首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photosynthetic performance (leaf gas exchange and chlorophyll a (Chla) fluorescence), activities of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APX)] and the concentrations of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the flag leaves of plants from two wheat cultivars with contrasting levels of resistance to spot blotch was assessed. Spot blotch severity was significantly lower in plants from cv. BR‐18 compared to cv. Guamirim. Net carbon assimilation rate, stomatal conductance and concentrations of Chla, Chlab and carotenoids were significantly decreased from fungal infection. In contrast, internal CO2 concentration was significantly increased from fungal infection in comparison to their non‐inoculated counterparts. Similarly, inoculation significantly reduced photochemical performance in the inoculated flag leaves in comparison to their non‐inoculated counterparts. However, plants from cv. BR‐18 were able to sustain greater functionality of the photosynthetic apparatus during fungal infection process compared to cv. Guamirim. The activities of SOD, POX, APX and CAT increased in inoculated flag leaves from both cultivars compared to non‐inoculated plants, and the highest increases were measured in cv. BR‐18. The greater activities of these enzymes were associated with a reduced H2O2 concentration in the inoculated flag leaves from cv. BR‐18, resulting, therefore, in a lower MDA concentration. Thus, a more efficient antioxidative system in flag leaves from cv. BR‐18 plays a pivotal role in removing the excess reactive oxygen species that were generated during the infection process of Bipolaris sorokiniana, therefore limiting cellular damage and largely preserving the photosynthetic efficiency of the infected flag leaves.  相似文献   

2.
The effects of salicylic acid (SA) and salinity on the activity of apoplastic antioxidant enzymes were studied in the leaves of two wheat (Triticum aestivam L.) cultivars: salt-tolerant (Gerek-79) and salt-sensitive (Bezostaya). The leaves of 10-d-old seedlings grown at nutrient solution with 0 (control), 250 or 500 mM NaCl were sprayed with 0.01 or 0.1 mM SA. Then, the activities of catalase (CAT), peroxidase (POX) and superoxide dismutase (SOD) were determined in the fresh leaves obtained from 15-d-old seedlings. The NaCl applications increased CAT and SOD activities in both cultivars, compared to those of untreated control plants. In addition, the NaCl increased POX activity in the salt-tolerant while decreased in the salt-sensitive cultivar. In control plants of the both cultivars, 0.1 mM SA increased CAT activity, while 0.01 mM SA slightly decreased it. SA treatments also stimulated SOD and POX activity in the salt-tolerant cultivar but significantly decreased POX activity and had no effect on SOD activity in the saltsensitive cultivar. Under salinity, the SA treatments significantly inhibited CAT activity, whereas increased POX activity. The increases in POX activity caused by SA were more pronounced in the salt-tolerant than in the salt-sensitive cultivar. SOD activity was increased by 0.01 mM SA in the salt-tolerant while increased by 0.1 mM SA treatment in the salt-sensitive cultivar.  相似文献   

3.
Target spot, caused by the fungus Corynespora cassiicola, has become a serious foliar disease in soybean production in the Brazilian Cerrado. Information in the literature regarding the biochemical defence responses of soybean to C. cassiicola infection is rare. Therefore, the objective of this study was to determine the biochemical features associated with soybean resistance to target spot. The activities of chitinases (CHI), β‐1‐3‐glucanases (GLU), phenylalanine ammonia‐lyases (PAL), peroxidases (POX), polyphenol oxidases (PPO) and lipoxygenases (LOX), as well as the concentrations of total soluble phenolics (TSP) and lignin‐thioglycolic acid (LTGA) derivatives, were determined in soybean leaves from both a resistant (FUNDACEP 59) and a susceptible (TMG 132) cultivar. The target spot severity, number of lesions per cm2 of leaflet and area under the disease progress curve were significantly lower for plants from cv. FUNDACEP 59 compared to plants from cv. TMG 132. The GLU, CHI, PAL, POX and PPO activities and the concentration of LTGA derivatives increased significantly, whereas LOX activity decreased significantly on the leaves infected by C. cassiicola. Inoculated plants from cv. FUNDACEP 59 showed a higher PPO activity and concentrations of TSP and LTGA derivatives at 4 and 6 days after inoculation compared to plants from cv. TMG 132. In conclusion, the results of this study demonstrated that the defence‐related enzyme activities increased upon C. cassiicola infection, regardless of the basal level of resistance of the cultivar studied. The increases in PPO activity and concentrations of TSP and LTGA derivatives, but lower LOX activity, at early stages of C. cassiicola infection were highly associated with soybean resistance to target spot.  相似文献   

4.
Considering the importance of blast caused by Pyricularia oryzae in the decrease of rice yield worldwide, this study aimed to assess the photosynthetic performance [leaf gas exchange and chlorophyll (Chl) a fluorescence parameters as well as the photosynthetic pigments concentration], the activities of antioxidant enzymes [ascorbate peroxidase, catalase (CAT), peroxidase (POX), superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione-S-transferase] and concentrations of hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the leaves of rice plants non-supplied (−Glu) or supplied (+Glu) with glutamate (Glu) and non-infected or infected by P. oryzae. Blast severity was reduced in the leaves of +Glu plants. On the infected leaves of +Glu plants, the values for internal CO2 concentration were lower while the values for net carbon assimilation rate, stomatal conductance as well as for the concentrations of Chl a, Chl b and carotenoids were higher in comparison to infected leaves of −Glu plants. The functionality of the photosynthetic apparatus was preserved in the infected leaves of +Glu plants. The activities of CAT, GPX, GR, POX and SOD increased in the infected leaves of both −Glu and +Glu plants compared to their non-inoculated counterparts, but their activities were lower for +Glu plants. The lower activity of these antioxidative enzymes was triggered by the reduced hydrogen peroxide concentration in the infected leaves of +Glu plants resulting in lower MDA concentration. It can be concluded that photosynthesis was less impaired in infected plants supplied with glutamate due to the lower biochemical constraints for CO2 fixation. Moreover, there was a need for lower activity of reactive oxygen species scavenging enzymes in infected leaves of plants supplied with glutamate due to the lower oxidative stress imposed by P. oryzae infection.  相似文献   

5.
6.
Sixty days old mung beans Vigna radiata (L.) Wilczek were treated with soil applied paclobutrazol, at the rate of 500 μg per 10 inch pot. After seven days of application, the plants along with untreated controls were transferred to the dark for induction of senescence. The treated plants exhibited higher chlorophyll content and activity of catalase (CAT) compared to controls. In contrast, control leaves had higher activity of peroxidase (POX) and a higher content of malondialdehyde (MDA), while superoxide dismutase (SOD) activity remained unchanged. Upon transfer to dark, chlorophyll content declined in both control and treated plants but the decline was much faster in control. The activity of CAT decreased significantly in controls while POX activity and MDA content remained higher in control than in treated plants. Paclobutrazol delayed the dark-induced senescence in attached mung bean leaves in association with the maintenance of higher activity of CAT, low activity of POX, and low MDA contents. The variation in SOD activity was not discernible with senescence levels.  相似文献   

7.
Caper (Capparis ovata Desf.) is a perennial shrub (xerophyte) and drought resistant plant which is well adapted to Mediterranean Ecosystem. In the present study we investigated the plant growth, relative water content (RWC), chlorophyll fluorescence (FV/FM), lipid peroxidation (TBA-reactive substances content) as parameters indicative of oxidative stress and antioxidant enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POX), catalase (CAT) and glutathione reductase (GR) in relation to the tolerance to polyethylene glycol mediated drought stress in C. ovata seedlings. For induction of drought stress, the 35 days seedlings were subjected to PEG 6000 of osmotic potential −0.81 MPa for 14 days. Lipid peroxidation increased in PEG stressed seedlings as compared to non-stressed seedlings of C. ovata during the experimental period. With regard to vegetative growth, PEG treatment caused decrease in shoot fresh and dry weights, RWC and FV/FM but decline was more prominent on day 14 of PEG treatment. Total activity of antioxidative enzymes SOD, APX, POX, CAT and GR were investigated in C. ovata seedlings under PEG mediated drought. Induced activities of SOD, CAT and POX enzymes were high and the rate of increment was higher in stressed seedling. APX activity increased on both days of PEG treatment, however, increase in GR activity was highest on day 14 of drought stress. We concluded that increased drought tolerance of C. ovata is correlated with diminishing oxidative injury by functioning of antioxidant system at higher rates under drought stress.  相似文献   

8.
The effects of a new species Heterorhabditis sp. beicherriana on the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and malondialdehyde (MDA) content of the host were studied. Last-instar larvae of Galleria mellonella were used as host insects and were experimentally infected with H. beicherriana at 0, 20, 40, 80 infective juveniles (IJs) per insect. At 0, 8, 16, 24, 32 and 40 h after infection, activities of SOD, POD, CAT and MDA content were determined in extracts from infected and control insects. We found that H. beicherriana infection resulted in gradually increased activities of SOD, POD and CAT the first day and decreased activities of these enzymes thereafter. However, MDA content in the insects of both control and IJ-inoculated groups stayed at a similar level at 24 h post-infection, but a significant decrease of MDA content in inoculated groups was recorded after 32 h of the infection, which is 8 hours later than the activities of SOD, POD and CAT were significantly increased. Our results suggest that H. beicherriana infection increases the level of oxidative stress and antioxidative responses in the larval G. mellonella, and it seems that oxidative damage contributes to cell death in this host.  相似文献   

9.
The effect of B toxicity on antioxidant responses of soybean (Glycine max) cv. Athow was investigated by growing plants for 43 days at 0.2 (control), 2 and 12 mg B kg?1. At the end of the treatment period, shoot growth, lipid peroxidation level, the activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), and their isoenzymes in leaves were measured. Boron concentration in leaves was significantly increased by the increasing levels of B treatment from 43 to 522 mg kg?1, and shoot dry matter was depressed at 12 mg B kg?1. Significant increases in SOD, CAT, and APX activities were determined in leaves under 12 mg B kg?1; however, GR activities were decreased while POX activity was unchanged. Increased enzymic antioxidant activity arose from a combination of newly formed isoenzymes and activation of existing isoenzymes. By contrast, SOD and GR activities were decreased by 2 mg B kg?1 concentration as compared to the control groups while POX activity was increased and the activity of CAT did not change. Malondialdehyde content increased under 2 mg B kg?1 but decreased under 12 mg B kg?1. These results suggest that higher antioxidant activity observed under 12 than at 2 mg B kg?1 provided higher free radical-scavenging capacity, and thus a lower level of lipid peroxidation in Athow. While the induction of increased antioxidant activity was related to internal boron levels, the signaling and coordination of responses remain unclear.  相似文献   

10.
N. Djebali    H. Mhadhbi    C. Jacquet    T. Huguet    M. E. Aouani 《Journal of Phytopathology》2007,155(10):633-640
This study was undertaken to assess the involvement of hydrogen peroxide (H2O2), peroxidase (POX; EC 1.11.1.7) and superoxide dismutase (SOD; EC 1.15.1.1) in Medicago truncatula in relation with susceptibility to Phoma medicaginis infection. Several M. truncatula lines were studied in terms of their response to P. medicaginis infection. Fifteen days after inoculation (dai), differences in susceptibility were found. DZA45.5 was the least susceptible line and F83005.5 was the most susceptible line. Microscopic analysis of fungal development was performed in inoculated detached leaves of the DZA45.5 and F83005.5 lines. No significant difference was observed in events from conidia germination to penetration. Differences became apparent during the colonization process as the pathogen was able to sporulate rapidly increasing its concentration on the tissue of F83005.5 in comparison with DZA45.5. To characterize the susceptibility of the two lines, histochemical detection of H2O2 was made in detached leaves. H2O2 detection showed an early accumulation of this component in cells of DZA45.5 at 1 dai. However, H2O2 was detected in few, if any, cells in the tissues of the most susceptible line, F83005.5. The activity of POX and SOD were determined spectrophotometrically in leaves of intact inoculated plants of both lines. Phoma medicaginis inoculation of DZA45.5 and F83005.5 did not affect POX activity level in leaves when compared with control uninoculated plants. SOD activity showed a significant decrease in F83005.5 and DZA45.5 leaves at 4 dai and 9 dai, respectively, in comparison with control plants. In control plants POX activity was significantly higher in the least susceptible line DZA45.5 in comparison with F83005.5. Early and higher production of H2O2 and elevated basal POX activity in cells of the least susceptible line, DZA45.5 could explain its ability to be less favourable to the colonization and reproduction of P. medicaginis in comparison with the most susceptible line, F83005.5.  相似文献   

11.
The effects of drought on growth, protein content, lipid peroxidation, superoxide dismutase (SOD), peroxidase (POX), catalase (CAT) and polyphenol oxidase (PPO) were studied in leaves and roots of Sesamum indicum L. cvs. Darab 14 and Yekta. Four weeks after sowing, plants were grown under soil moisture corresponding to 100, 75, 50 and 25 % field capacity for next four weeks. Fresh and dry masses, and total protein content in leaves and roots decreased obviously under drought. However, several new proteins appeared and content of some proteins was affected. Measurement of malondialdehyde content in leaves and roots showed that lipid peroxidation was lower in Yekta than in Darab 14. Severe stress increased SOD, POX, CAT and PPO activities in leaves and roots, especially in Yekta. According to the present study Yekta is more resistant to drought than Darab 14.  相似文献   

12.
To understand the functions of antioxidant enzymes during leaf development in sweetpotato, we investigated the activities of several antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX), ascorbate peroxidase (APX) and catalase (CAT). Significant increases were observed in the activities of SOD, POX and APX during the late stage of leaf development, whereas CAT activity increased during the early developmental stage. By RT-PCR analysis, various POX and APX genes showed differential expression patterns during leaf development. Four POX genes swpa3, swpa4, swpa6, swpb4 and one APX gene swAPX1 exhibited high levels of gene expression during the senescence stage of leaf development, but two POX genes, swpa1 and swpa7 were preferentially expressed at both the mature green and the late senescence stages of leaf development. These results indicate that hydrogen peroxide (H2O2)-related antioxidant enzymes are differentially regulated in the process of leaf development of sweetpotato.  相似文献   

13.
Pigeonpea [Cajanus cajan (L.) Millsp.] is a waterlogging-sensitive legume crop. We studied the effect of waterlogging stress on hydrogen peroxide (H2O2) content, lipid peroxidation and antioxidant enzyme activities in two pigeonpea genotypes viz., ICPL-84023 (waterlogging resistant) and MAL-18 (waterlogging susceptible). In a pot experiment, waterlogging stress was imposed for 6 days at early vegetative stage (20 days after sowing). Waterlogging treatment significantly increased hydrogen peroxide accumulation and lipid peroxidation, which indicated the extent of oxidative injury posed by stress conditions. Enzyme activities of peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD) and polyphenol oxidase (PPO) increased in pigeonpea roots as a consequence of waterlogged conditions, and all the enzyme activities were significantly higher in waterlogged ICPL-84023 than in MAL-18. POX activity was the maximum immediately after imposing stress, therefore, it was suggested to be involved in early scavenging of H2O2, while rest of the enzymes (CAT, APX, SOD and PPO) were more important in late responses to waterlogging. Present study revealed that H2O2 content is directly related to lipid peroxidation leading to oxidative damage during waterlogging in pigeonpea. Higher antioxidant potential in ICPL-84023 as evidenced by enhanced POX, CAT, APX, SOD and PPO activities increased capacity for reactive oxygen species (ROS) scavenging and indicated relationship between waterlogging resistance and antioxidant defense system in pigeonpea.  相似文献   

14.
Hydrogen peroxide generation rates of uninfected and infected leaves of two tomato (Lycopersicon esculentum) cultivars showing differential susceptibility to Botrytis cinerea were determined. The superoxide anion, hydroxyl radical, ascorbate contents and changes in NADH peroxidase, superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) activities in the apoplast fraction were analysed. Infected leaves had an increased hydrogen peroxide level. It was greater and generally occurred earlier in plants of the less susceptible cv. Perkoz than in those of the more susceptible cv. Corindo. Induction of nitrotetrazolium blue reducing activity and SOD levels in apoplast were higher in cv. Perkoz 24 h after inoculation. In the controls, NADH peroxidase activity in apoplast was higher in the more susceptible cv. Corindo, but after infection it increased faster and to a higher level in the less susceptible cv. Perkoz. NADH oxidation was inhibited by only 15% by a specific inhibitor DPI (diphenylene‐iodonium) but was completely inhibited by KCN and NaN3. Similar increases in APX activity after 48 h and a small increase in catalase activities were observed in both cultivars soon after infection. These results indicate that resistance of tomato plants to infection by the necrotrophic fungus B. cinerea may result from early stimulation of hydrogen peroxide and superoxide radical generations by NADH peroxidase and SOD in apoplastic space, and they confirm the important role of their enhanced production in apoplastic spaces of plants.  相似文献   

15.
Sweet basil is an important medicinal plant used especially for therapeutical potentials. Sweet basil is a common host for Cuscuta campestris, which has a negative effect on infected plants. Therefore, natural friendly control of C. campestris seems to be useful. It has been shown that carrageenans can act as elicitors of plant defense responses. In this work, the effect of κ-carrageenans on protection against C. campestris and suppression of its invasion in basils were studied. Basils were sprayed with a solution of κ-carrageenan (1?g?L?1), once a week, three times in total. Infection of basils with C. campestris was performed two days after the last carrageenan treatment. C. campestris stem and the leaves of basils were collected two weeks after C. campestris inoculation for biochemical studies. Treatment with carrageenan significantly increased shoot length and leaf area of basil and decreased C. campestris infestation by about 26%. The content of malondialdehyde, other aldehydes, hydrogen peroxide and lipoxygenase (LOX) activity increased significantly in basils parasitized by C. campestris. There were significant differences in phenylalanine ammonia lyase (PAL), catalase (CAT), superoxide dismutase (SOD) and peroxidase activity of parasitized basils by C. campestris compared with healthy basils. Carrageenan treatment of basils caused a significant increase in H2O2 content and the activity of PAL, CAT and SOD, but not of malondialdehyde, other aldehydes content and LOX, polyphenol oxidase (PPO) and peroxidases activity. The activated enzymatic defense system (PAL, PPO, CAT, SOD and peroxidase) in carrageenan-treated basils have a vital role in alleviating oxidative stress damage in infected plants, by removing excess reactive oxygen species and inhibiting LOX activity and lipid peroxidation that was observed in this study. Our results showed that the application of κ-carrageenan-induced beneficial effects in plants, with regard to growth stimulation and the activation of enzymatic defense system. Thus, carrageenan was recommended as a natural biostimulator for protection of plants against C. campestris.  相似文献   

16.
The effects of water deficit on relative water content (RWC), on the activity superoxide dismutase (SOD) and peroxidase (POX) from leaves of two drought-resistant barley strains (Hordeum vulgare L.) varieties (TOKAK-157/37 and 56000/MISC-233) and one sensitive (ERGINEL-90) were studied. In 21 day old seedlings, drought stress was initiated by withholding water and lasted for 12 days. Activity of SOD increased by the effect of drought treatments in the leaves of drought-resistant varieties TOKAK-157/37 and 56000/MISC-233 as compared to sensitive variety ERGINEL-90. The drought treatment resulted in a 418 % and 59 % increase in SOD activity in resistant varieties at the end of the 12th day of experimental period. However, an increase in activity of SOD was not accompanied by an increase in activity of POX in drought-resistant TOKAK-157/37 and 56000/MISC-233 except on the 6th day of drought treatment in 56000/MISC-233. In drought-sensitive variety, ERGINEL-90, POX activity did not change throughout drought period.  相似文献   

17.
Trichoderma atroviride SG3403 showed high biocontrol activity against southern corn leaf blight (SCLB; pathogen: Cochliobolus heterostrophus). T. atroviride SG3403 could cause death of C. heterostrophus race O hypha on plates. Spraying T. atroviride SG3403 conidia suspension over maize seedling leaves protected the corn from SCLB infection. Biocontrol effect lasted for 30 days in the field. Trichoderma strain was able to induce resistance response in corn leaves against pathogen infection. In corn leaves treated with T. atroviride SG3403, the enzyme activities of phenylalanine ammonia lyase (PAL) and superoxide dismutase (SOD) reached the highest at 24 h, enzyme activity of catalase (CAT) reached the highest at 36 h after inoculation of pathogen C. heterostrophus race O. RNA expression levels of Pal, Sod and Cat (which synthesis enzyme PAL, SOD and CAT) were also upregulated and corresponded to the enzyme activity at the same time point. Enzyme activities and corresponding genes expression induced by Trichoderma SG3403 was more obvious than that induced by pathogen only, which implies that T. atroviride SG3403 induced corn defense gene expression against pathogen infection. Thus, induced resistance mechanism was possibly involved in the biocontrol of SCLB by T. atroviride SG3403.  相似文献   

18.
The objective of the present work was to study biochemical alterations in lime plants infected by the Candidatus Phytoplasma aurantifoliae. Changes in antioxidant activities, content of chlorophylls (Chl), carotenoids (Car), soluble proteins, sugars and auxin (IAA) in infected plant were investigated. The activities of polyphenol oxidase (PPO), peroxidase (POX) and superoxide dismutase (SOD) were observed to be greater in infected leaves than the healthy control. Also according to non-denaturing PAGE, in infected leaves all the antioxidative enzymes isoforms were stronger than that of the healthy control. These results suggest that antioxidant enzymes can be activated in response to infection by phytoplasma. The decrease in content of proteins, total soluble and reducing sugars in infected plants point out changes in host metabolism due to the phytoplasma infection. The reduction in chlorophylls and auxin content shows that the phytoplasma can interfere in photosynthesis and induces senescence in the leaf. In conclusion, this study provides new insights into the lime response to phytoplasma infection.  相似文献   

19.
The biochemical basis of resistance in castor (Ricinus communis L.) to Fusarium wilt, caused by the pathogen Fusarium oxysporum f. sp. ricini, was investigated. Induction of plant defence against pathogen attack is regulated by a complex network of different signals. Thus changes in various biochemical defenses including antioxidant enzymes, phenolic compounds and pathogenesis related (PR) proteins were investigated in the roots of resistant and susceptible genotypes of castor at 0, 24, 48 and 72 h.a.i. Infection by F. oxysporum significantly increased the superoxide dismutase (SOD) and peroxidase (POX) activities in the roots of susceptible genotypes, while the catalase (CAT) activities were appreciably higher in the roots of resistant genotypes at different stages. Constitutive levels of ascorbate peroxidase (APX) and polyphenol oxidase (PPO) were higher in the resistant genotypes. Also, the activities of phenylalanine ammonia lyase (PAL) and β 1, 3 glucanase significantly increased in the roots of the resistant genotypes after infections. The rate of increment of thiobarbituric acid reactive substances (TBARS) was higher in resistant genotypes after infection. Analysis of isozyme banding pattern of SOD, POX, PPO and esterase on native PAGE electrophoresis revealed that interaction between plant and fungi invoked various isozymes at 48 h of infection. SOD 3 was observed only in resistant genotypes at 24 h.a.i. except Geeta. Similarly induction of POX 5 was observed only in resistant genotypes at 48 h of infection, though the intensity of POX 5 was very less.  相似文献   

20.
Bacterial spot disease caused by Xanthomonas campestris pv. vesicatoria is one of the most important destructive diseases of tomato in many parts of the agricultural world. Therefore, the present study aims to determine the effects of Bacillus subtilis CBR05 inoculation on bacterial spot disease severity and the induction of defence-related enzymes response in tomato. Tomato leaves were evaluated to determine the activities of antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and polyphenol oxidase (PPO)) and the content of malondialdehyde (MDA). A reduction in bacterial spot severity was observed in plants inoculated with B. subtilis, compared with those of uninoculated controls. A significant increase in SOD, CAT, POD, and PPO activities was observed in plants treated with B. subtilis after 24?h inoculation compared with non-inoculated pathogen control and mock-inoculated controls. Moreover, the MDA content was induced by pathogen infection, and its amount in B. subtilis inoculated plants was significantly lower than that in pathogen control. Our results suggest that early increases in antioxidant enzymes and the reduction in MDA content with B. subtilis inoculation may play a pivotal role in mitigating oxidative stress, thereby induced systemic resistance against bacterial spot disease in tomato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号