首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The regulatory enzyme aspartate transcarbamoylase (ATCase), comprising 2 catalytic (C) trimers and 3 regulatory (R) dimers, owes its stability to the manifold interchain interactions among the 12 polypeptide chains. With the availability of a recombinant 70-amino acid zinc-containing polypeptide fragment of the regulatory chain of ATCase, it has become possible to analyze directly the interaction between catalytic and regulatory chains in a complex of simpler structure independent of other interactions such as those between the 2 C trimers, which also contribute to the stability of the holoenzyme. Also, the effect of the interaction between the polypeptide, termed the zinc domain, and the C trimer on the thermal stability and other properties can be measured directly. Differential scanning microcalorimetry experiments demonstrated that the binding of the zinc domain to the C trimer leads to a complex of markedly increased thermal stability. This was shown with a series of mutant forms of the C trimer, which themselves varied greatly in their temperature of denaturation due to single amino acid replacements. With some C trimers, for which tm varied over a range of 30 degrees C due to diverse amino acid substitutions, the elevation of tm resulting from the interaction with the zinc domain was as large as 18 degrees C. The values of tm for a variety of complexes of mutant C trimers and the wild-type zinc domain were similar to those observed when the holoenzymes containing the mutant C trimers were subjected to heat denaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Interaction of a 70-amino acid zinc-binding polypeptide from the regulatory chain of aspartate transcarbamoylase (ATCase) with the catalytic (C) subunit leads to dramatic changes in enzyme activity and affinity for ligand binding at the active sites. The complex between the polypeptide (zinc domain) and wild-type C trimer exhibits hyperbolic kinetics in contrast to the sigmoidal kinetics observed with the intact holoenzyme. Moreover, the Scatchard plot for binding N-(phosphonacetyl)-L-aspartate (PALA) to the complex is linear with a Kd corresponding to that evaluated for the holoenzyme converted to the relaxed (R) state. Additional evidence that the binding of the zinc domain to the C trimer converts it to the R state was attained with a mutant form of ATCase in which Lys 164 in the catalytic chain is replaced by Glu. As shown previously (Newell, J.O. & Schachman, H.K., 1990, Biophys. Chem. 37, 183-196), this mutant holoenzyme, which exists in the R conformation even in the absence of active site ligands, has a 50-fold greater affinity for PALA than the free C subunit. Adding the zinc domain to the C trimer containing the Lys 164-->Glu substitution leads to a 50-fold enhancement in the affinity for the bisubstrate analog yielding a value of Kd equal to that for the holoenzyme. A different mutant ATCase containing the Gln 231 to Ile replacement was shown (Peterson, C.B., Burman, D.L., & Schachman, H.K., 1992, Biochemistry 31, 8508-8515) to be much less active as a holoenzyme than as the free C trimer. For this mutant holoenzyme, the addition of substrates does not cause its conversion to the R state. However, the addition of the zinc domain to the Gln 231-->Ile C trimer leads to a marked increase in enzyme activity, and PALA binding data indicate that the complex resembles the R state of the holoenzyme. This interaction leading to a more active conformation serves as a model of intergenic complementation in which peptide binding to a protein causes a conformational correction at a site remote from the interacting surfaces resulting in activation of the protein. This linkage was also demonstrated by difference spectroscopy using a chromophore covalently bound at the active site, which served as a spectral probe for a local conformational change. The binding of ligands at the active sites was shown also to lead to a strengthening of the interaction between the zinc domain and the C trimer.  相似文献   

4.
In the catalytic chain of Escherichia coli aspartate transcarbamylase, Tyr240 helps stabilize the T-state conformation by an intrachain hydrogen bond to Asp271. Changes in kinetic characteristics of ATCase that result from disruption of this bond by site-specific mutation of Tyr240----Phe have been investigated by isotopic exchanges at chemical equilibrium. The Tyr240----Phe (Y240F) mutation caused the rate of the [32P] carbamyl phosphate (C-P) in equilibrium Pi exchange to decrease by 2-8-fold, without altering the [14C]Asp in equilibrium N-carbamyl-L-aspartate (C-Asp) rate. The mutation also caused the S0.5 and Hill nH values to decrease in virtually every substrate saturation experiment. Upon increasing the concentrations of the C-P,Pi or C-P,C-Asp reactant-product pairs, inhibition effects observed with the C-P in equilibrium Pi exchange for wild-type enzyme were not apparent with the Y240F mutant enzyme. In contrast, upon increasing the concentrations of the Asp,C-Asp and Asp,Pi pairs, inhibition effects on C-P in equilibrium Pi observed with wild-type enzyme became stronger with the Y240F mutant enzyme. These data indicate that the Tyr240----Phe mutation alters the kinetic mechanism in two different ways: on the reactant side, C-P binding prior to Asp shifts from preferred to compulsory order, and, on the product side, C-Asp and Pi release changes from preferred to nearly random order. These conclusions were also confirmed on a quantitative basis by computer simulations and fitting of the data, which also produced an optimal set of rate constants for the Y240F enzyme. The Arrhenius plot for wild-type holoenzyme was biphasic, but those for catalytic subunits and Y240F enzyme were linear (monophasic). Taken together, the data indicate that the Tyr240----Phe mutation destabilizes the T-state and shifts the equilibrium for the T-R allosteric transition toward the R-state by increasing the rate of T----R conversion.  相似文献   

5.
Because the N- and C-terminal amino acids of the catalytic (c) polypeptide chains of Escherichia coli aspartate transcarbamoylase (ATCase) are in close proximity to each other, it has been possible to form in vivo five different active ATCase variants in which the terminal regions of the wild-type c chains are linked in a continuous polypeptide chain and new termini are introduced elsewhere in either of the two structural domains of the c chain. These circularly permuted (cp) chains were produced by constructing tandem pyrB genes, which encode the c chain of ATCase, followed by application of PCR. Chains expressed in this way assemble efficiently in vivo to form active, stable ATCase variants. Three such variants have been purified and shown to have the kinetic and physical properties characteristic of wild-type ATCase composed of two catalytic (C) trimers and three regulatory (R) dimers. The values of Vmax for cpATCase122, cpATCase222, and cpATCase281 ranged from 16-21 mumol carbamoylaspartate per microgram per h, compared with 15 for wild-type ATCase, and the values for K0.5 for the variants were 4-17 mM aspartate, whereas wild-type ATCase exhibited a value of 6 mM. Hill coefficients for the three variants varied from 1.8 to 2.1, compared with 1.4 for the wild-type enzyme. As observed with wild-type ATCase, ATP activated the variants containing the circularly permuted chains, as shown by the lowering of K0.5 for aspartate and a decrease in the Hill coefficient (nH). In contrast, CTP caused both an increase in K0.5 and nH for the variants, just as observed with wild-type ATCase. Thus, the enzyme containing the permuted chains with widely diverse N- and C-termini exhibited the homotropic and heterotropic effects characteristic of wild-type ATCase. The decrease in the sedimentation coefficient of the variants caused by the binding of the bisubstrate ligand N-(phosphonacetyl)-L-aspartate (PALA) was also virtually identical to that obtained with wild-type ATCase, thereby indicating that these altered ATCase molecules undergo the analogous ligand-promoted allosteric transition from the taut (T) state to the relaxed (R) conformation. These ATCase molecules with new N- and C-termini widely dispersed throughout the c chains are valuable models for studying in vivo and in vitro folding of polypeptide chains.  相似文献   

6.
Interaction between a 70-amino acid and zinc-binding polypeptide from the regulatory chain and the catalytic (C) trimer of aspartate transcarbamoylase (ATCase) leads to dramatic changes in enzyme activity and affinity for active site ligands. The hypothesis that the complex between a C trimer and 3 polypeptide fragments (zinc domain) is an analog of R state ATCase has been examined by steady-state kinetics, heavy-atom isotope effects, and isotope trapping experiments. Inhibition by the bisubstrate ligand, N-(phosphonacetyl)-L-aspartate (PALA), or the substrate analog, succinate, at varying concentrations of substrates, aspartate, or carbamoyl phosphate indicated a compulsory ordered kinetic mechanism with carbamoyl phosphate binding prior to aspartate. In contrast, inhibition studies on C trimer were consistent with a preferred order mechanism. Similarly, 13C kinetic isotope effects in carbamoyl phosphate at infinite aspartate indicated a partially random kinetic mechanism for C trimer, whereas results for the complex of C trimer and zinc domain were consistent with a compulsory ordered mechanism of substrate binding. The dependence of isotope effect on aspartate concentration observed for the Zn domain-C trimer complex was similar to that obtained earlier for intact ATCase. Isotope trapping experiments showed that the compulsory ordered mechanism for the complex was attributable to increased "stickiness" of carbamoyl phosphate to the Zn domain-C trimer complex as compared to C trimer alone. The rate of dissociation of carbamoyl phosphate from the Zn domain-C trimer complex was about 10(-2) that from C trimer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The substitution of alanine for lysine at position 56 of the regulatory polypeptide of aspartate transcarbamoylase affected both homotropic and heterotropic characteristics. In the absence of effectors, the ALAr56-substituted holoenzyme lost the homotropic cooperativity observed for aspartate in the wild-type holoenzyme. Under conditions of allosteric inhibition in the presence of 2mM CTP, the cooperative character of ATCase was restored, and the Hill coefficient increased from 1.0 to 1.7. In contrast to the native enzyme, the altered enzyme did not respond to ATP; however, ATP could still bind to the enzyme as demonstrated by its direct competition with CTP. Furthermore, the recently observed CTP-UTP synergism of the wild-type enzyme was not detectable. The site-directed mutant enzyme could not be activated by low levels of the bisubstrate analogue, N-(phosphonacetyl)-L-aspartate, and the rate of association of pHMB with the cysteine residues located at the interface of the catalytic and regulatory chains was slightly altered. These characteristics suggested that the mutant holoenzyme assumed a relaxed (or abnormal T state) conformation. Thus, this single substitution differentially affected the heterotropic responses to the various allosteric effectors of ATCase and eliminated the homotropic characteristics in response to aspartate in the absence of CTP.  相似文献   

8.
Ya Ha  Norma M. Allewell 《Proteins》1998,33(3):430-443
Tyr 165 in the catalytic subunit of Escherichia coli aspartate transcarbamoylase (ATCase, EC 2.1.3.2) forms an intersubunit hydrogen bond in the T state with Glu 239 in the 240s loop of a second catalytic subunit, which is broken in the T to R transition. Substitution of Tyr 165 by Phe lowers substrate affinity by approximately an order of magnitude and alters the pH profile for enzyme function. We have determined the crystal structure of Y165F at 2.4 Å resolution by molecular replacement, using a wild-type T state structure as the probe, and refined it to an R value of 25.2%. The Y165F mutation induces a global conformational change that is in the opposite direction to the T to R transition and therefore results in an extreme T state. The two catalytic trimers move closer by ∼0.14 Å and rotate by ∼0.2°, in the opposite direction to the T→R rotation; the two domains of each catalytic chain rotate by ∼2.1°, also in the opposite direction to the T→R transition; and the 240s loop adopts a new conformation. Residues 229 to 236 shift by ∼2.4 Å so that the active site is more open. Residues 237 to 244 rotate by ∼24.1°, altering interactions within the 240s loop and at the C1-C4 and C1-R4 interfaces. Arg 167, a key residue in domain closure and interactions with L-Asp, swings out from the active site to interact with Tyr 197. This crystal structure is consistent with the functional properties of Y165F, expands our knowledge of the conformational repertoire of ATCase, and indicates that the canonical T state does not represent an extreme. Proteins 33:430–443, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
A comprehensive set of hybrid molecules of aspartate transcarbamylase (ATCase) from Escherichia coli has been constructed of wild-type and mutationally altered catalytic chains. The mutant enzymes that were virtually devoid of activity contained a replacement of Gly-128 in the catalytic polypeptide chains by either Asp or Arg. The kinetic properties of these hybrid enzyme-like molecules were analyzed to evaluate the basis for the unusual quaternary constraint demonstrated by an intersubunit hybrid containing one wild-type catalytic subunit, one inactive mutant subunit (containing the Gly to Asp replacement), and three wild-type regulatory subunits. A similar intersubunit hybrid was constructed from the wild-type catalytic subunit and the mutant in which Gly-128 was replaced by Arg, and it too demonstrated a pronounced decrease in activity relative to that expected for a hybrid containing three active sites. Moreover, neither of these hybrid holoenzymes exhibited the cooperativity with respect to aspartate that is characteristic of wild-type ATCase. In contrast, hybrid holoenzymes containing at least one wild-type chain in each catalytic subunit showed cooperativity. Also, hybrid enzymes containing different arrangements of five, four, three, or two wild-type catalytic chains with an appropriate complement of mutant chains had specific activities proportional to the number of wild-type chains in the holoenzymes. Exceptions were observed only in hybrids in which one of the two subunits in the holoenzyme was composed completely of mutant catalytic chains. For these hybrids the negative complementation was manifested as a much lower enzyme activity than expected from the number of wild-type chains in the enzyme and the loss of cooperativity. Thus, the activity and allosteric properties of these hybrids is dependent on the arrangement of catalytic chains in the holoenzyme, in contrast to results obtained for hybrids containing native and chemically modified catalytic chains. Intrasubunit hybrid catalytic trimers containing one or two wild-type chains exhibited one-third and two-thirds the activity of the intact wild-type catalytic subunit, respectively, indicating the dominant negative effect that was seen in intersubunit hybrid holoenzymes is absent within trimers.  相似文献   

10.
The amino acid residue Tyr-165C of aspartate transcarbamoylase (EC 2.1.3.2) of Escherichia coli has been proposed to be involved in the transition from the T-state to the R-state upon binding of the bisubstrate analogue N-(phosphonacetyl)-L-aspartate. Site-specific mutagenesis has been used to substitute phenylalanine for tyrosine, thus maintaining the aromatic R-group but removing the charged hydroxyl moiety. This mutation dramatically altered the aspartate requirements for the holoenzyme but did not substantially affect the homotropic or heterotropic characteristics of the oligomer. The aspartate requirements for half-maximal saturation increased from 5.5 mM at pH 7.0 for the native holoenzyme to approximately 90 mM in the mutant enzyme. Nonetheless, estimates of the kinetic cooperativity index remained similar (Hill coefficients: Tyr-165C, n = 2.1; Phe-165C, n = 2.5). CTP inhibited both enzymes approximately 70% and ATP activated approximately 40% at the aspartate concentrations required for half-maximal saturation (5 and 90 mM, respectively). The maximal velocity of the mutant holoenzyme is almost identical to that of the wild-type enzyme. The phenylalanine substitution does not affect the stability of the holoenzyme to heat or mercurials, and the Vmax of the catalytic trimer was 444% greater than that of the holoenzyme. Upon dissociation of the wild-type native enzyme into catalytic trimers, the Vmax increased 450%. The Km for aspartate in the separated catalytic trimer is approximately 2-fold higher than for the native catalytic trimer (16.5 versus 8 mM at pH 7.0). It is clear from the data that although Tyr-165C is not directly involved in the active site of the enzyme, it does play a pivotal role in catalytic transitions of the holoenzyme. In addition, the homotropic and heterotropic characteristics of the enzyme do not seem to be altered by the substitution of phenylalanine for Tyr-165C in the E. coli aspartate transcarbamoylase, although other substitutions have been reported (Robey, E. H., and Schachman, H. K. (1984) J. Biol. Chem. 259, 11180-11183) which show more complex effects.  相似文献   

11.
A classical model for allosteric regulation of enzyme activity posits an equilibrium between inactive and active conformations. An alternative view is that allosteric activation is achieved by increasing the potential for conformational changes that are essential for catalysis. In the present study, substitution of a basic residue in the active site of the catalytic (C) trimer of aspartate transcarbamoylase with a non‐polar residue results in large interdomain hinge changes in the three chains of the trimer. One conformation is more open than the chains in both the wild‐type C trimer and the catalytic chains in the holoenzyme, the second is closed similar to the bisubstrate‐analog bound conformation and the third hinge angle is intermediate to the other two. The active‐site 240s loop conformation is very different between the most open and closed chains, and is disordered in the third chain, as in the holoenzyme. We hypothesize that binding of anionic substrates may promote similar structural changes. Further, the ability of the three catalytic chains in the trimer to access the open and closed active‐site conformations simultaneously suggests a cyclic catalytic mechanism, in which at least one of the chains is in an open conformation suitable for substrate binding whereas another chain is closed for catalytic turnover. Based on the many conformations observed for the chains in the isolated catalytic trimer to date, we propose that allosteric activation of the holoenzyme occurs by release of quaternary constraint into an ensemble of active‐site conformations.  相似文献   

12.
13.
Isotopic exchange kinetics at chemical equilibrium have been used to identify changes in the regulatory properties of aspartate transcarbamylase (ATCase) caused by site-specific mutation of Tyr240----Phe (Y240F) in the catalytic chain. With both wild-type and the mutant enzymes, ATP activates both [14C]Asp in equilibrium N-carbamyl-L-aspartate (C-Asp) and the [32P]carbamyl phosphate (C-P) in equilibrium Pi exchanges. In contrast, with wild-type enzyme, CTP inhibits both exchanges, but with Y240F mutant enzyme CTP inhibits Asp in equilibrium C-Asp exchange and activates C-P in equilibrium Pi exchange. The bisubstrate analog N-(phosphonacetyl-L-aspartate), PALA, activates Asp in equilibrium C-Asp at a lower concentration with the Y240F enzyme, but the extent of activation is decreased, relative to wild-type enzyme. PALA activation of C-P in equilibrium Pi observed with wild-type enzyme disappears completely with the Y240F mutant enzyme. Analysis of perturbations of exchange rates by ATP and CTP were carried out by systematic methods plus computer-based simulations with the ISOBI program. These analyses indicate that (a) ATP increases the rates of association and dissociation for both C-P and Asp, but (b) CTP differentially increases the rate of C-P association to a greater degree than dissociation, but also decreases the rates for Asp association and dissociation in equal proportion. In addition, Arrhenius plots for Y240F ATCase suggest that ATP and CTP act by different mechanisms: ATP increases Vmax (decreases delta G not equal to) uniformly at all temperatures, whereas CTP does not alter either Vmax (delta G not equal to) or the Arrhenius slope (delta H not equal to).  相似文献   

14.
We tested the role of the “spring-loaded” conformational change in the fusion mechanism of the influenza hemagglutinin (HA) by assessing the effects of 10 point mutants in the region of high coiled-coil propensity, HA2 54–81. The mutants included proline substitutions at HA2 55, 71, and 80, as well as a double proline substitution at residues 55 and 71. Mutants were expressed in COS or 293T cells and assayed for cell surface expression and structural features as well as for their ability to change conformation and induce fusion at low pH. We found the following: Specific mutations affected the precise carbohydrate structure and folding of the HA trimer. All of the mutants, however, formed trimers that could be expressed at the cell surface in a form that could be proteolytically cleaved from the precursor, HA0, to the fusion-permissive form, HA1-S-S-HA2. All mutants reacted with an antibody against the major antigenic site and bound red blood cells. Seven out of ten mutants displayed a wild-type (wt) or moderately elevated pH dependence for the conformational change. V55P displayed a substantial reduction (~60– 80%) in the initial rate of lipid mixing. The other single mutants displayed efficient fusion with the same pH dependence as wt-HA. The double proline mutant V55P/ S71P displayed no fusion activity despite being well expressed at the cell surface as a proteolytically cleaved trimer that could bind red blood cells and change conformation at low pH. The impairment in fusion for both V55P and V55P/S71P was at the level of outer leaflet lipid mixing. We interpret our results in support of the hypothesis that the spring-loaded conformational change is required for fusion. An alternate model is discussed.  相似文献   

15.
Each catalytic (c) polypeptide chain of Escherichia coli aspartate transcarbamoylase (ATCase) is composed of two globular domains connected by two interdomain helices. Helix 12, near the C-terminus, extends from the second domain back through the first domain, bringing the two termini close together. This helix is of critical importance for the assembly of a stable enzyme. The trimeric E. coli enzyme ornithine transcarbamoylase (OTCase) is proposed to be similar in tertiary and quaternary structure to the ATCase trimer and has a predicted alpha-helical segment near its C-terminus. In our companion paper, we have shown that this putative helix is essential for OTCase folding and assembly (Murata L, Schachman HK, 1996, Protein Sci 5:709-718). Here, the similarity between OTCase and the ATCase trimer, which are 32% identical in sequence, was tested further by the construction of several chimeras in which various structural elements were switched between the enzymes by genetic techniques. These elements included the two globular domains and regions containing the C-terminal helices. In contrast to results reported previously (Houghton J, O'Donovan G, Wild J, 1989, Nature 338:172-174), none of the chimeric proteins exhibited in vivo activity and all were insoluble when overexpressed. Attempts to make hybrid trimers composed of c chains from ATCase and OTCase were also unsuccessful. These results underscore the complexities of specific intrachain and interchain side-chain interactions required to maintain tertiary and quaternary structures in these enzymes.  相似文献   

16.
The available crystal structures of Escherichia coli aspartate transcarbamoylase (ATCase) show that the conserved residue Asp-162 from the catalytic chain interacts with essentially the same residues in both the T- and R-states. To study the role of Asp-162 in the regulatory properties of the enzyme, this residue has been replaced by alanine. The mutant D162A shows a 7700-fold reduction in the maximal observed specific activity, a twofold decrease in the affinity for aspartate, a loss of homotropic cooperativity, and decreased activation by the nucleotide effector adenosine triphosphate (ATP) compared with the wild-type enzyme. Small-angle X-ray scattering (SAXS) measurements reveal that the unliganded mutant enzyme adopts the T-quaternary structure of the wild-type enzyme. Most strikingly, the bisubstrate analog N-phosphonacetyl-L-aspartate (PALA) is unable to induce the T to R quaternary structural transition, causing only a small alteration of the scattering pattern. In contrast, addition of the activator ATP in the presence of PALA causes a significant increase in the scattering amplitude, indicating a large quaternary structural change, although the mutant does not entirely convert to the wild-type R structure. Attempts at modeling this new conformation using rigid body movements of the catalytic trimers and regulatory dimers did not yield a satisfactory solution. This indicates that intra- and/or interchain rearrangements resulting from the mutation bring about domain movements not accounted for in the simple model. Therefore, Asp-162 appears to play a crucial role in the cooperative structural transition and the heterotropic regulatory properties of ATCase.  相似文献   

17.
Previous studies on Escherichia coli aspartate transcarbamoylase (ATCase) demonstrated that active, stable enzyme was formed in vivo from complementing polypeptides of the catalytic (c) chain encoded by gene fragments derived from the pyrBI operon. However, the enzyme lacked the allosteric properties characteristic of wild-type ATCase. In order to determine whether the loss of homotropic and heterotropic properties was attributable to the location of the interruption in the polypeptide chain rather than to the lack of continuity, we constructed a series of fragmented genes so that the breaks in the polypeptide chains would be dispersed in different domains and diverse regions of the structure. Also, analogous molecules containing circularly permuted c chains with altered termini were constructed for comparison with the ATCase molecules containing fragmented c chains. Studies were performed on four sets of ATCase molecules containing cleaved c chains at positions between residues 98 and 99, 121 and 122, 180 and 181, and 221 and 222; the corresponding circularly permuted chains had N termini at positions 99, 122, 181, and 222. All of the ATCase molecules containing fragmented or circularly permuted c chains exhibited the homotropic and heterotropic properties characteristic of the wild-type enzyme. Hill coefficients (n(H:)) and changes in them upon the addition of ATP and CTP were similar to those observed with wild-type ATCase. In addition, the conformational changes revealed by the decrease in sedimentation coefficient upon the addition of a bisubstrate analog were virtually identical to that for the wild-type enzyme. Differential scanning calorimetry showed that neither the breakage of the polypeptide chains nor the newly formed covalent bond between the termini in the wild-type enzyme had a significant impact on the thermal stability of the assembled dodecamers. The studies demonstrate that continuity of the polypeptide chain within structural domains is not essential for the assembly, activity, and allosteric properties of ATCase.  相似文献   

18.
Predictions of tertiary structures of proteins from their amino acid sequences are facilitated greatly when the structures of homologous proteins are known. On this basis, structural features of Escherichia coli ornithine transcarbamoylase (OTCase) were investigated by site-directed mutagenesis experiments based on the known tertiary structure of the catalytic (c) chain of E. coli aspartate transcarbamoylase (ATCase). In ATCase, each c chain is composed of two globular domains connected by two interdomain helices, one of which is near the C-terminus and is critical for the in vivo folding of the chains and their assembly into trimers. Each active site is located at the interface between two chains and requires the participation of residues from each of the adjacent chains. OTCase, a trimeric enzyme, has been proposed to be similar in structure to the ATCase trimer on the basis of sequence identity (32%), the nature of the reaction catalyzed by the enzyme, and secondary structure predictions. As shown here, analysis of OTCase and ATCase sequences revealed extensive evolutionary conservation in portions corresponding to the ATCase active site and the C-terminal helix. Truncations and substitutions within the predicted C-terminal helix of OTCase had effects on activity and thermal stability strikingly similar to those caused by analogous alterations in ATCase. Similarly, substitutions at either of two conserved residues, Ser 55 and Lys 86, in the proposed active site of OTCase had deleterious effects parallel to those caused by the analogous ATCase substitutions. Hybrid trimers comprised of chains from both these relatively inactive OTCase mutants exhibited dramatically increased activity, as predicted for shared active sites located at the chain interfaces. These results strongly support the hypothesis that the tertiary and quaternary structures of the two enzymes are similar.  相似文献   

19.
The genes coding for aspartate carbamoyltransferase (ATCase) in the extremely thermophilic archaeon Sulfolobus acidocaldarius have been cloned by complementation of a pyrBI deletion mutant of Escherichia coli. Sequencing revealed the existence of an enterobacterial-like pyrBI operon encoding a catalytic chain of 299 amino acids (34 kDa) and a regulatory chain of 170 amino acids (17.9 kDa). The deduced amino acid sequences of the pyrB and pyrI genes showed 27.6-50% identity with archaeal and enterobacterial ATCases. The recombinant S. acidocaldarius ATCase was purified to homogeneity, allowing the first detailed studies of an ATCase isolated from a thermophilic organism. The recombinant enzyme displayed the same properties as the ATCase synthesized in the native host. It is highly thermostable and exhibits Michaelian saturation kinetics for carbamoylphosphate (CP) and positive homotropic cooperative interactions for the binding of L-aspartate. Moreover, it is activated by nucleoside triphosphates whereas the catalytic subunits alone are inhibited. The holoenzyme purified from recombinant E. coli cells or present in crude extract of the native host have an Mr of 340 000 as estimated by gel filtration, suggesting that it has a quaternary structure similar to that of E. coli ATCase. Only monomers could be found in extracts of recombinant E. coli or Saccharomyces cerevisiae cells expressing the pyrB gene alone. In the presence of CP these monomers assembled into trimers. The stability of S. acidocaldarius ATCase and the allosteric properties of the enzyme are discussed in function of a modeling study.  相似文献   

20.
In aspartate transcarbamylase (ATCase) each regulatory chain interacts with two catalytic chains each one belonging to a different trimeric catalytic subunit (R1-C1 and R1-C4 types of interactions as defined in Fig. 1). In order to investigate the interchain contacts that are involved in the co-operative interactions between the catalytic sites, a series of modified forms of the enzyme was prepared by site-directed mutagenesis. The amino acid replacements were devised on the basis of the previously described properties of an altered form of ATCase (pAR5-ATCase) which lacks the homotropic co-operative interactions between the catalytic sites. The results obtained (enzyme kinetics, bisubstrate analog influence and pH studies) show that the R1-C4 interaction is essential for the establishment of the enzyme conformation that has a low affinity for aspartate (T state), and consequently for the existence of co-operativity between the catalytic sites. This interaction involves the 236-250 region of the aspartate binding domain of the catalytic chain (240s loop) and the 143-149 region of the regulatory chain which comprises helix H3'.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号