首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper deficiency has been reported to be associated withdecreased cytochrome c oxidase activity, whichin turn may be responsible for theobserved mitochondrial impairment and cardiac failure. We isolatedmito-chondriafrom hearts of copper-deficient rats: cytochrome c oxidase activity was found to be lowerthan incopper-adequate mitochondria. The residual activity paralleled coppercontent of mitochondria and also corresponded with the heme amount associated with cytochromeaa3. In fact, lower absorption in thea-band region of cytochrome aa3 was foundfor copper-deficient rat heart mitochondria. Gel electrophoresisof protein extractedfrom mitochondrial membranes allowed measurements of protein content of thecomplexes ofoxidative phosphorylation, revealing a lower content of complex IV protein incopper-deficientrat heart mitochondria. The alterations caused by copper deficiency appear to bespecific forcytochrome c oxidase. Changes were not observed for F 0 F 1 ATP synthase activity,for heme contents ofcytochrome c and b, and for protein contents of complexes I, III and V.The present study demonstrates that the alteration of cytochrome c oxidase activityobserved in copper deficiency is due to a diminishedcontent of assembled protein and that shortnessof copper impairs heme insertion into cytochrome c oxidase.  相似文献   

2.
Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial electron transport chain, is regulated by isozyme expression, allosteric effectors such as the ATP/ADP ratio, and reversible phosphorylation. Of particular interest is the "allosteric ATP-inhibition," which has been hypothesized to keep the mitochondrial membrane potential at low healthy values (<140 mV), thus preventing the formation of superoxide radical anions, which have been implicated in multiple degenerative diseases. It has been proposed that the "allosteric ATP-inhibition" is switched on by the protein kinase A-dependent phosphorylation of COX. The goal of this study was to identify the phosphorylation site(s) involved in the "allosteric ATP-inhibition" of COX. We report the mass spectrometric identification of four new phosphorylation sites in bovine heart COX. The identified phosphorylation sites include Tyr-218 in subunit II, Ser-1 in subunit Va, Ser-2 in subunit Vb, and Ser-1 in subunit VIIc. With the exception of Ser-2 in subunit Vb, the identified phosphorylation sites were found in enzyme samples with and without "allosteric ATP inhibition," making Ser-2 of subunit Vb a candidate site enabling allosteric regulation. We therefore hypothesize that additional phosphorylation(s) may be required for the "allosteric ATP-inhibition," and that these sites may be easily dephosphorylated or difficult to identify by mass spectrometry.  相似文献   

3.
Liza Douiev  Ann Saada 《BBA》2018,1859(9):893-900
Mitochondrial cytochrome c oxidase (COX, respiratory chain complex IV), contributes to ATP production via oxidative phosphorylation (OXPHOS). Clinical presentation of COX deficiency is heterogeneous ranging from mild to severe neuromuscular diseases. Anemia is among the symptoms and we have previously reported Fanconi anemia like features in COX4-1 deficiency, suggesting genomic instability and our preliminary results detected nuclear double stranded DNA breaks (DSB). We now quantified the DSB by phospho histone H2AX Ser139 staining of COX4-1 and COX6B1 deficient fibroblasts (225% and 215% of normal, respectively) and confirmed their occurrence by neutral comet assay. We further explored the mechanism of DNA damage by studying normal fibroblasts treated with micromolar concentrations of cyanide (KCN). Present results demonstrate elevated nuclear DSB in cells treated with 50?μM KCN for 24?h (170% of normal) in high-glucose medium conditions where ROS and ATP remain normal, although Glutathione content was partially decreased. In glucose-free and serum-free medium, where growth is hampered, DSB were not elevated. Additionally we demonstrate the benefit of nicotinamide riboside (NR) which ameliorated DSB in COX4-1, COX6B1 and KCN treated cells (130%, 154% and 87% of normal cells, respectively). Conversely a negative effect of a poly[ADP-ribose] polymerase (PARP) inhibitor was found. Although additional investigation is needed, our findings raise the possibility that the pathomechanism of COX deficiency and possibly also in other OXPHOS defects, include nuclear DNA damage resulting from nicotinamide adenine dinucleotide (NAD+) deficit combined with a replicative state, rather than oxidative stress and energy depletion.  相似文献   

4.
The generation of cellular energy in the form of ATP occurs mainly in mitochondria by oxidative phosphorylation. Cytochrome c oxidase (CytOx), the oxygen accepting and rate-limiting step of the respiratory chain, regulates the supply of variable ATP demands in cells by “allosteric ATP-inhibition of CytOx.” This mechanism is based on inhibition of oxygen uptake of CytOx at high ATP/ADP ratios and low ferrocytochrome c concentrations in the mitochondrial matrix via cooperative interaction of the two substrate binding sites in dimeric CytOx. The mechanism keeps mitochondrial membrane potential ΔΨm and reactive oxygen species (ROS) formation at low healthy values. Stress signals increase cytosolic calcium leading to Ca2+-dependent dephosphorylation of CytOx subunit I at the cytosolic side accompanied by switching off the allosteric ATP-inhibition and monomerization of CytOx. This is followed by increase of ΔΨm and formation of ROS. A hypothesis is presented suggesting a dynamic change of binding of NDUFA4, originally identified as a subunit of complex I, between monomeric CytOx (active state with high ΔΨm, high ROS and low efficiency) and complex I (resting state with low ΔΨm, low ROS and high efficiency).  相似文献   

5.
BackgroundLysyl oxidase (LOX) is a metalloenzyme that requires Cu as a cofactor and it is responsible for the formation of collagen and elastin cross-linking. The objective of this work was to measure the LOX enzyme activity in the heart of bovines with Cu deficiency induced by high molybdenum and sulfur levels in the diet.MethodsEighteen myocardial samples were obtained from Cu-deficient (n = 9) and control (n = 9) Holstein bovines during two similar assays. The samples were frozen in liquid nitrogen and stored at −70 °C to measure enzymatic activity. A commercial kit was used, following producer instructions.ResultsThe results showed that LOX activity from the hearts of Cu-deficient bovines is 29 % lower than the ones of control bovines, being this difference statistically significant (p = 0.03).ConclusionTo our knowledge, this is the first report that determined LOX enzymatic activity in bovine heart of Cu-deficient animals. The microscopic alterations found in these animals in our previous work, could be explained by a diminished LOX activity. The results are in agreement with other authors, who found a relationship between LOX activity and dietary Cu intake. The information provided by this work could help to clarify the pathogenesis of cardiac lesions in cattle with dietary Cu deficiency.  相似文献   

6.
(1) The reaction of the resting form of oxidised cytochrome c oxidase from ox heart with dithionite has been studied in the presence and absence of cyanide. In both cases, cytochrome a reduction in 0.1 M phosphate (pH 7) occurs at a rate of 8.2 · 104 M−1 · s−1. In the absence of cyanide, ferrocytochrome a3 appears at a rate (kobs) of 0.016 s−1. Ferricytochrome a3 maintains its 418 nm Soret maximum until reduced. The rate of a3 reduction is independent of dithionite concentration over a range 0.9 mM–131 mM. In the presence or cyanide, visible and EPR spectral changes indicate the formation of a ferric a3/cyanide complex occurs at the same rate as a3 reduction in the absence of cyanide. A g = 3.6 signal appears at the same time as the decay of a g = 6 signal. No EPR signals which could be attributed to copper in any significant amounts could be detected after dithionite addition, either in the presence or absence of cyanide. (2) Addition of dithionite to cytochrome oxidase at various times following induction of turnover with ascorbate/TMPD, results in a biphasic reduction of cytochrome a3 with an increasing proportion of the fast phase of reduction occurring after longer turnover times. At the same time, the predominant steady state species of ferri-cytochrome a3 shifts from high to low spin and the steady-state level of reduction of cytochrome a drops indicating a shift in population of the enzyme molecules to a species with fast turnover. In the final activated form, oxygen is not required for fast internal electron transfer to cytochrome a3. In addition, oxygen does not induce further electron uptake in samples of resting cytochrome oxidase reduced under anaerobic conditions in the presence of cyanide. Both findings are contrary to predictions of certain O-loop types of mechanism for proton translocation. (3) A measurement of electron entry into the resting form of cytochrome oxidase in the presence of cyanide, using TMPD or cytochrome c under anaerobic conditions, shows that three electrons per oxidase enter below a redox potential of around +200 mV. An initial fast entry of two electrons is followed by a slow (kobs ≈ 0.02 s) entry of a third electron. Above +200 mV, the number of electrons taken up in the initial fast phase drops as a redox center (presumably CuA) titrates with an apparent mid-point potential of +240 mV. The slow phase of reduction remains at the more positive redox values. (4) The results are interpreted in terms of an initial fast reduction of cytochrome a (and CuA at redox values more negative than +240 mV) followed by a slow reduction of CuB. CuB reduction is proposed to spin-uncouple cytochrome a3 to form a cyanide sensitive center, and trigger a conformational change to an activated form of the enzyme with faster intramolecular electron transfer.  相似文献   

7.
By manipulating the physical properties of oxygen, cells are able to harvest the large thermodynamic potential of oxidation to provide a substantial fraction of the energy necessary for cellular processes. The enzyme largely responsible for this oxygen manipulation is cytochrome c oxidase, which resides at the inner mitochondrial membrane. For unknown reasons, cancer cells do not maximally utilize this process, but instead rely more on an anaerobic-like metabolism demonstrating the so-called Warburg effect. As the enzyme at the crossroads of oxidative metabolism, cytochrome c oxidase might be expected to play a role in this so-called Warburg effect. Through protein assay methods and metabolic studies with radiolabeled glucose, alterations associated with cancer and cytochrome c oxidase subunit levels are explored. The implications of these findings for cancer research are discussed briefly.  相似文献   

8.
9.
Cytochrome c oxidase is a superfamily of membrane bound enzymes catalyzing the exergonic reduction of molecular oxygen to water, producing an electrochemical gradient across the membrane. The gradient is formed both by the electrogenic chemistry, taking electrons and protons from opposite sides of the membrane, and by proton pumping across the entire membrane. In the most efficient subfamily, the A-family of oxidases, one proton is pumped in each reduction step, which is surprising considering the fact that two of the reduction steps most likely are only weakly exergonic. Based on a combination of quantum chemical calculations and experimental information, it is here shown that from both a thermodynamic and a kinetic point of view, it should be possible to pump one proton per electron also with such an uneven distribution of the free energy release over the reduction steps, at least up to half the maximum gradient. A previously suggested pumping mechanism is developed further to suggest a reason for the use of two proton transfer channels in the A-family. Since the rate of proton transfer to the binuclear center through the D-channel is redox dependent, it might become too slow for the steps with low exergonicity. Therefore, a second channel, the K-channel, where the rate is redox-independent is needed. A redox-dependent leakage possibility is also suggested, which might be important for efficient energy conservation at a high gradient. A mechanism for the variation in proton pumping stoichiometry over the different subfamilies of cytochrome oxidase is also suggested. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

10.
The contents of subunits I, II/III, and IV of cytochrome c oxidase and of subunits , and of FoF1 ATP synthase in inner mitochondrial membrane proteins purified from cerebral cortex of rat at 2, 6, 12, 18, 24, and 26 months of age were analyzed by western blot. Age-related changes in the content of subunits, either of mitochondrial or nuclear origin, were observed. All the cytochrome c oxidase (COX) subunits examined showed an age-related increase from 2-month-old rats up to 24 months with a decrease at the oldest age (26 months). The same pattern of age-dependent changes was observed for ATP synthase, while the and subunits increased progressively up to 26 months.  相似文献   

11.
Rat liver cytochrome c oxidase was separated by SDS-gel electrophoresis into 13 polypeptide bands. Monospecific antisera against the isolated polypeptides VIIa, VIIb and VIIc were raised in rabbits. Cytochrome c oxidase was blotted on nitrocellulose and incubated with the antisera. The antisera reacted only with their corresponding polypeptides, indicating no immunological relationship between polypeptides VIIa, VIIb and VIIc. The data also exclude that these polypeptides are proteolytic breakdown products of larger subunits.  相似文献   

12.
An electrometric system was used to measure Ca++ uptake by sarcoplasmic reticulum vesicles (SR). The method permits continuous recording of Ca++ uptake and thus the valuation of kinetic parameters. Furthermore, the ultrasensitivity of the method permits to follow changes in Ca++ concentration below 10?6 M.  相似文献   

13.
Nine members of the genus Taenia (Taenia taeniaeformis, Taenia hydatigena, Taenia pisiformis, Taenia ovis, Taenia multiceps, Taenia serialis, Taenia saginata, Taenia solium and the Asian Taenia) were characterised by their mitochondrial NADH dehydrogenase subunit 1 gene sequences and their genetic relationships were compared with those derived from the cytochrome c oxidase subunit I sequence data. The extent of inter-taxon sequence difference in NADH dehydrogenase subunit 1 (5.9–30.8%) was usually greater than in cytochrome c oxidase subunit I (2.5–18%). Although topology of the phenograms derived from NADH dehydrogenase subunit 1 and cytochrome c oxidase subunit I sequence data differed, there was concordance in that T. multiceps, T. serialis (of canids), T. saginata and the Asian Taenia (of humans) were genetically most similar, and those four members were genetically more similar to T. ovis and T. solium than they were to T. hydatigena and T. pisiformis (of canids) or T. taeniaeformis (of cats). The NADH dehydrogenase subunit 1 sequence data may prove useful in studies of the systematics and population genetic structure of the Taeniidae.  相似文献   

14.

INTRODUCTION:

Multiple sclerosis (MS) is an autoimmune inflamatory disease, which affects the (Central Nervous System) and leads to the destruction of myelin and atrophy of the axons. Genetic factors, in addition to environmental ones, seem to play a role in MS. Numerous studies have reported mitochondrial defects including a reduction in cytochrome c oxidase (COX) complex function related to the reduction of mitochondrial genes expression in the cortex tissue of patients with MS have been reported.

MATERIALS AND METHODS:

This study aimed to assess COX5B and COX2 genes expression in MS patients and compare it with normal subjects. We determine expression levels of genes COX5B and COX2, and also gene reference ß-actine using real–time polymerase chain reaction (RT-PCR) method. Data were obtained and obtained and standardized with the gene reference and were analyzed using independent sample t-test with SPSS and Excel programs.

RESULT AND DISCUSSION:

The resultshowed COX5B gene expression reduced significant in MS patients compared to normal subjects (P < −0.05) whereas, there was no significant difference in the COX2 gene expression between normal subjects and patients. Thus, it can be claimed that down-regulation of mitochondrial electron transport chain genes supported the hypothesis that hypoxia-like tissue injury in MS may be due to mitochondrial genes, different expression impairment.  相似文献   

15.
Lars Chr. Petersen 《BBA》1979,548(3):636-641
The effect of pH on the oxygen kinetics of cytochrome c oxidase incorporated into phospholipid vesicles is studied. The pH profiles of the oxygen kinetics of energized and deenergized oxidase vesicles are similar. An effect of pH on the slope of the reciprocal plot of rate against oxygen concentration is observed, and this may indicate that protons are involved in the rate limiting step of the reaction between oxygen and reduced oxidase. In contrast to the pH dependence of the oxygen kinetics, the binding of CO to the oxidase is not pH dependent.  相似文献   

16.
Dipankar Sen 《Phytochemistry》1975,14(7):1505-1506
For measurement of cytochrome c oxidase activity in intact plant mitochondria the optimum concentration of K-Pi buffer and pH in the reaction was found to be 75 mM and 7.4 respectively. The suitable concentration of K-Pi buffer for suspending and storing mitochondria, however, was found to be 20 mM or lower. These requirements applied equally well for mitochondria from wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), maize (Zea mays L.), and snap bean (Phaseolus vulgaris L.).  相似文献   

17.
Commonly used anesthetics induce widespread neuronal degeneration in the developing mammalian brain via the oxidative-stress-associated mitochondrial apoptosis pathway. Dysregulation of cytochrome oxidase (CcOX), the terminal oxidase of the electron transport chain, can result in reactive oxygen species (ROS) formation. Isoflurane has previously been shown to activate this enzyme. Carbon monoxide (CO), as a modulator of CcOX, is of interest because infants and children are routinely exposed to CO during low-flow anesthesia. We have recently demonstrated that low concentrations of CO limit and prevent isoflurane-induced neurotoxicity in the forebrains of newborn mice in a dose-dependent manner. However, the effect of CO on CcOX in the context of anesthetic-induced oxidative stress is unknown. Seven-day-old male CD-1 mice underwent 1 h exposure to 0 (air), 5, or 100 ppm CO in air with or without isoflurane. Exposure to isoflurane or CO independently increased CcOX kinetic activity and increased ROS within forebrain mitochondria. However, exposure to CO combined with isoflurane paradoxically limited CcOX activation and oxidative stress. There were no changes seen in steady-state levels of CcOX I protein, indicating post-translational modification of CcOX as an etiology for changes in enzyme activity. CO exposure led to differential effects on CcOX subunit I tyrosine phosphorylation depending on concentration, while combined exposure to isoflurane with CO markedly increased the enzyme phosphorylation state. Phosphorylation of tyrosine 304 of CcOX subunit I has been shown to result in strong enzyme inhibition, and the relative reduction in CcOX kinetics following exposure to CO combined with isoflurane may have been due, in part, to such phosphorylation. Taken together, the data suggest that CO modulates CcOX in the developing brain during isoflurane exposure, thereby limiting oxidative stress. These CO-mediated effects could have implications for the development of low-flow anesthesia in infants and children to prevent anesthesia-induced oxidative stress.  相似文献   

18.
Rat brain mitochondria were successively submitted to anoxia and reoxygenation. The main mitochondrial functions were assessed at different reoxygenation times. Although the respiratory control ratio decreased, the activity for each one of the enzymes participating in the respiratory chain was not affected. However, during reoxygenation, mitochondrial membrane lipoperoxidation quickly increased and was proportional to the decrease seen in membrane fluidity. Under the same conditions, cytochrome c and cardiolipin were released from mitochondria and their rate of release increased with reoxygenation time. The release of cytochrome c and cardiolipin was followed by the collapse of the membrane potential and it was not inhibited by cyclosporin A. Addition of the antioxidant alpha-tocopherol abolished all these reoxygenation-induced changes. These data indicate that, in this model, reoxygenation promotes the uncoupling of respiratory chain, and cytochrome c and cardiolipin releases. These events are not related to the membrane potential collapse but to an oxidative stress.  相似文献   

19.
The 1:1 complex between horse heart cytochrome c and bovine cytochrome c oxidase, and between yeast cytochrome c and Paracoccus denitrificans cytochrome c oxidase have been studied by a combination of second derivative absorption, circular dichroism (CD), and resonance Raman spectroscopy. The second derivative absorption and CD spectra reveal changes in the electronic transitions of cytochrome a upon complex formation. These results could reflect changes in ground state heme structure or changes in the protein environment surrounding the chromophore that affect either the ground or excited electronic states. The resonance Raman spectrum, on the other hand, reflects the heme structure in the ground electronic state only and shows no significant difference between cytochrome a vibrations in the complex or free enzyme. The only major difference between the Raman spectra of the free enzyme and complex is a broadening of the cytochrome a3 formyl band of the complex that is relieved upon complex dissociation at high ionic strength. These data suggest that the differences observed in the second derivative and CD spectra are the result of changes in the protein environment around cytochrome a that affect the electronic excited state. By analogy to other protein-chromophore systems, we suggest that the energy of the Soret pi* state of cytochrome a may be affected by (1) changes in the local dielectric, possibly brought about by movement of a charged amino acid side chain in proximity to the heme group, or (2) pi-pi interactions between the heme and aromatic amino acid residues.  相似文献   

20.
Phosphorylation of isolated cytochrome c oxidase from bovine kidney and heart, and of the reconstituted heart enzyme, with protein kinase A, cAMP and ATP turns on the allosteric ATP-inhibition at high ATP/ADP ratios. Also incubation of isolated bovine liver mitochondria only with cAMP and ATP turns on, and subsequent incubation with Ca2+ turns off the allosteric ATP-inhibition of cytochrome c oxidase. In the bovine heart enzyme occur only three consensus sequences for cAMP-dependent phosphorylation (in subunits I, III and Vb). The evolutionary conservation of RRYS441 at the cytosolic side of subunit I, together with the above results, suggest that phosphorylation of Ser441 turns on the allosteric ATP-inhibition of cytochrome c oxidase. The results support the 'molecular-physiological hypothesis' [29], which proposes a low mitochondrial membrane potential through the allosteric ATP-inhibition. A hormone- or agonist-stimulated increase of cellular [Ca2+]] is suggested to activate a mitochondrial protein phosphatase which dephosphorylates cytochrome c oxidase, turns off the allosteric ATP-inhibition and results in increase of mitochondrial membrane potential and ROS formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号