共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of the intracellular glutathione status on bile acid excretion was studied in the perfused rat liver. Perturbation of the thiol redox state by short term additions of diamide (100 microM) or hydrogen peroxide (250 microM) or t-butyl hydroperoxide (250 microM) led to a reversible inhibition of biliary taurocholate release without affecting hepatic uptake; inhibition amounted to 45% for diamide and 90% for the hydroperoxides. Concomitantly, the bile acid accumulated intracellularly. Bile flow increased from 1.3 to 2.0 microliters X min-1 X g liver-1 upon infusion of taurocholate (10 microM); the latter value was suppressed to 1.2 microliters X min-1 X g liver-1 by the addition of t-butyl hydroperoxide (250 microM). Similarly, the hepatic disposition of another bile constituent, bilirubin, was suppressed by 70% upon addition of hydrogen peroxide. While the addition of hydrogen peroxide inhibited also the endogenous release of bile acids almost completely, endogenous bile flow was much less affected, decreasing from 1.3 to 1.0 microliters X min-1 X g liver-1. Measurement of [14C]erythritol clearance showed bile/perfusate ratios of about unity both in the absence and presence of hydrogen peroxide, suggesting canalicular origin of the bile under both conditions. In livers from Se-deficient rats low in Se-GSH peroxidase (less than 5% of controls), hydrogen peroxide inhibited taurocholate transport substantially less, providing evidence for the involvement of glutathione in mediating the inhibition observed in normal livers. The percentage inhibition of taurocholate release and intracellular glutathione disulfide (GSSG) content were closely correlated. The addition of t-butyl hydroperoxide caused a several-fold increase of biliary GSSG release, whereas biliary GSH release was even decreased. The results establish a role of glutathione in canalicular taurocholate disposition. 相似文献
2.
In single-pass perfused rat liver, the sinusoidal uptake of infused 3H-labelled leukotriene (LT) C4 (10 nmol.l-1) was inhibited by sulfobromophthalein. Inhibition was half-maximal at sulfobromophthalein concentrations of approximately 1.2 mumol.l-1 in the influent perfusate and leukotriene uptake was inhibited by maximally 34%. Sulfobromophthalein (20 mumol.l-1) also decreased the uptake of infused [3H]LTE4 (10 nmol.l-1) by 31%. Indocyanine green (10 mumol.l-1) inhibited the sinusoidal [3H]LTC4 uptake by 19%. Replacement of sodium in the perfusion medium by choline decreased the uptake of infused [3H]LTC4 (10 nmol.l-1) by 56%, but was without effect on the uptake of sulfobromophthalein. The canalicular excretion of LTC4, LTD4 and N-acetyl-LTE4 was inhibited by sulfobromophthalein. In contrast, the proportion of polar omega-oxidation metabolites recovered in bile following the infusion of [3H]LTC4 was increased. Taurocholate, which had no effect on the sinusoidal leukotriene uptake, increased bile flow and also the biliary elimination of the radioactivity taken up. With increasing taurocholate additions, the amount of LTD4 recovered in bile increased at the expense of LTC4. Following the infusion of [3H]LTD4 (10 nmol.l-1), a major biliary metabolite was LTC4 indicating a reconversion of LTD4 to LTC4. In the presence of taurocholate (40 mumol.l-1), however, this reconversion was completely inhibited. The findings suggest the involvement of different transport systems in the sinusoidal uptake of cysteinyl leukotrienes. LTC4 uptake is not affected by bile acids and has a sodium-dependent and a sodium-independent component, the latter probably being shared with organic dyes. Sulfobromophthalein also interferes with the canalicular transport of LTC4, LTD4 and N-acetyl-LTE4, but not with the excretion of omega-oxidized cysteinyl leukotrienes. The data may be relevant for the understanding of hepatic leukotriene processing in conditions like hyperbilirubinemia or cholestasis. 相似文献
3.
4.
Nitrogen metabolism in the perfused rat liver 总被引:5,自引:0,他引:5
5.
Glycogen metabolism in isolated perfused rat liver 总被引:4,自引:0,他引:4
A K Walli G Siebler E Zepf H Schimassek 《Hoppe-Seyler's Zeitschrift für physiologische Chemie》1974,355(3):353-362
6.
Infusion of aldehyde such as acetaldehyde, propionaldehyde or benzaldehyde to perfused rat liver leads to an increase in hepatic ethane production. Half-maximal effect was obtained with about 20 microM acetaldehyde, a concentration range found in plasma during ethanol metabolism. Compounds which metabolically generate aldehydes such as monoamines (benzylamine, phenylethylamine) as substrates for monoamine oxidase or ethanol as substrate for alcohol dehydrogenase [A. Müller and H. Sies (1982) Biochem. J. 206, 153-156] are also able to elicit ethane release. Results obtained with inhibitors of hepatic aldehyde metabolism (pargyline or cyanamide) or of monamine oxidase (pargyline or tranylcypromine) suggest that metabolism of the aldehydes is required for ethane production. Radical scavenging by the addition of the flavonoid, cyanidanol, or by pretreatment with vitamin E (alpha-tocopherol) abolished ethane release, in agreement with lipid peroxidation as a source of alkane production during aldehyde metabolism. 相似文献
7.
Carbohydrate metabolism of the perfused rat liver 总被引:1,自引:16,他引:1
1. The rates of gluconeogenesis from most substrates tested in the perfused livers of well-fed rats were about half of those obtained in the livers of starved rats. There was no difference for glycerol. 2. A diet low in carbohydrate increased the rates of gluconeogenesis from some substrates but not from all. In general the effects of a low-carbohydrate diet on rat liver are less marked than those on rat kidney cortex. 3. Glycogen was deposited in the livers of starved rats when the perfusion medium contained about 10mm-glucose. The shedding of glucose from the glycogen stores by the well-fed liver was greatly diminished by 10mm-glucose and stopped by 13.3mm-glucose. Livers of well-fed rats that were depleted of their glycogen stores by treatment with phlorrhizin and glucagon synthesized glycogen from glucose. 4. When two gluconeogenic substrates were added to the perfusion medium additive effects occurred only when glycerol was one of the substrates. Lactate and glycerol gave more than additive effects owing to an increased rate of glucose formation from glycerol. 5. Pyruvate also accelerated the conversion of glycerol into glucose, and the accelerating effect of lactate can be attributed to a rapid formation of pyruvate from lactate. 6. Butyrate and oleate at 2mm, which alone are not gluconeogenic, increased the rate of gluconeogenesis from lactate. 7. The acceleration of gluconeogenesis from lactate by glucagon was also found when gluconeogenesis from lactate was stimulated by butyrate and oleate. This finding is not compatible with the view that the primary action of glucagon in promoting gluconeogenesis is an acceleration of lipolysis. 8. The rate of gluconeogenesis from pyruvate at 10mm was only 70% of that at 5mm. This ;inhibition' was abolished by oleate or glucagon. 相似文献
8.
The isolated perfused rat kidney allows a simultaneous kinetic study of both the renal metabolism and the urinary excretion of cortisol and its metabolites in the rat. In this system, cortisol was completely metabolized within 120 minutes. The main renal metabolites of cortisol (cortisone, 20 reduced cortisol and 20 reduced cortisone) were found in the recirculating perfusate and in urine. The formation of these metabolites was quantitatively evaluated and compared to a theoretical model. 相似文献
9.
10.
11.
1. The formation of acetoacetate, beta-hydroxybutyrate and glucose was measured in the isolated perfused rat liver after addition of fatty acids. 2. The rates of ketone-body formation from ten fatty acids were approximately equal and independent of chain length (90-132mumol/h per g), with the exception of pentanoate, which reacted at one-third of this rate. The [beta-hydroxybutyrate]/[acetoacetate] ratio in the perfusion medium was increased by long-chain fatty acids. 3. Glucose was formed from all odd-numbered fatty acids tested. 4. The rate of ketone-body formation in the livers of rats kept on a high-fat diet was up to 50% higher than in the livers of rats starved for 48h. In the livers of fat-fed rats almost all the O(2) consumed was accounted for by the formation of ketone bodies. 5. The ketone-body concentration in the blood of fat-fed rats rose to 4-5mm and the [beta-hydroxybutyrate]/[acetoacetate] ratio rose to 11.5. 6. When the activity of the microsomal mixed-function oxidase system, which can bring about omega-oxidation of fatty acids, was induced by treatment of the rat with phenobarbitone, there was no change in the ketone-body production from fatty acids, nor was there a production of glucose from even-numbered fatty acids. The latter would be expected if omega-oxidation occurred. Thus omega-oxidation did not play a significant role in the metabolism of fatty acids. 7. Arachidonate was almost quantitatively converted into ketone bodies and yielded no glucose, demonstrating that gluconeogenesis from poly-unsaturated fatty acids with an even number of carbon atoms does not occur. 8. The rates of ketogenesis from unsaturated fatty acids (sorbate, undecylenate, crotonate, vinylacetate) were similar to those from the corresponding saturated fatty acids. 9. Addition of oleate together with shorter-chain fatty acids gave only a slightly higher rate of ketone-body formation than oleate alone. 10. Glucose, lactate, fructose, glycerol and other known antiketogenic substances strongly inhibited endogenous ketogenesis but had no effects on the rate of ketone-body formation in the presence of 2mm-oleate. Thus the concentrations of free fatty acids and of other oxidizable substances in the liver are key factors determining the rate of ketogenesis. 相似文献
12.
1. Loading the isolated perfused liver from well-fed rats with xylitol (20mm) caused a depletion of adenine nucleotides and Pi and an accumulation of α-glycerophosphate. The ATP content fell to 66% of the control value after 10min and to 32% after 80min. The ADP and AMP contents also fell. After 80min 63% of the total adenine nucleotides and 59% of the Pi had been lost. 2. The α-glycerophosphate content rose from 0.13 to 4.74μmol/g at 10min and reached 8.02μmol/g at 40min. 3. Xylitol was rapidly metabolized, the main products being glucose, lactate and pyruvate. 4. The [lactate]/[pyruvate] ratio in the presence of xylitol rose to 30–40. 5. On perfusion of livers from starved animals the main product of xylitol metabolism was glucose and the mean ratio xylitol removed/glucose formed was 1.29 (corrected for endogenous glucose and lactate production). This is close to the predicted value of 1.2. 6. Evidence is presented indicating that the loss of adenine nucleotides caused by xylitol is not due to the increased ATP consumption but to the accumulation of α-glycerophosphate and depletion of Pi. 7. The loss of adenine nucleotides accounts for the hyperuricaemia which can occur after xylitol infusion in man. 8. The relevance of the findings to the clinical use of xylitol as an energy source is discussed. 相似文献
13.
14.
15.
D J Osborne J R Boot A F Cockerill K G Cranstone W Dawson J Harvey D N Mallen C W Smith 《Prostaglandins》1979,17(6):863-872
The hepatic and biliary metabolites of PGE1 have been isolated and identified after infusions of PGE1 into isolated rat liver preparations. The results demonstrate that in general PGE1 undergoes metabolism similar to that of PGE2 in the rat and reveals the possibility of a selective PG metabolite transport system across the biliary canalicular membrane. 相似文献
16.
17.
18.
1. Isolated livers from fed male rats were perfused for 2 h with T4 (L-thyroxine), T3 (L-3,3',5-tri-iodothyronine) or rT3 (L-3,3',5'-tri-iodothyronine) at different pH values (7.1--7.6) in a fully synthetic medium, whereby normal metabolic functions were maintained without addition of rat blood constituents or albumin. 2. T3 output into the medium and net T3 production reached a maximum at a pH of the medium of 7.2 and significantly decreased with alteration of the pH when livers were perfused with T4 as a substrate. 3. However, the net T4 and T3 uptake by the liver, as well as the hepatic T4 and T3 content after perfusion, were not dependent on the pH of the perfusion when livers were offered T4 or T3 as substrates respectively. 4. Determination of intracellular pH by the analysis of the distribution of the weak acid dimethyloxazolidinedione allows the conclusion that the pH optimum of iodothyronine 5'-deiodinase in the intact perfused liver corresponds to the maximum determined in vitro for the membrane-bound enzyme localized in the endoplasmic reticulum. 5. The rapid 5'-deiodination of rT3 to 3,3'-T2 (L-3,3'-di-iodothyronine), the fast disappearance of 3,3'-T2, and the fact that no net rT3 production from T4 could be detected, supports the hypothesis that in rat liver iodothyronine 5'-deiodinase activity seems to predominate over iodothyronine 5-deiodinase activity. 6. Thus the rat liver can be considered in normal physiological situations as an organ forming T3 from T4 and deiodinating rT3 originating from extrahepatic tissues, whereby the cellular iodothyronine 5'-deiodination rate is controlled by the intracellular pH. 相似文献
19.
20.
Lipid metabolism of rat liver isolated and perfused in hypoxia 总被引:1,自引:0,他引:1
C Soler-Argilaga R Infante J Polonovski 《Biomedicine / [publiée pour l'A.A.I.C.I.G.]》1974,20(2):154-159