfonyl fluoride and diisopropyl-fluorophosphate were less effective with IC50 values of 1 mM, indicating the importance of imidazole and sulfhydryl groups to the activity. These data provide evidence of a physiological role for the cholate-independent hydrolase in retinoid metabolism and suggest that apoCRBP is a signal for retinyl ester mobilization.  相似文献   

8.
Retinyl esters are a major endogenous storage source of vitamin A in vertebrates and their hydrolysis to retinol is a key step in the regulation of the supply of retinoids to all tissues. Some members of nonspecific carboxylesterase family (EC 3.1.1.1) have been shown to hydrolyze retinyl esters. However, the number of different isoenzymes that are expressed in the liver and their retinyl palmitate hydrolase activity is not known. Six different carboxylesterases were identified and purified from rat liver microsomal extracts. Each isoenzyme was identified by mass spectrometry of its tryptic peptides. In addition to previously characterized rat liver carboxylesterases ES10, ES4, ES3, the protein products for two cloned genes, AB010635 and D50580 (GenBank accession numbers), were also identified. The sixth isoenzyme was a novel carboxylesterase and its complete cDNA was cloned and sequenced (AY034877). Three isoenzymes, ES10, ES4 and ES3, account for more than 95% of rat liver microsomal carboxylesterase activity. They obey Michaelis-Menten kinetics for hydrolysis of retinyl palmitate with Km values of about 1 micro m and specific activities between 3 and 8 nmol.min-1.mg-1 protein. D50580 and AY034877 also hydrolyzed retinyl palmitate. Gene-specific oligonucleotide probing of multiple-tissue Northern blot indicates differential expression in various tissues. Multiple genes are highly expressed in liver and small intestine, important tissues for retinoid metabolism. The level of expression of any one of the six different carboxylesterase isoenzymes will regulate the metabolism of retinyl palmitate in specific rat cells and tissues.  相似文献   

9.
Cholestane 3 beta,5 alpha, 6 beta-triol has been identified as the exclusive product formed on hydration of cholesterol 5,6 alpha- and 5,6 beta-oxide catalyzed by cholesterol oxide hydrolase in liver microsomes obtained from five mammalian species. Highest activities were present in microsomes from rats and humans. Both acid- and base-catalyzed hydrolysis of the two epoxides also produce this product, presumably due to preference for pseudo-axial opening of the oxirane ring to form product with a trans-AB ring junction. Although the beta-oxide is more reactive than the alpha-oxide upon acid-catalyzed hydration, the alpha-oxide is a 4.5-fold better substrate than the beta-oxide as indicated by values of Vmax/Km. The kinetic parameters Vmax and Km for the reaction catalyzed by rat liver microsomes are 1.68 +/- 0.15 X 10(-7) M min-1 and 10.6 +/- 1.5 microM for the alpha-oxide and 1.32 +/- 0.11 X 10(-7) M min-1 and 37.2 +/- 5.5 microM for the beta-oxide at 0.35 mg protein/ml, pH 7.4, 6.35% (v/v) CH3CN, and 37 degrees C. Several imino compounds are competitive inhibitors for the enzyme from rat liver. The most effective of these is 5,6 alpha-iminocholestanol (Ki = 0.085 microM) which was known to be a good inhibitor from previous studies. Inhibition by aziridines is consistent with the participation of acid catalysis in the mechanism of action of the enzyme. Cholesterol oxide hydrolase is a distinct enzyme from oxidosqualene cyclase as well as microsomal epoxide hydrolase (EC 3.3.2.3) and the recently reported mouse hepatic microsomal epoxide hydrolase that catalyzes the hydration of trans-stilbene oxide.  相似文献   

10.
The carboxylesterase (carboxylic-ester hydrolase, EC 3.1.1.1) and monoacylglycerol lipase (glycerol-monoester acylhydrolase, EC 3.1.1.23) activities, measured against ethyl butyrate and emulsified monooleoylglycerol respectively, were determined for chicken liver microsomes and highly purified chicken liver carboxylesterase. The activity ratio (ethyl butyrate activity/monooleoylglycerol activity) was approx. 5 for microsomes and approx. 400 for carboxylesterase. Homogenization of microsomes in 0.1 M Tris-HCl buffer (pH 7.92) released all of the ethyl butyrate activity and about half of the monooleoylglycerol activity into a soluble form. Both activities eluted from a Sephadex G-200 column with the same elution volume as that of pure carboxylesterase. This fraction (fraction B) had an activity ratio of approx. 15, an average pI of 5.01 (cf. 4.75 for carboxylesterase), and ran on polyacrylamide gel electrophoresis at pH 8.6 as a number of closely spaced esterase bands with mobilities considerably less than those of the esterase bands present in the carboxylesterase. Fraction B activities against both substrates were completely inhibited by diethyl p-nitrophenyl phosphate and completely precipitated by antibody to carboxylesterase. The remaining half of the monoacylglycerol lipase activity of microsomes was solubilized by treatment with 1.5% (w/v) Triton X-100. This solubilized monoacylglycerol lipase was completely inhibited by diethyl p-nitrophenyl phosphate, showing it to be a serine-dependent enzyme like the carboxylesterases. However, it had no detectable activity against ethyl butyrate, indicating that it is not closely related to the carboxylesterases.  相似文献   

11.
In order to determine whether catalytic hydrolysis of acetylcholine, observed in muscle microsomes enriched in sarcoplasmic reticulum membranes, was carried out by true acetylcholinesterase we studied the substrate specificity of this enzyme, its kinetic behaviour and its sensitivity against several reversible inhibitors. The results showed that the enzyme from muscle microsomes had acetylcholine (or acetylthiocholine) as the preferent substrate and was also able to hydrolyze acetyl-beta-methylcholine. The enzyme had a Km of 100-120 microM, being inhibited by a high substrate concentration. Acetylcholinesterase in this source was competitively inhibited by BW-284-c-51, eserine and decamethonium with ki values of 0.025 microM, 0.021 microM and 65 microM, respectively. The enzyme was poorly inhibited by the pseudocholinesterase inhibitor ethopropazine. The results show that the hydrolytic enzyme is indeed acetylcholinesterase.  相似文献   

12.
Optically active 7-hydroxy-7,8-dihydrobenzo[a]pyrene and 8-hydroxy-7,8-dihydrobenzo[a]pyrene were identified as two of the major metabolites formed by incubation of 7,8-dihydrobenzo[a]pyrene with rat liver microsomes. Optically active 9-hydroxy-9,10-dihydrobenzo[a]pyrene and 10-hydroxy-9,10-dihydrobenzo[a]pyrene were similarly identified as two of the minor metabolites of 9,10-dihydrobenzo[a]pyrene. The formation of these metabolites was abolished either by prior treatment of liver microsomes with carbon monoxide or the absence of NADPH, but was not inhibited by an epoxide hydrolase inhibitor. The results indicate that the aliphatic carbons of dihydro polycyclic aromatic hydrocarbons may undergo stereoselective hydroxylation reactions catalyzed by the cytochrome P-450 system of rat liver microsomes.  相似文献   

13.
The pharmacokinetics and metabolic chiral inversion of the S(+)‐ and R(−)‐enantiomers of tiaprofenic acid (S‐TIA, R‐TIA) were assessed in vivo in rats, and in addition the biochemistry of inversion was investigated in vitro in rat liver homogenates. Drug enantiomer concentrations in plasma were investigated following administration of S‐TIA and R‐TIA (i.p. 3 and 9 mg/kg) over 24 hr. Plasma concentrations of TIA enantiomers were determined by stereospecific HPLC analysis. After administration of R‐TIA it was found that 1) there was a time delay of peak S‐TIA plasma concentrations, 2) S‐TIA concentrations exceeded R‐TIA concentrations from ∼2 hr after dosing, 3) Cmax and AUC(0‐∞) for S‐TIA were greater than for R‐TIA following administration of S‐TIA, and 4) inversion was bidirectional but favored inversion of R‐TIA to S‐TIA. Bidirectional inversion was also observed when TIA enantiomers were incubated with liver homogenates up to 24 hr. However, the rate of inversion favored transformation of the R‐enantiomer to the S‐enantiomer. In conclusion, stereoselective pharmacokinetics of R‐ and S‐TIA were observed in rats and bidirectional inversion in rat liver homogenates has been demonstrated for the first time. Chiral inversion of TIA may involve metabolic routes different from those associated with inversion of other 2‐arylpropionic acids such as ibuprofen. Chirality 11:103–108, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

14.
We recently reported the presence of a neutral, bile salt-independent retinyl ester hydrolase (REH) activity in rat liver microsomes and showed that it was distinct from the previously studied bile salt-dependent REH and from nonspecific carboxylesterases (Harrison, E. H., and M. Z. Gad. 1989. J. Biol. Chem. 264: 17142-17147). We have now further characterized the hydrolysis of retinyl esters by liver microsomes and have compared the observed activities with those catalyzing the hydrolysis of cholesteryl esters. Microsomes and microsomal subfractions enriched in plasma membranes and endosomes catalyze the hydrolysis of retinyl esters at both neutral and acid pH. The acid and neutral REH enzyme activities can be distinguished from one another on the basis of selective inhibition by metal ions and by irreversible, active site-directed serine esterase inhibitors. The same preparations also catalyze the hydrolysis of cholesteryl esters at both acid and neutral pH. However, the enzyme(s) responsible for the neutral REH activity can be clearly responsible for the neutral REH activity can be clearly differentiated from the neutral cholesteryl ester hydrolase(s) on the basis of differential stability, sensitivity to proteolysis, and sensitivity to active site-directed reagents. These results suggest that the neutral, bile salt-independent REH is relatively specific for the hydrolysis of retinyl esters and thus may play an important physiological role in hepatic vitamin A metabolism. In contrast to the neutral hydrolases, the activities responsible for hydrolysis of retinyl esters and cholesterol esters at acid pH are similar in their responses to the treatments mentioned above. Thus, a single microsomal acid hydrolase may catalyze the hydrolysis of both types of ester.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Isosorbide-2-benzylcarbamate-5-benzoate, a novel butyrylcholinesterase inhibitor, shows interspecies variation in its inhibitory activity (IC(50) of 4.3 nM for human plasma butyrylcholinesterase, but 1.09 microM for mouse plasma butyrylcholinesterase). Stability studies revealed that this drug is resistant to hydrolysis by human plasma (no degradation in 1 h). However, it was found to undergo rapid degradation when incubated with mouse plasma or mouse liver homogenate, yielding benzyl carbamate and benzoic acid. The addition of the carboxylesterase inhibitor bis-(4-nitrophenyl) phosphate (BNPP) inhibited the degradation of the novel drug, indicating that it may be a substrate for both butyrylcholinesterase and carboxylesterase. The absence of carboxylesterase from human plasma explains the drug's stability in this medium. In vivo, pharmacodynamic studies on single doses of 1 mg/kg to na?ve male C57BL/6 mice revealed maximal plasma butyrylcholinesterase inhibition 20 min after intraperitoneal administration (approximately 60% inhibition) and 1 h after administration by gavage (approximately 45% inhibition). While this plasma butyrylcholinesterase inhibition was short-lived, the drug also penetrated the blood-brain barrier resulting in a slight (10-15%) but persistent (> or =72 h) reduction in brain butyrylcholinesterase activity.  相似文献   

16.
We examined and compared enantioselectivity in the oxidation of propranolol (PL) by liver microsomes from humans and Japanese monkeys (Macaca fuscata). PL was oxidized at the naphthalene ring to 4-hydroxypropranolol, 5-hydroxypropranolol and side chain N-desisopropylpropranolol by human liver microsomes with enantioselectivity of [R(+)>S(-)] in PL oxidation rates at substrate concentrations of 10 microM and 1 mM. In contrast, reversed enantioselectivity [R(+)相似文献   

17.
The pharmacokinetics of the antimalarial drug (+/-)-halofantrine are stereoselective in humans and rats. To better understand the stereoselective metabolism of the drug to its primary metabolite, desbutylhalofantrine (DHF), a series of in vitro and in vivo experiments were undertaken in the rat. Formation of (-)-DHF exceeded that of (+)-DHF in liver microsomes [(-):(+) ratio of intrinsic formation clearances = 1.4]. In contrast, in intestinal microsomes no significant stereoselectivity was noted in the formation of the DHF enantiomers. Intestinal microsomes were also less efficient at producing the DHF enantiomers than were liver microsomes. Based on kinetic analysis of the DHF formation, there appeared to be more than one enzyme involved in the biotransformation. (+/-)-Ketoconazole (KTZ) effectively inhibited the formation of both DHF enantiomers by both liver and intestinal microsomes, although the reduction was more marked in liver microsomes. Through a combination of the use of CYP antibodies and recombinant CYP isoenzymes, the involvement of CYP 2B1/2, 3A1, 3A2, 1A1, 2C11, 2C6, 2D1, and 2D2 were implicated in the metabolism of halofantrine to DHF. Of these, CYP3A1/2 and CYP2C11 appeared to be the primary isoenzymes involved, although CYP2C11 showed greater (+)-DHF than (-)-DHF formation, whereas for CYP3A1 it was similar to the isolated rat liver microsomes. In vivo, oral (+/-)-KTZ caused significant increases in plasma halofantrine and decreases in DHF enantiomer plasma concentrations.  相似文献   

18.
Myclobutanil, (RS)‐2‐(4‐chlorophenyl)‐2‐(1H‐1, 2, 4‐triazol‐1‐ylmethyl)hexanenitrile is a broad‐spectrum systemic triazole fungicide which consists of a pair of enantiomers. The stereoselective degradation of myclobutanil was investigated in rat liver microsomes. The concentrations of myclobutanil enantiomers were determined by high‐performance liquid chromatography (HPLC) with a cellulose‐tris‐(3,5‐dimethyl‐phenylcarbamate)‐based chiral stationary phase (CDMPC‐CSP) under reversed phase condition. The t1/2 of (+)‐myclobutanil is 8.49 min, while the t1/2 of (–)‐myclobutanil is 96.27 min. Such consequences clearly indicated that the degradation of myclobutanil in rat liver microsomes was stereoselective and the degradation rate of (+)‐myclobutanil was much faster than (–)‐myclobutanil. In addition, significant differences between two enantiomers were also observed in enzyme kinetic parameters. The Vmax of (+)‐myclobutanil was about 4‐fold of (–)‐myclobutanil and the CLint of (+)‐myclobutanil was three times as much as (–)‐myclobutanil after incubation in rat liver microsomes. Corresponding consequences may shed light on the environmental and ecological risk assessment for myclobutanil and may improve human health. Chirality 26:51–55, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
Phospholipase A1, A2 and lysophospholipase activities in microsomes of Novikoff hepatoma host rat liver and regenerating rat liver were compared using 1-[9', 10'-3H2]palmitoyl-2-[1'-14C] linoleoyl-sn-glycero-3-phosphoethanolamine, 1-[1' -3H-]hexadecyl-2-acyl-sn-glycero-3-phosphoethanolamine, and 1-[9', 10'-3H2]palmitoyl-sn-glycero-3-phosphoethanolamine as substrates. 1. Microsomes of all three tissues showed two pH dependent peaks of hydrolytic activity, one at pH 7.5 and another at pH 9.5. 2. Phospholipid hydrolytic activity in microsomes from host liver and regenerating liver require Ca2+ for hydrolysis at pH 9.5, but not at pH 7.5. Hepatoma microsomes require Ca2+ for activity at both pH values. 3. Phospholipase A1 activity, stimulated by addition of Triton X-100 to the incubation mixtures, was detected in both host liver and regenerating liver microsomes. There was no evidence of phospholipase A1 activity in hepatoma microsomes. 4. Phospholipase A2 was detected in microsomes of all three tissues using 1-[1'-3H] hexadecyl-2-acyl-sn-glycero-3-phosphoethanolamine as a substrate. The activity required calcium and was inhibited by Triton X-100. 5. Lysophospholipase activity was evident in the microsomes from all three tissues. The activity was inhibited by both Ca2+ and Triton X-100. 6. Differences were also detected between host liver and hepatoma microsomal phospholipid hydrolase activities with respect to the effect of increasing protein concentration, apparent Michaelis-Menten constants, and time course of the reaction.  相似文献   

20.
The non-K-region benz[a]anthracene (BA) 8,9- and 10,11-epoxides were isolated by normal-phase high-performance liquid chromatography as rat liver microsomal metabolites of BA. The identities of these epoxides were established by ultraviolet and mass spectral analyses and were further validated by the microsomal epoxide hydrolase catalyzed conversion to BA trans-8,9-dihydrodiol and trans-10,11-dihydrodiol, respectively. Circular dichroism spectral analyses of the metabolically formed non-K-region epoxides and dihydrodiols and mass spectral analyses of metabolically formed 18O-labeled non-K-region dihydrodiols and their acid-catalyzed dehydration products indicated that BA (8R,9S)-epoxide and (10S,11R)-epoxide were the predominant enantiomers formed in the metabolism at the 8,9- and 10,11- aromatic double bonds of BA, respectively, by rat liver microsomes. This is the first example demonstrating the direct detection and stereoselective metabolic formation of non-K-region epoxides of a polycyclic aromatic hydrocarbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号