首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca2+-dependent facilitation (CDF) of voltage-gated calcium current is a powerful mechanism for up-regulation of Ca2+ influx during repeated membrane depolarization. CDF of L-type Ca2+ channels (Ca(v)1.2) contributes to the positive force-frequency effect in the heart and is believed to involve the activation of Ca2+/calmodulin-dependent kinase II (CaMKII). How CaMKII is activated and what its substrates are have not yet been determined. We show that the pore-forming subunit alpha(1C) (Ca(v)alpha1.2) is a CaMKII substrate and that CaMKII interaction with the COOH terminus of alpha1C is essential for CDF of L-type channels. Ca2+ influx triggers distinct features of CaMKII targeting and activity. After Ca2+-induced targeting to alpha1C, CaMKII becomes tightly tethered to the channel, even after calcium returns to normal levels. In contrast, activity of the tethered CaMKII remains fully Ca2+/CaM dependent, explaining its ability to operate as a calcium spike frequency detector. These findings clarify the molecular basis of CDF and demonstrate a novel enzymatic mechanism by which ion channel gating can be modulated by activity.  相似文献   

2.
Agrin has been implicated in multiple aspects of central nervous system (CNS) neuron differentiation and function including neurite formation, synaptogenesis, and synaptic transmission. However, little is known about the signaling mechanisms whereby agrin exerts its effects. We have recently identified a neuronal receptor for agrin, whose activation induces expression of c-fos, and provided evidence that agrin binding to this receptor is associated with a rise in intracellular Ca2+, a ubiquitous second messenger capable of mediating a wide range of effects. To gain further insight into agrin's role in brain, we used Ca2+ imaging to explore agrin signal transduction in cultured cortical neurons. Bath application of either z+ or z-agrin isoforms resulted in marked changes in intracellular Ca2+ concentration specifically in neurons. Propagation of the Ca2+ response was a two-step process characterized by an initial increase in intracellular Ca2+ mediated by ryanodine receptor (RyR) release from intracellular stores, supplemented by influx through voltage-gated calcium channels (VGCCs). Agrin-induced increases in intracellular Ca2+ were blocked by genistein and herbimycin, suggesting that the agrin receptor is a tyrosine kinase. Ca2+ release from intracellular stores activates both calcium/calmodulin-dependent kinase II (CaMKII) and mitogen activated protein kinase (MAPK). Activation of CaMKII is required for propagation of the Ca2+ wave itself, whereas both MAPK and CaMKII play a role in mediating long latency responses such as induction of c-fos. These results suggest that an agrin-dependent tyrosine kinase could play a critical role in modulating levels of intracellular Ca2+ and activity of MAPK and CaMKII in CNS neurons.  相似文献   

3.
Elucidation of the biochemical mechanisms by which specific proteins transduce the all important intracellular calcium (Ca2+) signal at fertilization into events of egg activation will increase our understanding of the regulation of the onset of development and the extent to which these signals can be experimentally modified. Previously, we reported data supporting the hypothesis that mouse eggs have the capability to generate oscillations of the activity of Ca2+ and calmodulin-dependent kinase II (CaMKII), regulating the cell cycle and secretion. This study directly demonstrates transient increases of enzyme activity in relatively close synchrony with Ca2+ oscillations for the first hour of fertilization in single mouse eggs monitored for both Ca2+ and CaMKII activity. The extent of the enzyme activity increase was correlated with the level of intracellular Ca2+. After a rise in activity, the decrease in activity did not appear to be due to negative feedback from elevated Ca2+ or CaMKII activity over time, since enzyme activity persisted after 8 min of elevated Ca2+ from 7% ethanol activation. The contribution of CaMKII from a single sperm to the rise in CaMKII activity at fertilization appeared to be negligible. Also, long-term cell cycle inhibition was observed in fertilized eggs with the CaMKII antagonist myrAIP (50 microM), which did not inhibit the first large Ca2+ transient or subsequent early oscillations but did reduce the percentage of eggs fertilized. Thus, mammalian eggs appear to drive many activation events over time to completion with repeated short bursts of Ca2+ oscillation-dependent CaMKII activity, rather than by a steady-state, continuously elevated level of CaMKII activity that is maintained by periodic Ca2+ oscillations.  相似文献   

4.
IP3-induced Ca2+ release is the primary mechanism that is responsible for acetylcholine (ACh)-induced Ca2+ oscillation. However, other mechanisms remain to explain intracellular Ca2+ elevation. We here report that ACh induces Ca2+ influx via T-type Ca2+ channel by activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII), and the ACh-induced Ca2+ influx facilitates the generation of Ca2+ oscillation in the mouse ovulated oocytes (oocytes(MII)). ACh increased Ca2+ current by 50+/-21%, and produced Ca2+ oscillation. However, the currents and Ca2+ peaks were reduced in Ca2+ -free extracellular medium. ACh failed to activate Ca2+ current and to produce Ca2+ oscillation in oocytes pretreated with KN-93, a CaMKII inhibitor. KN-92, an inactive analogue of KN93, and PKC modulators could not prevent the effect of ACh. These results show that ACh increases T-type Ca2+ current by activation of CaMKII, independent of the PKC pathway, in the mouse oocytes.  相似文献   

5.
Chen S  Xu Y  Xu B  Guo M  Zhang Z  Liu L  Ma H  Chen Z  Luo Y  Huang S  Chen L 《Journal of neurochemistry》2011,119(5):1108-1118
Cadmium (Cd), a toxic environmental contaminant, induces neurodegenerative diseases. Recently, we have shown that Cd elevates intracellular free calcium ion ([Ca(2+) ](i) ) level, leading to neuronal apoptosis partly by activating mitogen-activated protein kinases (MAPK) and mammalian target of rapamycin (mTOR) pathways. However, the underlying mechanism remains to be elucidated. In this study, we show that the effects of Cd-elevated [Ca(2+) ](i) on MAPK and mTOR network as well as neuronal cell death are through stimulating phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII). This is supported by the findings that chelating intracellular Ca(2+) with 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetra(acetoxymethyl) ester or preventing Cd-induced [Ca(2+) ](i) elevation using 2-aminoethoxydiphenyl borate blocked Cd activation of CaMKII. Inhibiting CaMKII with KN93 or silencing CaMKII attenuated Cd activation of MAPK/mTOR pathways and cell death. Furthermore, inhibitors of mTOR (rapamycin), c-Jun N-terminal kinase (SP600125) and extracellular signal-regulated kinase 1/2 (U0126), but not of p38 (PD169316), prevented Cd-induced neuronal cell death in part through inhibition of [Ca(2+) ](i) elevation and CaMKII phosphorylation. The results indicate that Cd activates MAPK/mTOR network triggering neuronal cell death, by stimulating CaMKII. Our findings underscore a central role of CaMKII in the neurotoxicology of Cd, and suggest that manipulation of intracellular Ca(2+) level or CaMKII activity may be exploited for prevention of Cd-induced neurodegenerative disorders.  相似文献   

6.
Wen Z  Guirland C  Ming GL  Zheng JQ 《Neuron》2004,43(6):835-846
Axon pathfinding depends on attractive and repulsive turning of growth cones to extracellular cues. Localized cytosolic Ca2+ signals are known to mediate the bidirectional responses, but downstream mechanisms remain elusive. Here, we report that calcium-calmodulin-dependent protein kinase II (CaMKII) and calcineurin (CaN) phosphatase provide a switch-like mechanism to control the direction of Ca(2+)-dependent growth cone turning. A relatively large local Ca2+ elevation preferentially activates CaMKII to induce attraction, while a modest local Ca2+ signal predominantly acts through CaN and phosphatase-1 (PP1) to produce repulsion. The resting level of intracellular Ca2+ concentrations also affects CaMKII/CaN operation: a normal baseline allows distinct turning responses to different local Ca2+ signals, while a low baseline favors CaN-PP1 activation for repulsion. Moreover, the cAMP pathway negatively regulates CaN-PP1 signaling to inhibit repulsion. Finally, CaMKII/CaN-PP1 also mediates netrin-1 guidance. Together, these findings establish a complex Ca2+ mechanism that targets the balance of CaMKII/CaN-PP1 activation to control distinct growth cone responses.  相似文献   

7.
8.
Phosphorylation of CREB (cyclic AMP [cAMP]- response element [CRE]-binding protein) by cAMP-dependent protein kinase (PKA) leads to the activation of many promoters containing CREs. In neurons and other cell types, CREB phosphorylation and activation of CRE-containing promoters can occur in response to elevated intracellular Ca2+. In cultured cells that normally lack this Ca2+ responsiveness, we confer Ca(2+)-mediated activation of a CRE-containing promoter by introducing an expression vector for Ca2+/calmodulin-dependent protein kinase type IV (CaMKIV). Activation could also be mediated directly by a constitutively active form of CaMKIV which is Ca2+ independent. The CaMKIV-mediated gene induction requires the activity of CREB/ATF family members but is independent of PKA activity. In contrast, transient expression of either a constitutively active or wild-type Ca2+/calmodulin-dependent protein kinase type II (CaMKII) fails to mediate the transactivation of the same CRE-containing reporter gene. Examination of the subcellular distribution of transiently expressed CaMKIV and CaMKII reveals that only CaMKIV enters the nucleus. Our results demonstrate that CaMKIV, which is expressed in neuronal, reproductive, and lymphoid tissues, may act as a mediator of Ca(2+)-dependent gene induction.  相似文献   

9.
Integrin activation generates different signalings in a cell type-dependent manner and stimulates cell proliferation through the Ras/Raf-1/Mek/Erk pathway. In this study, we demonstrate that integrin stimulation by fibronectin (FN), besides activating the Ras/Erk pathway, generates an auxiliary calcium signal that activates calmodulin and the Ca2+/calmodulin-dependent protein kinase II (CaMKII). This signal regulates Raf-1 activation by Ras and modulates the FN-stimulated extracellular signal-regulated kinase (Erk-1/2). The binding of soluble FN to integrins induced increase of intracellular calcium concentration associated with phosphorylation and activation of CaMKII. In two different cell lines, inhibition of CaMKII activity by specific inhibitors inhibited Erk-1/2 phosphorylation. Whereas CaMK inhibition affected neither integrin-stimulated Akt phosphorylation nor p21Ras or Mek-1 activity, it was necessary for Raf-1 activity. FN-induced Raf-1 activity was abrogated by the CaMKII specific inhibitory peptide ant-CaNtide. Integrin activation by FN induced the formation of a Raf-1/CaMKII complex, abrogated by inhibition of CaMKII. Active CaMKII phosphorylated Raf-1 in vitro. This is the first demonstration that CaMKII interplays with Raf-1 and regulates Erk activation induced by Ras-stimulated Raf-1. These findings also provide evidence supporting the possible existence of cross-talk between other intracellular pathways involving CaMKII and Raf-1.  相似文献   

10.
A rise in intracellular Ca2+ (Ca2+i) mediates various cellular functions ranging from fertilization to gene expression. A ubiquitous Ca2+ influx pathway that contributes significantly to the generation of Ca2+i signals, especially in non-excitable cells, is store-operated Ca2+ entry (SOCE). Consequently, the modulation of SOCE current affects Ca2+i dynamics and thus the ensuing cellular response. Therefore, it is important to define the mechanisms that regulate SOCE. Here we show that a rise in Ca2+i potentiates SOCE. This potentiation is mediated by Ca2+-calmodulin-dependent protein kinase II (CaMKII), because inhibition of endogenous CaMKII activity abrogates Ca2+i-mediated SOCE potentiation and expression of constitutively active CaMKII potentiates SOCE current independently of Ca2+i. Moreover, we present evidence that CaMKII potentiates SOCE by altering SOCE channel gating. The regulation of SOCE by CaMKII defines a novel modulatory mechanism of SOCE with important physiological consequences.  相似文献   

11.
In this report we describe our studies on intracellular signals that mediate neurite outgrowth and long-term survival of cerebellar granule cells. The effect of voltage-gated calcium channel activation on neurite complexity was evaluated in cultured cerebellar granule cells grown for 48 h at low density; the parameter measured was the fractal dimension of the cell. We explored the contribution of two intracellular pathways, Ca2+ calmodulin-dependent protein kinase II and mitogen-activated protein kinase kinase (MEK1), to the effects of high [K+ ]e under serum-free conditions. We found that 25 mm KCl (25K) induced an increase in calcium influx through L subtype channels. In neurones grown for 24-48 h under low-density conditions, the activation of these channels induced neurite outgrowth through the activation of Ca2+ calmodulin-dependent protein kinase II. This also produced an increase in long-term neuronal survival with a partial contribution from the MEK1 pathway. We also found that the addition of 25K increased the levels of the phosphorylated forms of Ca2+ calmodulin-dependent protein kinase II and of the extracellular signal-regulated kinases 1 and 2. Neuronal survival under resting conditions is supported by the MEK1 pathway. We conclude that intracellular calcium oscillations can triggered different biological effects depending on the stage of maturation of the neuronal phenotype. Ca2+ calmodulin-dependent protein kinase II activation determines the growth of neurites and the development of neuronal complexity.  相似文献   

12.
Maintenance of beta1 integrin-mediated cell adhesion in quiescent human mammary epithelial (HME) cells requires protein phosphatase (PP) 2A for not only dephosphorylation of beta1 integrin but also recruitment of IQGAP1 to Rac-bound beta1 integrin. However, how PP2A-dependent regulatory machinery of cell adhesion responds to EGF remains to be elucidated. We report here that phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) at threonine 286 was involved in the beta1 integrin complex that consisted of PP2A, Rac, and IQGAP1 in quiescent HME cells. Stimulation of the cells with EGF concomitantly induced an increase in intracellular Ca2+, activation of CaMKII, and dissociation of PP2A-IQGAP1-CaMKII from beta1 integrin-Rac. Because the activation of CaMKII and dissociation of PP2A-IQGAP1-CaMKII were blocked by either Ca2+-chelator or CaMKII inhibitor, we therefore propose that EGF has the ability to abrogate the PP2A function in the maintenance of beta1 integrin-mediated cell adhesion by dissociation of PP2A-IQGAP1-CaMKII from beta1 integrin-Rac through activation of CaMKII.  相似文献   

13.
Phosphorylation of the BH3 (Bcl-2 homology domain 3)-only protein BAD (Bcl-2/Bcl-X(L)-antagonist, causing cell death) can either directly disrupt its association with the pro-survival proteins Bcl-X(L) and/or Bcl-2, or cause association of BAD with 14-3-3 proteins. In the present study, we further characterize phosphorylation of BAD at Ser170, a unique site with unclear function. We provide further evidence that mutation of Ser170 to a phospho-mimetic aspartic acid residue (S170D) can have a profound inhibitory effect on the pro-apoptosis function of BAD. Furthermore, mutated BAD with an alanine substitution inhibited cell proliferation, slowing progression specifically through S-phase. We identify the kinase responsible for phosphorylation at this site as CaMKII-γ (γ isoform of Ca2+/calmodulin-dependent kinase II), but not the other three isoforms of CaMKII, revealing an extraordinary specificity among these closely related kinases. Furthermore, cytokine treatment increased BAD-Ser170-directed CaMKII-γ activity and phosphorylation of CaMKII-γ at an activating site, and CaMKII activity directed to the BAD-Ser170 site was elevated during S-phase. Treating cells with a selective inhibitor of CaMKII caused apoptosis in cells expressing BAD, but not in cells expressing the BAD-S170D mutant. The present study provides support for BAD-Ser170 phosphorylation playing a key role not only in regulating BAD's pro-apoptotic activity, but also in cell proliferation.  相似文献   

14.
In this study we have examined the interaction of CD44 (a major hyaluronan (HA) receptor) with a RhoA-specific guanine nucleotide exchange factor (leukemia-associated RhoGEF (LARG)) in human head and neck squamous carcinoma cells (HNSCC-HSC-3 cell line). Immunoprecipitation and immunoblot analyses indicate that CD44 and the LARG protein are expressed in HSC-3 cells and that these two proteins are physically associated as a complex. HA-CD44 binding induces LARG-specific RhoA signaling and phospholipase C epsilon (PLC epsilon) activity. In particular, the activation of RhoA-PLC epsilon by HA stimulates inositol 1,4,5-triphosphate production, intracellular Ca2+ mobilization, and the up-regulation of Ca2+/calmodulin-dependent kinase II (CaMKII), leading to phosphorylation of the cytoskeletal protein, filamin. The phosphorylation of filamin reduces its interaction with filamentous actin, promoting tumor cell migration. The CD44-LARG complex also interacts with the EGF receptor (EGFR). Most importantly, the binding of HA to the CD44-LARG-EGFR complex activates the EGFR receptor kinase, which in turn promotes Ras-mediated stimulation of a downstream kinase cascade including the Raf-1 and ERK pathways leading to HNSCC cell growth. Using a recombinant fragment of LARG (the LARG-PDZ domain) and a binding assay, we have determined that the LARG-PDZ domain serves as a direct linker between CD44 and EGFR. Transfection of the HSC-3 cells with LARG-PDZcDNA significantly reduces LARG association with CD44 and EGFR. Overexpression of the LARG-PDZ domain also functions as a dominant-negative mutant (similar to the PLC/Ca2+-calmodulin-dependent kinase II (CaMKII) and EGFR/MAPK inhibitor effects) to block HA/CD44-mediated signaling events (e.g. EGFR kinase activation, Ras/RhoA co-activation, Raf-ERK signaling, PLC epsilon-mediated inositol 1,4,5-triphosphate production, intracellular Ca2+ mobilization, CaMKII activity, filamin phosphorylation, and filamin-actin binding) and to abrogate tumor cell growth/migration. Taken together, our findings suggest that CD44 interaction with LARG and EGFR plays a pivotal role in Rho/Ras co-activation, PLC epsilon-Ca2+ signaling, and Raf/ERK up-regulation required for CaMKII-mediated cytoskeleton function and in head and neck squamous cell carcinoma progression.  相似文献   

15.
We report that the rat pituitary cell line GH3 contains a Ca2(+)- and calmodulin-dependent protein kinase with properties characteristic of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) from rat brain. The GH3 kinase exhibits the hallmark of authentic CaM kinase: conversion from Ca2(+)-dependent to Ca2(+)-independent activity following a brief initial phosphorylation in vitro. This phosphorylation occurs at a site which is similar or identical to that of the "autonomy" site of the rat brain enzyme and thus may be an autophosphorylation event. GH3 CaM kinase is phosphorylated and becomes Ca2(+)-independent in situ. Depolarization of intact cells with K+ opens calcium channels and leads to the phosphorylation of CaM kinase at the autonomy site, and the kinase becomes significantly and persistently Ca2(+)-independent. Treatment of cells with thyrotropin-releasing hormone (TRH), which activates the phosphatidylinositol signaling pathway, also generates a Ca2(+)-independent CaM kinase in situ. The primary effect of TRH on CaM kinase activity is transient and correlates with the spike of Ca2+ released from intracellular stores and the rapid phase of prolactin release from GH3 cells. This study demonstrates that CaM kinase is able to detect and respond to both calcium that enters the cell through voltage-sensitive Ca2+ channels and calcium released from internal stores via the phosphatidylinositol pathway. We find that TRH, a hormone that causes release of prolactin and was previously believed to activate primarily protein kinase C, also significantly activates CaM kinase in intact cells.  相似文献   

16.
Ca(2+)/calmodulin-dependent protein kinase (CaMK) family is responsive to changes in the intracellular Ca(2+) concentration. However, their functions have not been well established in the ischemia/reperfusion heart. The effects of myocardial ischemia on CaMKII, the most strongly expressed form, were investigated using isolated rat hearts. Rat hearts were rendered globally ischemic by stopping perfusion for 15 min, and then reperfused, heart ventricles being analyzed in each phase. Western blotting detected a decrease in the cytosolic and concomitant increase in the particulate fraction of CaMKII following transient ischemia. Redistribution to the cytosol was revealed on reperfusion. Northern blot showed CaMKII gene expression decreased by ischemia. Furthermore, autoradiography and confocal immunohistochemical findings provided autophosphorylation of CaMKII in the cytosol, ischemia causing decrease, with gradual recovery on reperfusion. These results indicate a transient partial translocation of CaMKII accompanied by kinase activity, with residual myocardial CaMKII undergoing autophosphorylation during ischemia and reperfusion, demonstrating two different characteristic dynamics of CaMKII.  相似文献   

17.
The epithelial brush border (BB) Na(+)/H(+) exchanger 3 (NHE3) accounts for most renal and intestinal Na(+) absorption. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibits NHE3 activity under basal conditions in intact intestine, acting in the BB, but the mechanism is unclear. We now demonstrate that in both PS120 fibroblasts and polarized Caco-2BBe cells expressing NHE3, CaMKII inhibits basal NHE3 activity, because the CaMKII-specific inhibitors KN-93 and KN-62 stimulate NHE3 activity. This inhibition requires NHERF2. CaMKIIγ associates with NHE3 between aa 586 and 605 in the NHE3 C terminus in a Ca(2+)-dependent manner, with less association when Ca(2+) is increased. CaMKII inhibits NHE3 by an effect on its turnover number, not changing surface expression. Back phosphorylation demonstrated that NHE3 is phosphorylated by CaMKII under basal conditions. This overall phosphorylation of NHE3 is not affected by the presence of NHERF2. Amino acids downstream of NHE3 aa 690 are required for CaMKII to inhibit basal NHE3 activity, and mutations of the three putative CaMKII phosphorylation sites downstream of aa 690 each prevented KN-93 stimulation of NHE3 activity. These studies demonstrate that CaMKIIγ is a novel NHE3-binding protein, and this association is reduced by elevated Ca(2+). CaMKII inhibits basal NHE3 activity associated with phosphorylation of NHE3 by effects requiring aa downstream of NHE3 aa 690 and of the CaMKII-binding site on NHE3. CaMKII binding to and phosphorylation of the NHE3 C terminus are parts of the physiologic regulation of NHE3 that occurs in fibroblasts as well as in the BB of an intestinal Na(+)-absorptive cell.  相似文献   

18.
19.
Prostate cancer (PC) is one of the most common malignant tumors in man. Peimine (PM) is a bioactive substance isolated from Fritillaria. Previous studies have shown that PM could inhibit the occurrence of a variety of cancers. However, the roles of PM in PC and its related mechanism have not been elucidated. Calcium (Ca2+) is an important intracellular messenger involved in a variety of cell processes. In this study, we found that the appropriate doses of PM (2.5, 5, and 10 μM) significantly inhibited the growth of PC cells (DU-145, LNCap, and PC-3), but has no significant effect on normal prostate cells (RWPE-1). In addition, PM treatment inhibited the invasion and migration of PC-3 cells and blocked the epithelial-mesenchymal transition process. These effects were exhibited a dose-dependent manner. Furthermore, the current results also showed that PM treatment significantly increased the Ca2+ concentration, the increased Ca2+ promoted the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and c-Jun N-terminal kinase (JNK), further inhibited the growth and invasion of PC-3 cells, and induced its apoptosis. Ca2+ chelator BAPTA-AM (1 μM) could counteract the increase of intracellular Ca2+ concentration. Similarly, JNK pathway inhibitor SP600125 (10 μM) also inhibited cell growth and invasion and induced apoptosis. In addition, experiments in nude mice showed that PM inhibited tumor formation through Ca2+/CaMKII/JNK signaling pathway. In conclusion, our results show that PM inhibits the growth and motility of prostate cancer cells and induces apoptosis by disruption of intracellular calcium homeostasis through Ca2+/CaMKII/JNK pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号