首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of radiation on the drug-metabolizing enzyme system of microsomes, reconstituted with liposomes of microsomal phospholipids, NADPH-cytochrome P-450 reductase and cytochrome P-450, was examined to elucidate the role of lipid peroxidation of membranes in radiation-induced damage to membrane-bound enzymes. The reconstituted system of non-irradiated enzymes with irradiated liposomes showed a low activity of hexobarbital hydroxylation, whereas irradiated enzymes combined with non-irradiated liposomes exhibited an activity equal to that of unirradiated controls. Irradiation of liposomes caused a decrease in cytochrome P-450 content by destruction of the haem of cytochrome P-450 and also inhibited the binding capacity of cytochrome P-450 for hexobarbital. The relationship between radiation-induced lipid peroxidation and membrane-bound enzymes is discussed.  相似文献   

2.
Preincubation of mouse liver microsomes with NADPH resulted in malondialdehyde formation, destruction of cytochrome P-450, and decreased rates of aniline hydroxylation and N-demethylation of aminopyrine and ethylmorphine. These phenomena were more pronounced in phosphate than in Tris buffer. No reduction in rates of NADPH-linked oxidation of ethanol or in the activities of NADPH oxidase and NADPH-cytochrome c reductase was observed. While addition of EDTA to preincubation mixtures prevented lipid peroxidation, loss of cytochrome P-450, and inactivation of the drug-metabolizing capacity of microsomes, it did not alter ethanol oxidation rates and the activities of NADPH oxidase and NADPH-cytochrome c reductase. These findings argue against the involvement of cytochrome P-450 in the microsomal ethanol-oxidizing system.  相似文献   

3.
Dehydroepiandrosterone (DHEA), a lipid soluble steroid, administered to rats (100 mg/kg b.wt) by a single intraperitoneal injection, increases to twice its normal level in the liver microsomes. Microsomes so enriched become resistant to lipid peroxidation induced by incubation with carbon tetrachloride in the presence of a NADPH-regenerating system: also the lipid peroxidation-dependent inactivation of glucose-6-phosphatase and gamma-glutamyl transpetidase due to the haloalkane are prevented. Noteworthy, the liver microsomal drug-metabolizing enzymes and in particular the catalytic activity of cytochrome P450IIE1, responsible for the CCl4-activation, are not impaired by the supplementation with the steroid. Consistently, in DHEA-pretreated microsomes the protein covalent binding of the trichloromethyl radical (CCl3°), is similar to that of not supplemented microsomes treated with CCl4. It thus seems likely that DHEA protects liver microsomes from oxidative damage induced by carbon tetrachloride through its own antioxidant properties rather than inhibiting the metabolism of the toxin.  相似文献   

4.
Incubation of guinea pig adrenal microsomes with 10?6 M ferrous (Fe2+) ion and adrenal cytosol initiated high levels of lipid peroxidation as measured by the production of malonaldehyde. Cytosol or Fe2+ alone had little effect on microsomal malonaldehyde formation. When microsomes were incubated in the presence of Fe2+ and cytosol, malonaldehyde levels continued to increase for at least 60 min. Accompanying the lipid peroxidation was a decline in adrenal microsomal monooxygenase activities. The rates of metabolism of xenobiotics (benzphetamine demethylase, benzo[α]pyrene hydroxylase) as well as steroids (21-hydroxylation) decreased as malonaldehyde levels increased. In addition, cytochrome P-450 levels, NADPH- and NADH-cytochrome c reductase activities, and substrate interactions with cytochrome(s) P-450 decreased as lipid peroxidation progressed. Inhibition of lipid peroxidation by increasing microsomal protein concentrations during the incubation period prevented the changes in microsomal metabolism. Malonaldehyde had no direct effects on adrenal microsomal enzyme activities. The results indicate that lipid peroxidation may have significant effects on adrenocortical function, diminishing the capacity for both xenobiotic and steroid metabolism.  相似文献   

5.
Rabbit antisera were prepared against cytochrome b5 and NADPH-cytochrome c reductase [EC 1.6.2.4] purified from rat liver microsomes, and utilized in examining the distribution of these and other membrane-bound enzymes among the vesicles of rat liver microsomal preparations by immunoprecipitation and immunoadsorption methods. Smooth microsomes with an average vesicular size of 200 nm (diameter) and sonicated smooth microsomes with an average diameter of 40-60 nm were used in subfractionation experiments. Immunoprecipitation of microsomal vesicles with anti-cytochrome b5 immunoglobulin failed to show any separation of the microsomes into fractions having different enzyme compositions. Cytochrome b5 was apparently distributed among all vesicles even when sonicated microsomes were used. When the antibody against NADPH-cytochrome c reductase was used, however, immunoadsorption of microsomes on Sepharose-bound antibody produced some separation of NADPH-cytochrome c reductase and cytochrome P-450 from NADH-cytochrome b5 reductase and cytochrome b5. The separation was more pronounced when sonicated microsomes were used. These results indicate microheterogeneity of the microsomal membrane, and suggest the clustering of NADPH-cytochrome c reductase and cytochrome P-450 molecules in the membrane.  相似文献   

6.
The activities of the drug-metabolizing enzymes, aniline 4-hydroxylase, benzphetamine N-demethylase and 7-ethoxycoumarin O-deethylase have been measured in vitro in kidneys and duodenum of camels (Camelus dromedarius), guinea pigs (Cavia porcellus) and rats (Rattus norvegicus). In these species, levels of hepatic microsomal parameters namely microsomal protein, cytochrome P(450), cytochrome b(5) and NADPH-cytochrome c reductase have also been determined. In general, camels seemed to have the lowest enzyme activity when compared to rats and guinea pigs. Rats showed the highest activity in NADPH-cytochrome c reductase, aniline 4-hydroxylase and ethoxycoumarin O-deethylase among these species. However, guinea pigs showed the highest enzyme activity in cytochrome P(450), cytochrome b(5) and benzphetamine N-demethylase.  相似文献   

7.
《Free radical research》2013,47(6):427-435
Dehydroepiandrosterone (DHEA), a lipid soluble steroid, administered to rats (100 mg/kg b.wt) by a single intraperitoneal injection, increases to twice its normal level in the liver microsomes. Microsomes so enriched become resistant to lipid peroxidation induced by incubation with carbon tetrachloride in the presence of a NADPH-regenerating system: also the lipid peroxidation-dependent inactivation of glucose-6-phosphatase and gamma-glutamyl transpetidase due to the haloalkane are prevented. Noteworthy, the liver microsomal drug-metabolizing enzymes and in particular the catalytic activity of cytochrome P450IIE1, responsible for the CCl4-activation, are not impaired by the supplementation with the steroid. Consistently, in DHEA-pretreated microsomes the protein covalent binding of the trichloromethyl radical (CCl3°), is similar to that of not supplemented microsomes treated with CCl4. It thus seems likely that DHEA protects liver microsomes from oxidative damage induced by carbon tetrachloride through its own antioxidant properties rather than inhibiting the metabolism of the toxin.  相似文献   

8.
1. A comparison was made between rat hepatic and plant microsomal cytochrome P-450 and cytochrome P-450 linked enzymic activities. 2. The results show that, compared with plant microsomes, rat hepatic microsomal protein concentrations were 165-fold higher, and rat hepatic cytochrome P-450 concentration were 32-fold higher. 3. Rat hepatic Cytochrome P-450 linked enzyme activities were 1765-fold and 25-fold greater when compared with plant microsomes using aldrin and biphenyl as substrates, respectively. 4. Rats metabolised biphenyl to 2- and 4-hydroxybiphenyl, whereas plants produced only the latter metabolite. 5. Pretreatment of rats and plant tissues with biphenyl, Aroclor 1248 and the sodium salt of phenobarbital increased significantly the microsomal protein concentrations, and enzyme activities linked to cytochrome P-450. 6. Unlike rat microsomes, those of plants were unable to metabolise halosubstituted biphenyls at measurable rates.  相似文献   

9.
The effect of dietary supplementation of spice-active principles, curcumin (0.2%), capsaicin (0.015%), and piperine (0.02%) on the activities of the liver drug-metabolizing enzyme system was examined. All the 3 dietary spice principles significantly stimulated the activity of aryl hydroxylase. A synergistic action of dietary curcumin and capsaicin with respect to stimulating the activity of aryl hydroxylase was also evidenced when fed in combination. The activity of N-demethylase essentially remained unaffected by dietary curcumin, capsaicin, or their combination, but was significantly lowered as a result of piperine feeding. Uridine dinucleotide phosphate (UDP)-glucuronyl transferase activity was decreased by dietary piperine and the combination of curcumin and capsaicin. NADPH-cytochrome c reductase activity was significantly decreased by dietary piperine. The levels of hepatic microsomal cytochrome P450 and cytochrome b5 were not influenced by any of the dietary spice-active principles. These spice-active principles were also examined for their possible in vitro influence on the components of the hepatic drug-metabolizing enzyme system in rat liver microsomal preparation. Piperine significantly decreased the activity of liver microsomal aryl hydroxylase activity when included in the assay medium at 1 x 10(-6) mol/L, 1 x 10(-5) mol/L, and 1x 10(-4) mol/L level. Lowered activity of N-demethylase was observed in presence of capsaicin or piperine at 1 x 10(-6) mol/L in the assay medium. Hepatic microsomal glucuronyl transferase activity was significantly decreased in vitro by addition of capsaicin or piperine. Capsaicin and piperine brought about significant decrease in liver microsomal cytochrome P450 when included at 1 x 10(-6) mol/L and 1 x 10(-5) mol/L, the effect being much higher in the case of piperine. The results suggested that whereas the 3 spice principles have considerable similarity in structure, piperine is exceptional in its influence on the liver drug-metabolizing enzyme system. The study also indicated that a combination of curcumin and capsaicin does not produce any significant additive effect on the liver drug-metabolizing enzyme system.  相似文献   

10.
The effects of freezing of microsomes in liquid nitrogen and those of storage of microsomal suspensions at 2-4 degrees C and -3 - -5 degrees C for 24 hrs, on the enzymatic activities and hydrophobicity of membranes were studied. The hydrophobicity was determined by fluorescence of bound 1,8-anilino-naphthalene sulfonate. Rapid freezing of the microsomal suspension in liquid nitrogen followed by rapid warming did not change the hydrophobicity of the membranes, the rate of enzymatic lipid peroxidation, the level of cytochrome P-450 and the activity of NADH- and NADPH-cytochrome c reductase. A considerable decrease in the rate of enzymatic lipid peroxidation and membrane hydrophobicity was observed in the microsomes stored for 24 hrs at 2-4 degrees C. The 24-hr storage at -3 - -5 degrees C with subsequent thawing resulted in a rapid aggregation of the microsomes.  相似文献   

11.
The effects of lipid peroxidation on latent microsomal enzyme activities were examined in NADPH-reduced microsomes from phenobarbital-pretreated male rats. Lipid peroxidation, stimulated by iron or carbon tetrachloride, was assayed as malondialdehyde formation. Independent of the stimulating agent of lipid peroxidation, latency of microsomal nucleoside diphosphatase activity remained unaffected up to microsomal peroxidation equivalent to the formation of about 12 nmol malondialdehyde/mg microsomal protein. However, above this threshold a close correlation was found between lipid peroxidation and loss of latent enzyme activity. The loss of latency evoked by lipid peroxidation was comparable to the loss of latency attainable by disrupting the microsomal membrane by detergent. Loss of latent enzyme activity produced by lipid peroxidation was also observed for microsomal glucose-6-phosphatase and UDPglucuronyltransferase. In contrast to nucleoside diphosphatase, however, both enzymes were inactivated by lipid peroxidation, as indicated by pronounced decreases of their activities in detergent-treated microsomes. According to the respective optimal oxygen partial pressure (po2) for lipid peroxidation, the iron-mediated effects on enzyme activities were maximal at a po2 of 80 mmHg and the one mediated by carbon tetrachloride at a po2 of 5 mmHg. Under anaerobic conditions no alterations of enzyme activities were detected. These results demonstrate that loss of microsomal latency only occurs when peroxidation of the microsomal membrane has reached a certain extent, and that beyond this threshold lipid peroxidation leads to severe disintegration of the microsomal membrane resulting in a loss of its selective permeability, a damage which should be of pathological consequences for the liver cell. Because of its resistance against lipid peroxidation nucleoside diphosphatase is a well-suited intrinsic microsomal parameter to estimate this effect of lipid peroxidation on the microsomal membrane.  相似文献   

12.
1. The effects of unsaturated fatty acids on drug-metabolizing enzymes in vitro were measured by using rat and rabbit hepatic 9000g supernatant fractions. 2. Unsaturated fatty acids inhibited the hepatic microsomal metabolism of ;type I' drugs with inhibition increasing with unsaturation: arachidonic acid>linolenic acid>linoleic acid>oleic acid. Inhibition was independent of lipid peroxidation. Linoleic acid competitively inhibited the microsomal O-demethylation of p-nitroanisole and the N-demethylation of (+)-benzphetamine. 3. The hepatic microsomal metabolism of ;type II' substrates, aniline and (-)-amphetamine, was not affected by unsaturated fatty acids. 4. The rate of reduction of p-nitrobenzoic acid and Neoprontosil was accelerated by unsaturated fatty acids. 5. Linoleic acid up to 3.5mm did not decelerate the generation of NADPH by rat liver soluble fraction, nor the activity of NADPH-cytochrome c reductase of rat liver microsomes. Hepatic microsomal NADPH oxidase activity was slightly enhanced by added linoleic acid. 6. No measurable disappearance of exogenously added linoleic acid occurred when this fatty acid was incubated with rat liver microsomes and an NADPH source. 7. The unsaturated fatty acids used in this study produced type I spectra when added to rat liver microsomes, and affected several microsomal enzyme activities in a manner characteristic of type I ligands.  相似文献   

13.
Hydroxylation of dimethylaniline in rabbit liver microsomes is accompanied by inactivation of cytochrome P-450 and the formation of products inhibiting the catalytic activity of non-inactivated cytochrome P-450. Other enzymes and electron carriers of microsomal membrane (cytochrome b5, NADH-ferricyanide reductase, NADPH-cytochrome c and NADPH-cytochrome P-450 reductases) as well as glucose-6-phosphatase were not inactivated in the course of the monooxygenase reactions. Phospholipids and microsomal membrane proteins were also unaffected thereby. Consequently, the changes in the microsomal membrane during cytochrome P-450 dependent monooxygenase system functioning are confined to the inactivation of cytochrome P-450.  相似文献   

14.
Outer mitochondrial membrane cytochrome b5 is an isoform of microsomal membrane cytochrome b5. In rat testes the outer mitochondrial membrane cytochrome b5 is present in both mitochondria and microsomes, whereas microsomal membrane cytochrome b5 is undetectable. Outer mitochondrial membrane cytochrome b5 present in the testis was localized in Leydig cells with cytochrome P-45017alpha, which catalyzes androgenesis therein. We therefore analyzed the functions of outer mitochondrial membrane cytochrome b5 in rat testis microsomes by using a proteoliposome system. In a low but physiological concentration of NADPH-cytochrome P-450 reductase and excess amount of progesterone, outer mitochondrial membrane cytochrome b5 stimulated the cytochrome P-45017alpha-catalyzed reactions, 17alpha-hydroxylation and C17-C20 bond cleavage. The effects were different from those by microsomal membrane cytochrome b5 as follows: preferential elevation of the 17alpha-hydroxylase activity by outer mitochondrial membrane cytochrome b5 in an amount-dependent manner versus that of the lyase activity by microsomal membrane cytochrome b5 at the low concentration, and the inhibition of both activities at the high concentration. At a low concentration of progesterone reflecting a physiological cholesterol supply, outer mitochondrial membrane cytochrome b5 elevated primarily the production of 17alpha-hydroxyprogesterone and then facilitated the conversion of the released intermediate to androstenedione. Thus, we demonstrated that outer mitochondrial membrane cytochrome b5 and not microsomal membrane cytochrome b5 functions as an activator for androgenesis in rat Leydig cells.  相似文献   

15.
The effects of cobaltic protoporphyrin IX (CPP) administration on hepatic microsomal drug metabolism, carbon tetrachloride activation and lipid peroxidation have been investigated using male Wistar rats. CPP (125 mumol/kg, 72 h before sacrifice) profoundly decreased the levels of hepatic microsomal heme, particularly cytochrome P-450. Consequently, the associated mixed-function oxidase systems were equally strongly depressed. An unexpected finding was that CPP administration also greatly decreased the activity of NADPH/cytochrome c reductase, a result not generally found with the administration of the more widely used cytochrome P-450 depleting agents, cobaltous chloride. Activation of carbon tetrachloride, measured as covalent binding of [14C] CCl4, spin-trapping of CCl3 and CCl4-stimulated lipid peroxidation, was much lower in liver microsomes from CPP-treated rats. Other microsomal lipid peroxidation systems, utilising cumene hydroperoxide or NADPH/ADP-Fe2+, were also depressed in parallel with the decrease in microsomal enzyme activities.  相似文献   

16.
The effects of two classical inducers, phenobarbital and 3-methylcholanthrene, have been tested on some liver microsomal drug-metabolizing enzymes (monooxygenases and phase II enzymes) and on benzo(a)pyrene metabolism in genetically (ob/ob) and chemically (streptozotocin) diabetic mice. 1) In ob/ob mice, the basal activities and the inducibility of phase I and phase II enzymes, as well as the electrophoretic pattern of microsomal proteins, were not notably different from those of similarly treated lean mice. 2) A possibly common form of cytochrome P 450 present both in microsomes from steptozotocin-diabetic non-induced mice and in those from phenobarbital-treated non-diabetic mice could explain the increased "phenobarbital-like" enzyme activities in chemically diabetic animals. 3) The increase of monooxygenase activities produced by streptozotocin treatment is partially depressed by 3-methylcholanthrene, probably as a result of the dilution of "phenobarbital-like" cytochrome P 450 forms by 3-methylcholanthrene-induced cytochrome P 448. 4) The increased formation of the most carcinogenic metabolites of benzo(a)pyrene, and the slight decrease of phase II conjugation enzyme activities, may add their deleterious effects in 3-methylcholanthrene-induced streptozotocin-diabetic animals.  相似文献   

17.
If rat liver microsomes are incubated with NADPH and 2-hydroxyestradiol-17beta in vitro, the following is observed: 1.Inhibition of lipid peroxidation, 2.inhibition of cytochrome P-450 reduction, and 3.inhibition of cytochrome b5 reduction. Beyond this the catechole inhibits lipid peroxidation of liposomes in vitro. These phenomena can be explained by interaction of different states of oxidation of the estrogen with the NADPH-cytochrome reductase and with 0-2 radicals, which leads to terminal "uncoupling" of microsomal electron transport.  相似文献   

18.
The membrane-bound enzyme of microsomes that catalyzes NADPH-dependent reduction of the 14-double bond of conjugated delta 8,14- and delta 7,14-sterols has been studied both as collected in microsomes from broken cell preparations of rat liver and after solubilization. Optimal incubation conditions for assay of the membrane-bound enzyme have been determined, and properties of the microsomal enzyme have been established with respect to cofactor requirements, kinetics, pH, addition of inhibitors, addition of glycerol phosphatides, and sterol substrate specificity. The 14-reductase is readily solubilized with a mixture of octylglucoside and taurodeoxycholic acid. The solubilized enzyme has been enriched by precipitation with polyethylene glycol and chromatography on DEAE-Sephacel and hydroxylapatite columns. The resulting partially purified enzyme has been obtained free of other microsomal enzymes of cholesterol biosynthesis: 4-methyl sterol oxidase, delta 5,7-sterol 7-reductase, delta 8,24-sterol 24-reductase, 3-ketosteroid reductase, and steroid 8----7-ene isomerase, plus microsomal cytochrome P-450, cytochrome P-450 reductase, cytochrome b5 reductase, and cytochrome b5. The partially purified enzyme is stimulated by addition of phospholipids. All of the properties exhibited by partially purified 14-reductase are consistent with the suggestion that the solubilized and enriched enzyme catalyzes the microsomal reduction of the 14-double bond of the sterol-conjugated dienes. However, presence of the enzyme does not prove that the sterol-conjugated dienes are obligatory precursors of cholesterol.  相似文献   

19.
Gestational and postnatal changes of microsomal NADH:cytochrome b5 reductase and NADPH:cytochrome c reductase activities were examined in rat brain. The specific activity of NADH:cytochrome b5 reductase was high at 18-19 days of gestational age, decreased to a minimum at 4 to 6 days after birth and increased thereafter. An essentially similar developmental pattern was observed for the specific activity of NADPH:cytochrome c reductase. In contrast, the specific activities of these reductases in liver microsomes were low, did not display a peak during gestation and increased steadily to a maximum at 40-50 days after birth. The rate of incorporation of [2-14C]malonyl-CoA into palmitoyl-CoA in brain microsomes was found to be high in the foetus, sharply decreased to a minimum at the time of birth and increased thereafter. The activity of fatty acid elongation in liver microsomes was much less than that in brain during gestation and increased rapidly after birth to values at 50-60 days 20-fold greater than the foetal activity. NADH and NADPH were equally effective for brain microsomal fatty acid elongation. Regional distribution of cytochrome reductase activities and the activity of fatty acid elongation showed the lowest specific activity in cerebellum. These results suggest that brain microsomal electron transport may be correlated with the developmental alteration in fatty acid elongation.  相似文献   

20.
The activity of NADPH-cytochrome P-450 reductase in liver microsomes of 10- to 60-day-old rats was determined. Neither the half life time of cytochrome P-450 reduction nor the absolute amount of cytochrome P-450 reduced per time unit depend on age. Phenobarbital pretreatment enhances the reduction rate in all age groups. The addition of hexobarbital or ethylmorphine to microsomal suspension accelerates the reduction of cytochrome P-450 in some age groups only. Age differences corresponding to developmental changes in drug-metabolizing activities are not detectable. The NADPH-cytochrome P-450 reductase seems to be not responsible for the age dependence of drug metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号