首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
One of the most powerful techniques that are currently available to measure thermodynamic parameters such as enthalpy (ΔH), Gibbs free energy (ΔG), entropy changes (ΔS), and binding affinity in chemical reactions is isothermal titration calorimetry (ITC). Recent advances in instrumentation have facilitated the development of ITC as a very essential analytical tool in biology and chemistry. In this article, we will focus on a review of the literature on the application of ITC for the study of chiral systems and chiral interactions. We present studies in which the ITC technique is used to study chiral interactions, for instance in chiral solutions, chiral organometallic complexes, guest‐host chiral binding interactions, and biological macromolecules. Finally, we put strong emphasis on the most recent application of ITC for the study of chirality in nanosystems and at the nanoscale.  相似文献   

2.
Mixing oppositely charged polyelectrolytes in aqueous solutions leads to the spontaneous formation of polyelectrolyte complexes. Here, we characterize the interaction between xanthan of two different chain lengths, a tri-glucosamine and a chitosan polymer by isothermal titration calorimetry (ITC). Analysis of the experimental thermodynamic data assuming a single set of identical sites indicated both enthalpic and entropic contributions to the overall interaction in the interaction between xanthan and tri-glucosamine. The relative contribution of entropy compared to enthalpy was found to be largest for the shortest chain length of xanthan. Using a chitosan polymer instead of tri-glucosamine gave rise to two different stages in the interaction process. A model where the first stage of the ITC curve represent an initial polyelectrolyte complexation stage followed by aggregation on further titration of chitosan to the xanthan is suggested. Ultrastructure images by applying atomic force microscopy at some selected extents of titration are consistent with the two-stage interpretation of the thermodynamic data.  相似文献   

3.
Over the last decade isothermal titration calorimetry (ITC) has developed from a specialist method which was largely restricted in its use to dedicated experts, to a major, commercially available tool in the arsenal directed at understanding molecular interactions. The number of those proficient in this field has multiplied dramatically, as has the range of experiments to which this method has been applied. This has led to an overwhelming amount of new data and novel applications to be assessed. With the increasing number of publications in this field comes a need to highlight works of interest and impact. In this overview of the literature we have attempted to draw attention to papers and issues for which both the experienced calorimetrist and the interested dilettante hopefully will share our enthusiasm.  相似文献   

4.
Isothermal titration calorimetry (ITC) is becoming widely accepted as a key instrument in any laboratory in which quantification of biomolecular interactions is a requisite. The method has matured with respect to general acceptance and application development over recent years. The number of publications on ITC has grown exponentially over the last 10 years, reflecting the general utility of the method. Here all the published works of the year 2002 in this area have been surveyed. We review the broad range of systems to which ITC is being directed and classify these into general areas highlighting key publications of interest. This provides an overview of what can be achieved using this method and what developments are likely to occur in the near future.  相似文献   

5.
何培青  李江  王昉  顾敏芬  沈继红 《生态学报》2009,29(11):5766-5772
采用差示扫描量热法,测定几种南极细菌胞外多糖(简称,EPSs)溶液的结晶、熔融、焓转变以及水合性质等冻结特性,分析了EPSs的浓度和分子量与其抗冻活性的关系.结果表明,在溶液冻结过程中,仅0.25%的Pseudoalteromonas sp.S-15-13 EPSs(分子量,6.2×104Da)可抑制冰核形成,溶液冻结温度较纯水的降低(1.07±0.62)℃;溶液的冻结焓降低说明冰核生长变缓,冰晶形成细小,0.125%的Shewanella sp.5-1-11-4 EPSs(分子量,1.2×103Da)和Moritella sp.2-5-10-1 EPSs(分子量,3.0×103Da)冻结焓分别较纯水的降低17.15%和29.13%,S-15-13 EPSs在0.125%~0.5%的范围内可降低冻结焓,0.125%时冻结焓较纯水的低30%,其不冻水含量为(0.292 ±0.05) g/g.在冰晶熔化过程中,几种EPSs均可降低溶液熔融温度和熔融焓,促进冰晶熔化,使冰晶细小;4.0%的5-1-11-4 EPSs、2-5-10-1 EPSs和0.5% S-15-13 EPSs的熔融温度较纯水的分别降低(2.70±0.15)℃、(2.30±0.39)℃和(4.66±0.42)℃.研究结果阐明EPSs可以通过改变菌体周围水的冻结特性,以抵御冰晶对微生物的损伤,大分子量EPSs对冰晶的抑制作用强于低分子量的.  相似文献   

6.
Isothermal titration calorimetry (ITC) is a technique that is capable of quantifying the stoichiometry, equilibrium constants and thermodynamics of molecular binding events. Thus, important information about the interaction of metal ions with biological macromolecules can be obtained with ITC measurements. This review highlights many of the recent studies of metal ions binding to proteins that have used ITC to quantify the thermodynamics of metal-protein interactions.  相似文献   

7.
Thermal unfolding parameters of hens' egg-white riboflavin-binding-protein (RBP) were measured by differential scanning calorimetry. Thermal denaturation scans of apoRBP and RBP complexes with riboflavin and its analogues (FMN, N10 DL-glyceryl isoalloxazine, and N10 -hydroxypentyl isoalloxazine) have been measured. It was found that ligand binding causes increase of RBP thermal stability, as manifested by a change of denaturation temperature from 60.8°C for apoRBP to 72.8°C for RBP—Rf complex. For RBP—FMN complex, the denaturation temperature of 73.0°C was even higher than for the RBP—Rf complex. The other two flavin analogues showed transition temperatures in between 66.9°C and 68.8°C, respectively. Analysis of excess heat capacity data showed that the best fit was the sum of two independent thermal transitions. One of the transitions, which contributed 70% to the total heat effect, has transition temperature in the broad range of 60.5–73.2°C; the other transition temperature is in the narrower range of 65.4–71.1°C. The observed transitions can be related to RBP domains.  相似文献   

8.
Applications of isothermal titration calorimetry in protein science   总被引:1,自引:0,他引:1  
During the past decade, isothermal titration calorimetry (ITC) has developed from a specialist method for understanding molecular interactions and other biological processes within cells to a more robust, widely used method. Nowadays, ITC is used to investigate all types of protein interactions, including protein-protein interactions, protein-DNA/RNA interactions, protein-small molecule interactions and enzyme kinetics; it provides a direct route to the complete thermodynamic characterization of protein interactions. This review concentrates on the new applications of ITC in protein folding and misfolding, its traditional application in protein interactions, and an overview of what can be achieved in the field of protein science using this method and what developments are likely to occur in the near future. Also, this review discusses some new developments of ITC method in protein science, such as the reverse titration of ITC and the displacement method of ITC.  相似文献   

9.
The 13-residue cathelicidins indolicidin and tritrpticin are part of a group of relatively short tryptophan-rich antimicrobial peptides that hold potential as future substitutes for antibiotics. Differential scanning calorimetry (DSC) has been applied here to study the effect of indolicidin and tritrpticin as well as five tritrpticin analogs on the phase transition behaviour of model membranes made up of zwitterionic dimyristoylphosphatidylcholine (DMPC, DMPC/cholesterol) and anionic dimyristoylphosphatidyl glycerol (DMPG) phospholipids. Most of the peptides studied significantly modified the phase transition profile, suggesting the importance of hydrophobic forces for the peptide interactions with the lipid bilayers and their insertion into the bilayer. Indolicidin and tritrpticin are both known to be flexible in aqueous solution, but they adopt turn-turn structures when they bind to and insert in a membrane surface. Pro-to-Ala substitutions in tritrpticin, which result in the formation of a stable α-helix in this peptide, lead to a substantial increase in the peptide interactions with both zwitterionic and anionic phospholipid vesicles. In contrast, the substitution of the three Trp residues by Tyr or Phe resulted in a significant decrease of the peptide's interaction with anionic vesicles and virtually eliminated binding of these peptides to the zwitterionic vesicles. An increase of the cationic charge of the peptide induced much smaller changes to the peptide interaction with all lipid systems than substitution of particular amino acids or modification of the peptide conformation. The presence of multiple lipid domains with a non-uniform peptide distribution was noticed. Slow equilibration of the lipid-peptide systems due to peptide redistribution was observed in some cases. Generally good agreement between the present DSC data and peptide antimicrobial activity data was obtained.  相似文献   

10.
11.
Isothermal titration calorimetry (ITC) may be used to determine the kinetic parameters of enzyme-catalyzed reactions when neither products nor reactants are spectrophotometrically visible and when the reaction products are unknown. We report here the use of the multiple injection method of ITC to characterize the catalytic properties of oxalate oxidase (OxOx) from Ceriporiopsis subvermispora (CsOxOx), a manganese dependent enzyme that catalyzes the oxygen-dependent oxidation of oxalate to carbon dioxide in a reaction coupled with the formation of hydrogen peroxide. CsOxOx is the first bicupin enzyme identified that catalyzes this reaction. The multiple injection ITC method of measuring OxOx activity involves continuous, real-time detection of the amount of heat generated (dQ) during catalysis, which is equal to the number of moles of product produced times the enthalpy of the reaction (ΔHapp). Steady-state kinetic constants using oxalate as the substrate determined by multiple injection ITC are comparable to those obtained by a continuous spectrophotometric assay in which H2O2 production is coupled to the horseradish peroxidase-catalyzed oxidation of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) and by membrane inlet mass spectrometry. Additionally, we used multiple injection ITC to identify mesoxalate as a substrate for the CsOxOx-catalyzed reaction, with a kinetic parameters comparable to that of oxalate, and to identify a number of small molecule carboxylic acid compounds that also serve as substrates for the enzyme.  相似文献   

12.
The temperature dependence of the heat capacity function of a recombinant streptokinase (rSK) has been studied by high-sensitivity differential scanning microcalorimetry and circular dichroism as a function of pH in low- and high-ionic strength buffers. At low ionic strength it is found that this protein, between pH 7 and 10, undergoes four reversible and independent two-state transitions during its unfolding, suggesting the existence of four domains in the native structure of the protein. This result reconciles previous conflicting reports about the number of domains of this protein obtained by differential scanning calorimetry and small-angle X-ray scattering. The number of two-state transitions decreases when the pH of the medium is decreased, without noticeable changes in its circular dichroism spectrum. A plausible localization of the four domains in the streptokinase sequences is proposed and their thermodynamic parameters are given. Increase of ionic strength to 200 mM NaCl affects positively the protein stability and confirms the existence of four reversible two-state transitions. Above 200 mM NaCl the protein stability decreases, resulting in low percentage of reversibility, and even irreversible transitions.  相似文献   

13.
The market for commercially available isothermal titration calorimeters continues to grow as new applications and methodologies are developed. Concomitantly the number of users (and abusers) increases dramatically, resulting in a steady increase in the number of publications in which isothermal titration calorimetry (ITC) plays a role. In the present review, we will focus on areas where ITC is making a significant contribution and will highlight some interesting applications of the technique. This overview of papers published in 2004 also discusses current issues of interest in the development of ITC as a tool of choice in the determination of the thermodynamics of molecular recognition and interaction.  相似文献   

14.
Majhi PR  Qi J  Tang CF  Shafer RH 《Biopolymers》2008,89(4):302-309
This study addresses the temperature dependence of the enthalpy of formation for several unimolecular quadruplexes in the presence of excess monovalent salt. We examined a series of biologically significant guanine-rich DNA sequences: thrombin binding aptamer (TBA) (d(G(2)T(2)G(2)TGTG(2)T(2)G(2)), PS2.M, a catalytically active aptamer (d(GTG(3)TAG(3)CG(3)T(2)G(2))), and the human telomere repeat (HT) (d(AG(3)(T(2)AG(3))(3))). Using CD spectra and UV melting, we confirmed the presence of quadruplex structures and established the temperature range in which quadruplex conformation is stable. We then performed ITC experiments, adding DNA to a solution containing excess NaCl or KCl. In this approach, only several additions are made, and only the enthalpy of quadruplex formation is measured. This measurement was repeated at different temperatures to determine the temperature dependence of the enthalpy change accompanying quadruplex formation. To control for the effect of nonspecific salt interactions during DNA folding, we repeated the experiment by replacing the quadruplex-forming sequences with a similar but nonfolding sequence. Dilution enthalpies were also subtracted to obtain the final enthalpy value involving only the quadruplex folding process. For all sequences studied, quadruplex formation was exothermic but with an increasing magnitude with increasing temperature. These results are discussed in terms of the change in heat capacity associated with quadruplex formation.  相似文献   

15.
The effects of eight mutations on the thermodynamics of the reversible thermal unfolding of staphylococcal nuclease have been determined over a range of pH and protein concentration by means of differential scanning calorimetry. Variation of the protein concentration was included in our study because we found a significant dependence of the thermodynamics of protein unfolding on concentration. Values for the change in the standard free energy of unfolding, delta delta G0d, produced by the mutations in the pH range 5.0-7.0 varied from 1.9 kcal mol-1 (apparent stabilization) for H124L to -2.8 kcal mol-1 (apparent destabilization) for L25A. As has been observed in numerous other cases, there is no correlation in magnitude or sign between delta delta G0d and the corresponding values for delta delta Hd and T delta delta S0d, the latter quantities being in most cases much larger in magnitude than delta delta G0d. This fact emphasizes the difficulty in attempting to correlate the thermodynamic changes with structural changes observed by X-ray crystallography.  相似文献   

16.
A differential pH-termal titration apparatus is described which can detect pH differences with a sensitivity of ±0.0001 pH units and a thermal sensitivity of ±0.00002°C at a time constant of 0.1 s. With a reaction which yields 1 kcal mol−1, the current system can detect concentrations as low as 4×10−6 M or, in a 2 ml volume, a total amount of 40 nmol. With a time constant of 0.1 s, the sensitivity is 20±4 μ°C. The experimental protocol is specified by a microprocessor and three modes of operation are possible: titration at constant rate of reagent addition, titration at variable rates of addition so that the contents of both cells are at either constant pH or at a constant temperature and variable rate when a rate of change is specified. Experimental data are collected in files, corrected for heat loss, initial baseline drift, and changes in volume. The final corrected from the standardized run of 0.01338 M HCl in 0.2 M KCl at 25°C calibrate the pH scale yielded the calorimetric conversion constants and pKw which are calculated and stored for subsequent corrections for the titration of an unknown acid or the measurement of bindin constants and heats.  相似文献   

17.
The enthalpy of unfolding (ΔuH) of carbonic anhydrase II was determined by titrating the protein with acid and measuring the heat using isothermal titration calorimetry (ITC) in the temperature range of 5 to 59 °C. By combining the ITC results with our previous findings by differential scanning calorimetry (DSC) in the temperature range of 39 to 72 °C, the ΔuH dependence over a wide temperature range was obtained. The temperature dependence of the enthalpy displays significant curvature indicating that the heat capacity of unfolding (ΔuCp) is dependent on temperature. The T-derivative of ΔuCp was equal to 100 ± 30 J/(mol × K2), with the result that the ΔuCp is equal to 15.8 kJ/(mol × K) at 5 °C, 19.0 kJ/(mol × K) at 37 °C and 21.8 kJ/(mol × K) at 64 °C. The enthalpy of unfolding is zero at 17 °C. At lower temperatures, the ΔuH becomes exothermic.

This method of determining protein unfolding thermodynamics using acid-ITC, significantly widens the accessible T-range, provides direct estimate of the thermodynamic parameters at physiological temperature, and gives further insight into the third T-derivative of the Gibbs free energy of unfolding.  相似文献   


18.
Bacterial Protein A (PrtA) and Protein G (PrtG) are widely used for affinity purification of antibodies. An understanding of how PrtA and PrtG bind to different isotypes of immunoglobulin type G (IgG) and to their corresponding Fc fragments is essential for the development of PrtA and PrtG mimetic ligands and for the establishment of generic processes for the purification of various antibodies. In this paper, the interactions between the two IgG-binding proteins and IgG of two different subclasses, IgG1 and IgG4, as well as their analogous Fc fragments have been studied by isothermal titration calorimetry. The results indicate that both protein ligands bind IgG and Fc fragments strongly with Ka values in the range of 10(7) -10(8) M(-1) and for both ligands, the interaction with both IgG isotypes is enthalpically driven though entropically unfavorable. Moreover, variation in the standard entropic and standard enthalpic contribution to binding between the two isotypes as well as between IgG and Fc fragment implies that the specific interaction with PrtA varies according to IgG isotype. In contrast to PrtA, PrtG bound to F(ab')(2) fragment with a Ka value of 5.1 × 10(5) M(-1) ; thus underscoring the usefulness of PrtA as a preferred ligand for generic antibody purification processes.  相似文献   

19.
Abstract

In this study, the interaction between 3-phenyl-1H-indazole (1a) and the fat mass and obesity-associated (FTO) protein was confirmed by isothermal titration calorimetry (ITC). The structure feature of 1a was different from our previously reported FTO inhibitors (radicicol, N-CDPCB and CHTB); the Cl and diol group in structure motif is critical for inhibitors to bind to FTO. In order to test whether there is specificity for the interaction between FTO and 1a, the interactions between 1a and four important proteins (human serum albumin (HSA), pepsin, catalase and trypsin) were investigated by ITC, spectroscopy and molecular docking methods. ITC results showed spontaneous exothermic reactions occurring between 1a and the proteins except trypsin under investigated conditions. The order of the binding affinity of 3-phenyl-1H-indazole is catalase?>?HSA?>?FTO?>?pepsin. Comparison between ITC and spectral results was made. This work will provide the basis for the design of novel inhibitors for FTO. Abbreviations CAT catalase

DMSO dimethyl sulfoxide

FTO fat mass and obesity-associated protein

HSA human serum albumin

Pep pepsin

Try trypsin

Communicated by Ramaswamy H. Sarma  相似文献   

20.
The environmental fate and, in particular, biodegradation rates of hydrophobic organic compounds (HOC) are of high interest due to the ubiquity, persistence, and potential health effects of these compounds. HOC tend to interact with bioreactor materials and sampling devices and are frequently volatile, so that conventionally derived degradation parameters are often biased. We report on the development and validation of a novel calorimetric approach that serves to gain real time information on the kinetics and the physiology of HOC bioconversion in aqueous systems while overcoming weaknesses of conventional biodegradation experiments. Soil bacteria Mycobacterium frederiksbergense LB501T, Rhodococcus erythropolis K2-3 and Pseudomonas putida G7 were exposed to pulsed titrations of dissolved anthracene, 4-(2,4-dichlorophenoxy)butyric acid or naphthalene, respectively, and the thermal responses were monitored. The combinations of strains and pollutants were selected as examples for complete and partial biodegradation and complete degradation with storage product formation, respectively. Heat production signals were interpreted thermodynamically and in terms of Michaelis-Menten kinetics. The half-saturation constant kD and the degradation rate rDMax were derived. Comparison with conventional methods shows the suitability to extract kinetic degradation parameters of organic trace pollutants from simple ITC experiments, while thermodynamic interpretation provided further information about the metabolic fate of HOC compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号