首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fast-sedimenting forms of bacteriophage phiX174 double-stranded replicative-form DNA observed in normal infections continued to accumulate at the nonpermissive temperature in a temperature-sensitive dnaC mutant of Escherichia coli. These complex molecules accounted for up to half of the DNA synthesized during short pulses at the nonpermissive temperature. They were the dead-end products of DNA synthesis, not intermediates in normal replicative-form replication. The data suggest that these higher-than-normal-molecular-weight DNA molecules result from abnormal initiation of phiX174 replicative-form DNA replication.  相似文献   

2.
Viral and complementary strand circular DNA molecules were isolated from intracellular bacteriophage f1 replicative-form DNA. Soluble protein extracts of Escherichia coli were used to examine the initiation of DNA synthesis on these DNA templates. The initiation of DNA synthesis on f1 viral strand DNA was catalyzed by E. coli DNA-dependent RNA polymerase, as was initiation of f1 viral strand DNA isolated from mature phage particles. The site of initiation was the same as that used in vivo. In contrast, no de novo initiation of DNA synthesis was detected on f1 complementary strand DNA. Control experiments demonstrated that the E. coli dnaB, dnaC, and dnaG initiation proteins were active under the conditions employed. The results suggest that the viral strand of the f1 replicative-form DNA molecule carries the same DNA synthesis initiation site as the viral strand packaged in mature phage, whereas the complementary strand of the replicative-form DNA molecule carries no site for de novo primer synthesis. These in vitro observations are consistent with the simple rolling circle model for f1 DNA replication in vivo proposed by Horiuchi and Zinder.  相似文献   

3.
Crude extracts of Escherichia coli selectively convert fd viral DNA and not phiX174 DNA to duplex DNA via a complex series of reactions one of which involves RNA polymerase. Reactions leading to formation of fd duplex-replicative (RFII) structures have been reconstituted with purified proteins from E. coli. Maximal synthesis requires the combined action of E. coli binding protein, DNA elongation factor I, DNA elongation factor II preparations (which are a mixture of dna Z and DNA elongation factor III), DNA polymerase III, DNA-dependent RNA polymerase, Mg2+, dATP, dGTP, dCTP, dTTP, and ATP, GTP, CTP, and UTP. In contrast to crude extracts of E. coli, purified protein fractions do not distinguish between fd DNA and phiX174 DNA in duplex DNA formation. The addition of crude fractions of E. coli to the purified components listed above selectively permits fd RFII formation and prevents phiX RFII formation. This selective inhibition was used as an assay to isolate proteins essential for this phenomenon; they include RNase H, discriminatory factor alpha, and discriminatory factor beta.  相似文献   

4.
A functional dnaZ product, known to be essential for host DNA polymerization and for the synthesis of M13 and phiX174 parental replicative-form (RF) DNA, is required also for RF replication and single-strand synthesis by both of these phages. All three stages of M13 and phiX174DNA replication (parental RF formation, RF replication, and single-strand synthesis) are inhibited in dnazts mutants at elevated temperatures. In addition, the thermolabile step in M13 parental RF formation appears to occur after RNA priming;i.e., the synthesis of M13 RF DNA proceeded when a dnaZts mutant, infected at a nonpermissive temperature, was transferred to a permissive temperature in the presence of rifampin.  相似文献   

5.
We asked if phiX174 single-stranded DNA synthesis could reinitiate at the nonpermissive temperature in dnaB and dnaC temperature-sensitive host mutants. The rates of single-stranded DNA synthesis were measured after the removal of chlorampheicol that had been added at various times after infection to specifically stop this stage of phiX174 DNA synthesis. Reinitiation was not defective in either mutant host. Our data suggested that the reinitiation of the single-stranded stage of phiX174 DNA synthesis in these experiments was analogous to the normal initiation of this stage of phiX174 DNA synthesis in infections without chloramphenicol. Assuming this to be the case, we conclude that the host cell dnaB and dnaC proteins are not essential for the normal initiation of the single-stranded synthesis stage of phiX174 DNA synthesis. In related experiments we observed that in the dnaC mutant host at the permissive temperature, phiX174 replicative form DNA synthesis continued at its initial rate even during the single-stranded DNA synthesis stage. This indicates that these two stages of phiX174 DNA synthesis are not necessarily mutually exclusive.  相似文献   

6.
7.
The phage P22 gene 12 protein was found to be like the Escherichia coli dnaB protein in that it stimulated phiX174 DNA synthesis in heat-inactivated extracts of dnaB temperature-sensitive cells (see preceding paper, Wickner, S. (1984) J. Biol. Chem. 259, 14038-14043). phiX174 replication catalyzed by the purified P22 12 protein also by-passed the normal requirement for dnaC protein. However, synthesis still required dnaG primase and the DNA polymerase III holoenzyme components. This DNA synthesis reaction has been reconstituted with purified proteins and found to require P22 12 protein, dnaG protein, DNA polymerase III holoenzyme components, 4 dNTPs, Mg2+, any one of ATP, GTP, UTP, or CTP and single-stranded DNA. The reaction has been dissected into partial reactions: (a) in a prepriming reaction, P22 12 protein binds to single-stranded DNA in an ATP-dependent reaction (Wickner, S. (1984) J. Biol. Chem. 259, 14038-14043); (b) in a priming reaction requiring at least one rNTP and the other dNTPs or rNTPs, dnaG primase catalyzes oligonucleotide synthesis dependent on the P22 12 protein-DNA complex; (c) finally, DNA polymerase III holoenzyme components catalyze DNA elongation of the primer.  相似文献   

8.
We have directly tested the effects of host cell DNA synthesis mutations on bacteriophage phiK replicative-form (RF) DNA replication in vivo. We observed that phiK RF DNA replication continued at normal rates in both dnaB and dnaC mutant hosts under conditions in which the activities of the dnaB and dnaC gene products were shown to be markedly reduced. This suggests that these two host proteins are not essential for normal phiK RF DNA replication. In control experiments we observed markedly reduced rates of phiK RF DNA replication in temperature-sensitive dnaG and dnaE host mutants, indicating that the products of these genes are essential. Thus, the mechanism of DNA chain initiation in vivo on the duplex RF DNA templates of isometric phages such as phiK apparently is different from that on the similar templates of isometric phages such as phiX174. The implications of this difference are discussed in the text.  相似文献   

9.
Protein n' of Escherichia coli is required for formation of the prepriming complex in replication of the single-stranded circle of phiX174 DNA. The protein, purified to near homogeneity, possesses ATPase (dATPase) activity in the presence of single-stranded, but not duplex, DNAs. Except for phiX174 DNA, ATPase activity is completely suppressed by coating the DNA with single strand binding protein (SSB). phiX174 DNA possesses a unique sequence with a potential hairpin structure that is recognized as an effector (Shlomai, J., and Kornberg, A. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 799-803). Sequences with secondary structure in SSB-coated M13 DNA which are recognized by RNA polymerase, and in coated G4 DNA by primase, are inert for protein n'. Approximately 30 of the 180 molecules of SSB bound to phiX DNA are destabilized by protein n' in an ATP-dependent reaction. These actions by protein n' may be important in recognizing an origin for forming the prepriming complex that leads to initiation of phiX complementary strand synthesis.  相似文献   

10.
Bacteriophage phiX174 cannot grow in a temperature-sensitive dnaE (DNA polymerase III) mutant of Escherichia coli C at the nonpermissive temperature. The inability to grow is the result of inhibition of virus DNA synthesis. The synthesis of the parental replicative form is unaffected, but the replication of the replicative form and the synthesis of the single-stranded virus DNA are inhibited.  相似文献   

11.
In the presence of RNA polymerase, RNase H, discriminatory factors alpha and beta, Escherichia coli binding protein, DNA elongation factor I, DNA elongation factor II preparation, DNA polymerase III, and ATP, UTP, GTP, CTP, dATP, dTTP, dGTP, and dCTP, fd viral DNA can be quantitatively converted to RFII containing a unique gap in the linear minus strand. This gap, mapped with the aid of restriction endonucleases HinII and HpaII, is located within Fragment Hpa-H of the fd genome. The discrimination reaction has been resolved into two steps: Step A, fd viral DNA, E. coli binding protein, and discriminatory factors alpha and beta form a protein DNA complex; Step B, the complex isolated by agarose gel filtration selectively forms fd RFII when supplemented with RNase H, RNA polymerase, and the DNA elongation proteins. The omission of any of the proteins described above during the first reaction resulted in either no discrimination or a decrease in discrimination when the missing protein was added during the second step. Results are presented which indicate that E. coli binding protein, discriminatory factors alpha and beta, and RNase H must be present during the time RNA synthesis occurs in order to selectively form RFII from fd DNA and not phiX RFII. The amount of fd and phiX174 RNA-DNA hybrid formed in vitro is directly related to the DNA synthesis observed. Thus, under discriminatory conditions, only fd viral DNA leads to fd RNA-DNA complexes and no phiX RNA-DNA hybrid is formed. Under nondiscriminatory conditions, both DNAs yield RNA-DNA hybrids and DNA synthesis. In the absence of discriminatory factor alpha, no RNA-DNA hybrid is formed with either DNA, and in turn, no DNA synthesis is detected with either DNA template.  相似文献   

12.
Bacteriophage phiX174 cannot grow in a temperature-sensitive dnaC mutant of Escherichia coli C at the nonpermissive temperature. The inability to grow is the result of inhibition of virus DNA synthesis. Parental replicative form synthesis is not temperature sensitive. Single-stranded virus DNA continues to be synthesized for at least 45 min after shifting to the nonpermissive temperature late in infection. In contrast, the replication of the replicative form terminates within 5 min after shifting to the nonpermissive temperature.  相似文献   

13.
Protein n', an enzyme essential for in vitro conversion of single-stranded phiX174 DNA to the duplex replicative form, has been purified about 16,000-fold from Escherichia coli. The enzyme is a single polypeptide chain with a native molecular weight of 76,000; about 70 enzyme molecules are present in an E. coli cell. Nearly homogeneous preparations display an ATPase (dATPase) activity which depends on a unique sequence in the phiX174 DNA. Replicative activity of n' protein and its phiX174 DNA-dependent ATPase activity were present in a constant ratio during the latter stages of purification, upon sedimentation in a glycerol gradient, and during heat inactivation. Further studies of the properties of protein n' are presented in a succeeding paper.  相似文献   

14.
15.
Bacteriophage phiX174 DNA was labeled in vivo with [methyl-(3)H]methionine. The methyl-labeled progeny DNA was extracted from purified bacteriophage phiX174 particles and was used as template for in vitro synthesis of the complementary strand in the presence of the nucleoside triphosphates and Escherichia coli polymerase I. The resultant replicative form DNA was then cleaved, in separate experiments, with restriction endonucleases from Haemophilus influenzae and H. aegyptius. The DNA fragments were analyzed by polyacrylamide gel electrophoresis. It is concluded that the single methylcytosine in the viral DNA is located in a specific region of the phiX174 genome, very likely in gene H.  相似文献   

16.
Escherichia coli NY73, possessing a temperature-sensitive mutation in the dnaG locus, was rendered sensitive to bacteriophage phiX174 by P1 transduction. phiX174 reproduces in this strain at 30 C but not at 40 C. All three stages of phiX174 replication, parental replicative form (RF) synthesis, RF replication, and progeny single-stranded DNA synthesis, are thermolabile in this mutant. Competition-annealing data show that both plus- and minus-strand synthesis are equally inhibited after shift up to 40 C during RF replication. We conclude that the dnaG gene product is required for the synthesis of both strands of phiX RF during RF replication and of the complementary strand and viral progeny strands during stages I and III, respectively.  相似文献   

17.
Escherichia coli strains lacking PriA are severely compromised in their ability to repair UV-damaged DNA and to perform homologous recombination. These phenotypes arise because of a lack of PriA-directed replication fork assembly at recombination intermediates such as D-loops. Naturally arising suppressor mutations in dnaC restore strains carrying the priA2::kan null allele to wild-type function. We have cloned one such gene, dnaC810, and overexpressed, purified, and characterized the DnaC810 protein. DnaC810 can support a PriA-independent synthesis of phiX174 complementary strand DNA. This can be attributed to its ability, unlike wild-type DnaC, to catalyze a SSB-insensitive general priming reaction with DnaB and DnaG on any SSB-coated single-stranded DNA. Gel mobility shift analysis revealed that DnaC810 could load DnaB directly to SSB-coated single-stranded DNA as well as to D loop DNA. This explains the ability of DnaC810 to bypass the requirement for PriA, PriB, PriC, and DnaT during replication fork assembly at recombination intermediates.  相似文献   

18.
Host functions required for replication of microvirid phage G13 DNA were investigated in vivo, using thermosensitive dna mutants of Escherichia coli. In dna+ bacteria, conversion of viral single-stranded DNA into double-stranded replicative form (stage I synthesis) was resistant to 150 microgram/ml of chloramphenicol or 200 microgram/ml of rifampicin. Although multiplication of G13 phage was severely inhibited at 42--43 degrees C even in dna+ host, considerable amount of parental replicative form was synthesized at 43 degrees C in dna+, dnaA or dnaE bacteria. In dnaB and dnaG mutants, however, synthesis of parental replicative form was severely inhibited at the restrictive temperature. Interestingly enough, stage I replication of G13 DNA was, unlike that of phiX174, dependent on host dnaC(D) function. Moreover, the stage I synthesis of G13 DNA in dnaZ was thermosensitive in nutrient broth but not in Tris/casamino acids/glucose medium. In contrast with the stage I replication, synthesis of G13 progeny replicative form was remarkably thermosensitive even in dna+ or dnA cells.  相似文献   

19.
?X174 DNA synthesis as well as phage production was inhibited by rifampicin when added in early phase of infection. Rifampicin did not inhibit the formation of parental duplex replicative-form, RF, and it inhibited the synthesis of progeny RF under conditions where protein synthesis was not necessary to be synthesized continuously. In addition, replication of parental RF into progeny RF was inhibited by rifampicin under conditions where a high concentration of chloramphenicol did not affect the replication. Consequently, it could be concluded that RNA synthesis other than that required for protein synthesis was necessary for both the initiation and continuation of RF replication.  相似文献   

20.
Evidence from various sources in the literature suggests that, in connection with DNA, ATP dephosphorylation can be used to provide energy for mechanical effects. Starting from this concept we have studied a novel DNA-dependent ATPase purified to 90% homogeneity from Escherichia coli. The enzyme has a peptide weight near 180 000 and, in high salt, is a monomeric, probably highly anisometric molecule. In salt-free buffer, where the ATPase activity is highest, the enzyme forms aggregates. ATP is the preferred substrate (Km 0.27 mM) and dephosphorylated at the gamma-position at a maximal rate near 10(4) molecules per enzyme monomer per min at 35 degrees C. A requirement for divalent cation is best satisfied by Mg2+ or Ca2+ and the requirement for DNA best by the single-stranded, circular DNA of phages phiX174 (Km 62 nM nucleotide) and fd indicating that the enzyme recognizes internal DNA regions. When saturated with E. coli DNA unwinding protein phiX DNA is not accepted but, once in contact with the DNA, the enzyme is little inhibited by unwinding protein. Apparently the unwinding protein interferes preferentially with the recognition of DNA. The enzyme does not detectably cleave DNA, and for this and genetic reasons is not identical with the recBC ATPase or the K12 restriction ATPase of the extracted cells. The enzyme is probably not identical either with the dnaB-product-associated ATPase or the ATPase activity found in DNA polymerase III holoenzyme under appropriate conditions, and it is certainly not identical with a DNA-dependent ATPase of molecular weight 69 000 from E. coli which has recently been purified. Attempts to ascribe the enzyme to other genes, including recA, lex and rep, have failed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号