首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
O-alpha-D-Galactopyranosyl-(1---4)-D-galactopyranose, C12H22O11, Mr = 342.30, crystallises in the orthorhombic space group P2(1)2(1)2(1), and has alpha = 5.826(1), b = 13.904(3), c = 17.772(4) A, Z = 4, and Dx = 1.579 g.cm-3. Intensity data were collected with a CAD4 diffractometer. The structure was solved by direct methods and refined to R = 0.063 and Rw = 0.084 for 2758 independent reflections. The glycosidic linkage is of the type 1-axial-4-axial with torsion angles phi O-5' (O-5'-C-1'-O-1'-C-4) = 98.1(2) degrees, psi C-3 (C-3-C-4-O-1'-C-1') = -81.9(3) degrees, phi H (H-1'-C-1'-O-1'-C-4) = -18 degrees, and psi H (H-4-C-4-O-1'-C-1') = 35 degrees. The conformation is stabilised by an O-3 . . . O-5' intramolecular hydrogen-bond with length 2.787(3) A and O-3-H . . . O-5' = 162 degrees. The glycosidic linkage causes a folding of the molecule with an angle of 117 degrees between the least-square planes through the pyranosidic rings. The crystal investigated contained 56(1)% of alpha- and 44(1)% of beta-galabiose as well as approximately 70% of the gauche-trans and approximately 30% of the trans-gauche conformers about the exocyclic C-5'-C-6' and C-5-C-6 bonds. The crystal packing is governed by hydrogen bonding that engages all oxygen atoms except the intramolecular acceptor O-5' and the glycosidic O-1' oxygen atoms.  相似文献   

2.
G I Birnbaum  P Lassota  D Shugar 《Biochemistry》1984,23(21):5048-5053
The three-dimensional structure of 8-chloroguanosine dihydrate was determined by X-ray crystallography. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), and the cell dimensions are a = 4.871 (1) A, b = 12.040 (1) A, and c = 24.506 (1) A. The structure was determined by direct methods, and least-squares refinement, which included all hydrogen atoms, converged at R = 0.031 for 1599 observed reflections. The conformation about the glycosidic bond is syn with chi CN = -131.1 degrees. The ribose ring has a C(2')-endo/C-(1')-exo (2T1) pucker, and the gauche+ conformation of the -CH2OH side chain is stabilized by an intramolecular O-(5')-H...N(3) hydrogen bond. Conformational analysis by means of 1H NMR spectroscopy showed that, in dimethyl sulfoxide, the sugar ring exhibits a marked preference for the C(2')-endo conformation (approximately 70%) and a conformation about the glycosidic bond predominantly syn (approximately 90%), hence similar to that in the solid state. However, the conformation of the exocyclic 5'-CH2OH group exhibits only a moderate preference for the gauche+ rotamer (approximately 40%), presumably due to the inability to form the intramolecular hydrogen bond to N(3) in a polar medium. The conformational features are examined in relation to the behavior of 8-substituted purine nucleosides in several enzymatic systems, with due account taken of the steric bulk and electronegativities of the 8-substituents.  相似文献   

3.
Conformational analysis of levanbiose by molecular mechanics.   总被引:1,自引:0,他引:1  
A relaxed conformational energy map for levanbiose, O-beta-D-fructofuranosyl-(2----6)-beta-D-fructofuranoside, was computed with the molecular mechanics program MM2(87). All torsion angles of the three linkage bonds were driven by 30 degrees increments while two primary alcohol groups were held at three staggered forms. The steric energy of all other parameters was optimized. The side groups were retained at the same relative positions on the two rings in this first part of the study so our results are directly applicable to the study of polymeric levan with identical repeating units. The low-energy dimers did not lead to viable polymers. The interresidue linkage torsion angles defined by C-6-O-2'-C-2'-C-1' (phi) and O-5-C-5-C-6-O-2' (omega) have minima at +60 degrees and -60 degrees, respectively, with accessible minima at other staggered forms. As observed in inulobiose, the preferred torsion angle at central linkage bond defined by C-5-C-6-O-2'-C-2' (psi) was antiperiplanar. An analysis of all conformations of staggered side groups showed that the C-1 and C-1' groups had little effect but the C-6' group showed a preference for chi-6'(O-5'-C-5'-C-6'-O-6') = -60 degrees. The fructofuranose rings were started at the low-energy 4(3)T conformation (angle of pseudorotation, phi 2 = 265 degrees) that was retained except when the linkage conformations created severe inter-residue conflict.  相似文献   

4.
The crystal structures of two nucleosides, 5-carbamoylmethyluridine (1) and 5-carboxymethyluridine (2), were determined from three-dimensional x-ray diffraction data, and refined to R = 0.036 and R = 0.047, respectively. Compound 1 is in the C3'-endo conformation with chi +5.2 degrees (anti), psiinfinity = +63.4 degrees and psialpha = +180.0 degrees (tt); 2 is in the C2'endo conformation with chi +49.4 degrees (anti), psiinfinity -60.5 degrees and psialpha +60.0 degrees (gg). For each derivative, the plane of the side chain substituent is skewed with respect to the plane of the nucleobase; for 1, the carboxamide group is on the same side of the uracil plane vis a vis the ribose ring; for 2, the carboxyl group is on the opposite side of this plane. No base pairing is observed for either structure. Incorporation of structure 1 into a 3'-stacked tRNA anticodon appears to place 08 within hydrogen bonding distance of the 02' hydroxyl of ribose 33, which may limit the ability of such a molecule of tRNA to "wobble".  相似文献   

5.
The crystal structure of beta-D-glucopyranosyl-(1-->4)-alpha-D-glucopyranose (alpha-cellobiose) in a complex with water and NaI was determined with Mo K(alpha) radiation at 150 K to R=0.027. The space group is P2(1) and unit cell dimensions are a=9.0188, b=12.2536, c=10.9016 A, beta=97.162 degrees. There are no direct hydrogen bonds among cellobiose molecules, and the usual intramolecular hydrogen bond between O-3 and O-5' is replaced by a bridge involving Na+, O-3, O-5', and O-6'. Both Na+ have sixfold coordination. One I(-) accepts six donor hydroxyl groups and three C-H***I(-) hydrogen bonds. The other accepts three hydroxyls, one Na+, and five C-H***I(-) hydrogen bonds. Linkage torsion angles phi(O-5) and psi(C-5) are -73.6 and -105.3 degrees, respectively (phi(H)=47.1 degrees and psi(H)=14.6 degrees ), probably induced by the Na+ bridge. This conformation is in a separate cluster in phi,psi space from most similar linkages. Both C-6-O-H and C-6'-O-H are gg, while the C-6'-O-H groups from molecules not in the cluster have gt conformations. Hybrid molecular mechanics/quantum mechanics calculations show <1.2 kcal/mol strain for any of the small-molecule structures. Extrapolation of the NaI cellobiose geometry to a cellulose molecule gives a left-handed helix with 2.9 residues per turn. The energy map and small-molecule crystal structures imply that cellulose helices having 2.5 and 3.0 residues per turn are left-handed.  相似文献   

6.
The cellulose model compound methyl 4-O-methyl-beta-D-glucopyranosyl-(1-->4)-beta-D-glucopyranoside (6) was synthesised in high overall yield from methyl beta-D-cellobioside. The compound was crystallised from methanol to give colourless prisms, and the crystal structure was determined. The monoclinic space group is P2(1) with Z=2 and unit cell parameters a=6.6060 (13), b=14.074 (3), c=9.3180 (19) A, beta=108.95(3) degrees. The structure was solved by direct methods and refined to R=0.0286 for 2528 reflections. Both glucopyranoses occur in the 4C(1) chair conformation with endocyclic bond angles in the range of standard values. The relative orientation of both units described by the interglycosidic torsional angles [phi (O-5' [bond] C-1' [bond] O-4 [bond] C-4) -89.1 degrees, Phi (C-1' [bond] O-4 [bond] C-4 [bond] C-5) -152.0 degrees] is responsible for the very flat shape of the molecule and is similar to those found in other cellodextrins. Different rotamers at the exocyclic hydroxymethyl group for both units are present. The hydroxymethyl group of the terminal glucose moiety displays a gauche-trans orientation, whereas the side chain of the reducing unit occurs in a gauche-gauche conformation. The solid state (13)C NMR spectrum of compound 6 exhibits all 14 carbon resonances. By using different cross polarisation times, the resonances of the two methyl groups and C-6 carbons can easily be distinguished. Distinct differences of the C-1 and C-4 chemical shifts in the solid and liquid states are found.  相似文献   

7.
The crystal and molecular structures of the antiviral compound 1-(2-hydroxyethoxymethyl)-1,2,4-triazole-5-carboxamide has been determined by the X-ray diffraction method. The space group is P2i/c, unit cell parameters a = 4,381, b = 18,679, c = 10,776 A, beta = 107,40 degrees, Z = 4. The structure was solved by the direct method and refined by a full-matrix least-squares procedure to R = 4.9%. Two planar groups of atoms can be distinguished in the molecule. The first group involves the atoms of triazole ring, C6, and C1', the second one contains C5, C6, O6 and N6 atoms. The angle between these planes is 5.6 degrees. The carboxyamide group is rotated by 180 degrees in comparison with this group in ribavirin. That is why the intramolecular hydrogen bond C1'-H1'. 1...O6 can form. Torsion angle O5'-C5'-C4'-O4' is 73.9 degrees and it corresponds to gauche-rotamer. The conformation about O4'-C4' bond is trans. The C1'-C4' bond is approximately perpendicular to the aglycone.  相似文献   

8.
The crystal structure of methyl 2,6-dichloro-2,6-dideoxy-3,4-O-isopropylidene-α-D-altropyranoside (1) has been determined by X-ray diffraction. The compound crystallizes in the orthorhombic system, space group P212121, with unit-cell dimensions a  7.932, b  8.133, and c  20.447 Å. The structure was solved by the heavy-atom method and refined by the least-squares technique to an R value of 0.047 by using 736 intensities measured on a diffractometer. The pyranoside ring is close to a skew-boat conformation, with C-2 and C-5 being maximally displaced from the least-squares plane through the remaining four atoms. The H-1H-2 dihedral angle of  158° is in agreement with the J1,2 value of 4.5 Hz. Thus the solid-state conformation appears to correspond with the conformation in solution. The dioxolane ring is in a twist form, with O-4 and, C-8 puckered on opposite sides of the plane of the other ring atoms. The pyranose-ring substituents are in equatorial and pseudoequatorial orientations. The hydrogen atoms at C-3 and C-4 are in a cis arrangement. The orientations of both the methoxyl group and the chloromethyl group with respect to the ring are gauche—trans. The exocyclic anomeric C-1O-1 bond-distance (1.39 Å) is the shortest CO bond in the structure. The intracyclic CO bonds are significantly different, C-1O-5 being less than C-5O-5.  相似文献   

9.
The crystal structure of lithium L-ascorbate dihydrate is triclinic, Pl; with a = 5.964(9), b = 5.299(9), c = 7.760(15) A; alpha = 100.82(9), beta = 109.78(9), gamma = 92.02(9) degrees. The plant fragment of the ascorbate anion is a part of the five-membered ring [C-1,C-2,C-3(O-3),C-4], and O-4 deviates by 0.053(2) A from this plane. Deprotonated O-3 is an acceptor of three hydrogen bonds, but does not interact with Li+. The coordination number of the Li+ is 5 and it is bonded to two water molecules and three hydroxyl oxygen atoms of two ascorbate anions: O-2 and the gauche O-5, 6 of the side chain.  相似文献   

10.
Crystals of 5-fluorouridine (5FUrd) have unit cell dimensions a = 7.716(1), b = 5.861(2), c = 13.041(1)A, alpha = gamma = 90 degrees, beta = 96.70 degrees (1), space group P2(1), Z = 2, rho obs = 1.56 gm/c.c and rho calc = 1574 gm/c.c The crystal structure was determined with diffractometric data and refined to a final reliability index of 0.042 for the observed 2205 reflections (I > or = 3sigma). The nucleoside has the anti conformation [chi = 53.1(4) degrees] with the furanose ring in the favorite C2'-endo conformation. The conformation across the sugar exocyclic bond is g+, with values of 49.1(4) and -69.3(4) degrees for phi(theta c) and phi (infinity) respectively. The pseudorotational amplitude tau(m) is 34.5 (2) with a phase angle of 171.6(4) degrees. The crystal structure is stabilized by a network of N-H...O and O-H...O involving the N3 of the uracil base and the sugar 03' and 02' as donors and the 02 and 04 of the uracil base and 03' oxygen as acceptors respectively. Fluorine is neither involved in the hydrogen bonding nor in the stacking interactions. Our studies of several 5-fluorinated nucleosides show the following preferred conformational features: 1) the most favored anti conformation for the nucleoside [chi varies from -20 to + 60 degrees] 2) an inverse correlation between the glycosyl bond distance and the chi angle 3) a wide variation of conformations of the sugar ranging froni C2'-endo through C3'-endo to C4'-exo 4) the preferred g+ across the exocyclic C4'-C5' bond and 5) no role for the fluorine atom in the hydrogen bonding or base stacking interactions.  相似文献   

11.
T P Singh  P Narula  V S Chauhan  P Kaur 《Biopolymers》1989,28(7):1287-1294
The peptide N-Boc-L-Gly-dehydro-Phe-NHCH3 was synthesized by the combination of N-Boc-L-Gly-dehydro-Phe azlactone and methylamine. The peptide crystallizes in orthorhombic space group P2(1)2(1)2(1) with a = 5.679(2) A, b = 16.423(9) A, c = 19.198(10) A, V = 1791(2) A3, Z = 4, dm = 1.212(5) Mg m-3, dc = 1.237(1) Mg m-3. The structure was determined by direct methods using SHELXS 86. The structure was refined by full-matrix least squares procedure to an R value of 0.049 for 1509 observed reflections. The molecular dimensions are, in general, in good agreement with the standard values. The bond angle C alpha-C beta-C gamma in the dehydro-Phe residue is 133.6(5) degrees. The peptide backbone torsion angles are theta 1 = -171.4(4) degrees, omega 0 = 178.2(4) degrees, phi 1 = -57.2(6) degrees, psi 1 = 141.2(4) degrees, omega 1 = -174.4(4) degrees, phi 2 = 71.5(6) degrees, psi 2 = 7.2(6) degrees, and omega 2 = -179.8(5) degrees. These values show that the backbone adopts the beta-bend type II conformation. The Boc group has a trans-trans conformation. The side-chain torsion angles in dehydro-Phe are chi 2 = 1.6(9) degrees, chi 2(2, 1) = 0.5(9) degrees, and chi 2(2, 2) = 179.8(6) degrees. The plane of C2 alpha-C2 beta-C2 gamma is rotated with respect to the plane of the phenyl ring at 0.5(6) degrees, which indicates that the atoms of the side chain of the dehydro-Phe residue are essentially coplanar.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The conformation and dynamics of the deoxyribose rings of a (nogalamycin)2-d(5'-GCATGC)2 complex have been determined from an analysis of 1H-1H vicinal coupling constants and sums of coupling constants (J1'-2',J1'-2",epsilon 1', epsilon 2' and epsilon 2") measured from one-dimensional n.m.r. spectra and from H-1'-H-2' and H-1'-H-2" cross-peaks in high-resolution phase-sensitive two-dimensional correlation spectroscopy (COSY) and double-quantum-filtered correlation spectroscopy (DQF-COSY) experiments. The value of J3'-4' has also been estimated from the magnitude of H-3'-H-4' cross-peaks in DQF-COSY spectra and H-1'-H-4' coherence transfer cross-peaks in two-dimensional homonuclear Hartman-Hahn spectroscopy (HOHAHA) spectra. The data were analysed, in terms of a dynamic equilibrium between North (C-3'-endo) and South (C-2'-endo) conformers, by using the graphical-analysis methods described by Rinkel & Altona [(1987) J. Biomol. Struct. Dyn. 4,621-649]. The data reveal that the sugars of the 2C-5G and 3A-4T base-pairs, which form the drug-intercalation site, have strikingly different properties. The deoxyribose rings of the 2C-5G base-pair are best described in terms of an equilibrium heavily weighted in favour of the C-2'-endo geometry (greater than 95% 'S'), with a phase angle, P, lying in the range 170-175 degrees and amplitude of pucker between 35 and 40 degrees, as typically found for B-DNA. For the deoxyribose rings of the 3A-4T base-pair, however, the analysis shows that, for 3A, the C-2'-endo and C3'-endo conformers are equally populated, whereas a more limited data set for the 4T nucleotide restricts the equilibrium to within 65-75% C-2'-endo. The deoxyribose rings of the 1G-6C base-pair have populations of 70-80% C-2'-endo, typical of nucleotides at the ends of a duplex. Although drug-base-pair stacking interactions are an important determinant of the enhanced duplex stability of the complex [Searle, Hall, Denny, & Wakelin (1988) Biochemistry 27, 4340-4349], the current findings make it clear that the same interactions can be associated with considerable variations in the degree of local structural dynamics at the level of the sugar puckers.  相似文献   

13.
The 13C CPMAS n.m.r. spectrum of 4-O-beta-D-galactopyranosyl-D-fructose (lactulose) trihydrate, C12H22O11.3 H2O, identifies the isomer in the crystals as the beta-furanose. This is confirmed by a crystal structure analysis, using CuK alpha X-ray data at room temperature. The space group is P212121, with Z = 4 and cell dimensions a = 9.6251(3), b = 12.8096(3), c = 17.7563(4) A. The structure was refined to R = 0.031 and Rw 0.025 for 1929 observed structure amplitudes. All the hydrogen atoms were unambigously located on difference syntheses. The conformation of the pyranose ring is the normal 4C1 chair and that of the furanose ring is 4T3. The 1----4 linkage torsion angles are O-5'-C-1'-O-1'-C-4 = 79.9(2) degrees and C-1'-O-1'-C-4-C-5 = -170.3(2) degrees. All hydroxyls, ring and glycosidic oxygens, and water molecules are involved in the hydrogen bonding, which consists of infinite chains linked together by water molecules to form a three-dimensional network. There is a three-centered intramolecular, interresidue hydrogen bond from O-3-H to O-5' and O-6'. The n.m.r. spectrum of the amorphous, dehydrated trihydrate suggests the occurrence of a solid-state reaction forming the same isomeric mixture as was observed in crystalline anhydrous lactulose, although the mutarotation of the trihydrate when dissolved in Me2SO is very slow.  相似文献   

14.
The molecular and crystal structures of the antiviral compound, (S)-9-(2,3-dihydroxypropyl)adenine, was established. The space group is P21, unit-cell parameters a 5,546(1), b 8,381(1), c 10,119(1), beta 91,979(9) degrees, Z2. The structure was solved by the direct method and refined by a full-matrix least-squares procedure to R 4,2%. All non-hydrogen atoms of this compound are concentrated in two planes. The first one involves the atoms of the purine moiety and N(6) and C(1'), while the second one accommodates C(2'), C(3'), O(2') and O(3'). The angle between these planes is 54,3 degrees. The conformation of the compound in crystal was compared with that deduced from theoretical analysis.  相似文献   

15.
X-ray, NMR and molecular mechanics studies on pentostatin (C11H16N4O4), a potent inhibitor of the enzyme adenosine deaminase, have been carried out to study the structure and conformation. The crystals belong to the monoclinic space group P21 with the cell dimensions of a = 4.960(1), b = 10.746(3), c = 11.279(4)A, beta = 101.18(2) degrees and Z = 2. The structure was solved by direct methods and difference Fourier methods and refined to an R value of 0.047 for 997 reflections. The trihydrodiazepine ring is nonplanar and adopts a distorted sofa conformation with C(7) deviated from the mean plane by 0.66A. The deoxyribose ring adopts a C3'-endo conformation, different from coformycin where the sugar has a C2'-endo conformation. The observed glycosidic torsion angle (chi = -119.5 degrees) is in the anti range. The conformation about the C(4')-C(5') bond is gauche+. The conformation of the molecule is compared with that of coformycin and 2-azacoformycin. 1 and 2D NMR studies have been carried out and the dihedral angles obtained from coupling constants have been compared with those obtained from the crystal structure. The conformation of deoxyribose in solution is approximately 70% S and 30% N. Molecular mechanics studies were performed to obtain the energy minimized conformation, which is compared with X-ray and NMR results.  相似文献   

16.
Triosephosphate isomerase (TIM) is a dimeric glycolytic enzyme. TIM from Trypanosoma brucei brucei has been crystallized at pH 7.0 in 2.4 M-ammonium sulphate. The well-diffracting crystals have one dimer per asymmetric unit. The structure has been refined at 1.83 A resolution with an R-factor of 18.3% for all data between 6 A and 1.83 A (37,568 reflections). The model consists of 3778 protein atoms and 297 solvent atoms. Subunit 1 is involved in considerably more crystal contacts than subunit 2. Correlated with these differences in crystal packing is the observation that only in the active site of subunit 2 is a sulphate ion bound. Furthermore, significant differences with respect to structure and flexibility are observed in three loops near the active site. In particular, there is a 7 A positional difference of the tip of the flexible loop (loop 6) when comparing subunit 1 and subunit 2. Also, the neighbouring loops (loop 5 and loop 7) have significantly different conformations and flexibility. In subunit 1, loop 6 is in an "open" conformation, in subunit 2, loop 6 is in an "almost closed" conformation. Only in the presence of a phosphate-containing ligand, such as glycerol-3-phosphate, does loop 6 take up the "closed" conformation. Loop 6 and loop 7 (and also to some extent loop 5) are rather flexible in the almost closed conformation, but well defined in the open and closed conformations. The closing of loop 6 (167 to 180), as observed in the almost closed conformation, slightly changes the main-chain conformation of the catalytic glutamate, Glu167, leading to a change of the chi 1 angle of this residue from approximately -60 degrees to approximately 60 degrees and the weakening of the hydrogen bonds between its polar side-chain atoms and Ser96. In the closed conformation, in the presence of glycerol-3-phosphate, the main-chain atoms of Glu167 remain in the same position as in the almost closed conformation, but the side-chain has rotated around the CA-CB bond changing chi 1 from approximately 60 degrees to approximately -60 degrees. In this new position the hydrogen bonding to Ser96 is completely lost and also a water-mediated salt bridge between OE2(Glu167) and NE(Arg99) is lost. Comparison of the two independently refined subunits, showed that the root-mean-square deviation for all 249 CA atoms is 0.9 A; for the CA atoms of the beta-strands this is only 0.2 A. The average B-factor for all subunit 1 and subunit 2 atoms is 20 A2 and 25 A2, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
L J Rinkel  I Tinoco  Jr 《Nucleic acids research》1991,19(13):3695-3700
One- and two-dimensional nuclear magnetic resonance (NMR) experiments were used to study the conformation of the DNA hexadecanucleotide d(CACGTGTGTGCGTGCA) in aqueous solution. NMR spectra were recorded for the compound in D2O and in H2O/D2O (90/10) over the temperature range 1 degree C-60 degrees C. Assignments of imino proton resonances and of non-exchangeable proton resonances (except for some H4', H5' and H5" resonances) are given. The 1H-NMR spectra indicate that below about 20 degrees C, the compound exists as a single monomolecular species. Between 20 degrees C and 55 degrees C the oligonucleotide occurs as a mixture of structures in fast exchange on the NMR time scale, except for the temperature region 30 degrees - 34 degrees C, where substantial line broadening indicates intermediate exchange; above 60 degrees C the single strand predominates. The imino proton spectra, chemical shift values, and scalar coupling and NOE data reveal that the monomeric form, which is exclusively present below 20 degrees C, consists of a structure with a B-DNA double helix region of six base pairs, both ends of which are closed by hairpin loops of only two nucleotides, giving the molecule a dumbbell-like structure: [sequence: see text].  相似文献   

18.
In the course of investigation of 8-alkylamino substituted adenosines, the title compounds were synthesized as potential partial agonists for adenosine receptors. The structure determination of these compounds was carried out with the X-ray crystallography study. Crystals of 8-(2-hydroxyethylamino)adenosine are monoclinic, space group P 2(1); a = 7.0422(2), b = 11.2635(3), c = 8.9215(2) A, beta = 92.261(1) degrees, V = 707.10(3) A3, Z = 2; R-factor is 0.0339. The nucleoside is characterized by the anti conformation; the ribose ring has the C(2')-endo conformation and gauche-gauche form across C(4')-C(5') bond. The molecular structure is stabilized by intramolecular hydrogen bond of N-HO type. Crystals of 8-(pyrrolidin-1-yl)adenosine are monoclinic, space group C 2; a = 19.271(1), b = 7.3572(4), c = 11.0465(7) A, beta = 103.254(2), V = 1524.4(2) degrees A3, Z = 4; R-factor is 0.0498. In this compound, there is syn conformation of the nucleoside; the ribose has the C(2')-endo conformation and gauche -gauche form across C(4')- C(5') bond. The molecular structure is stabilized by intramolecular hydrogen bond of O-HN type. For both compounds, the branching net of intermolecular hydrogen bonds occur in the crystal structures.  相似文献   

19.
Conformational properties of branched RNA fragments in aqueous solution   总被引:1,自引:0,他引:1  
M J Damha  K K Ogilvie 《Biochemistry》1988,27(17):6403-6416
The conformational properties of branched trinucleoside diphosphates ACC, ACG, AGC, AGG, AUU, AGU, AUG, ATT, GUU, and aAUU [XYZ = X(2'p5'Y)3'p5'Z] have been studied in aqueous solution by nuclear magnetic resonance (1H, 13C), ultraviolet absorption, and circular dichroism. It is concluded from these studies that the purine ring of the central residue (X; e.g., adenosine) forms a base-base stack exclusively with the purine or pyrimidine ring of the 2'-nucleotidyl unit (Y; 2'-residue). The residue attached to the central nucleoside via the 3'-5'-linkage (Z; 3'-residue) is "free" from the influence of the other two heterocyclic rings. The ribose rings of the central nucleoside and the 2'- and 3'-residues exist as equilibrium mixtures of C2'-endo (2E)-C3'-endo (3E) conformers. The furanose ring of the central nucleoside (e.g., A) when linked to a pyrimidine nucleoside via the 2'-5'-linkage shows a higher preference for the 2E pucker conformation (e.g., AUG, AUU, ACG, ca. 80%) than those linked to a guanosine nucleoside through the same type of bond (AGU, AGG, AGC, ca. 70%). This indicates some correlation between nucleotide sequence and ribose conformational equilibrium. The 2E-3E equilibrium of 2'-pyrimidines (Y) shows significant, sometimes exclusive, preference (70-100%) for the 3E conformation; 3'-pyrimidines and 2'-guanosines have nearly equal 2E and 3E rotamer populations; and the ribose conformational equilibrium of 3'-guanosines shows a preference (60-65%) for the 2E pucker. Conformational properties were quantitatively evaluated for most of the bonds (C4'-C5', C5'-O5', C2'-O2', and C3'-O3') in the branched "trinucleotides" AUU and AGG by analysis of 1H-1H, 1H-31P, and 13C-31P coupling constants. The C4'-C5' bond of the adenosine units shows a significant preference for the gamma + conformation. The dominant conformation about C4'-C5' and C5'-O5' for the 2'-and 3'-nucleotidyl units is gamma + and beta t, respectively, with larger gamma + and beta t rotamer populations for the 2'-unit. The increased conformational purity in the 2'-residue, compared to the 3'-residue, is ascribed to the presence of an ordered (adenine----2'-residue) stacked state. The favored rotamers about C3'-O3' and C2'-O2' are epsilon- and epsilon'-, respectively. The conformational features of AUU and AGG were compared to those of their constitutive dimers A3'p5'G, A2'p5'G, A3'p5'U, and A2'p5'U and monomers 5'pG and 5'pU.  相似文献   

20.
The peptide N-Boc-L-Pro-dehydro-Phe-L-Gly-OH was synthesized by the usual workup procedure and finally coupling the N-Boc-L-Pro-dehydro-Phe to glycine. The peptide crystallizes in monoclinic space group P2(1) with a = 8.951(4) A, b = 5.677(6) A, c = 21.192(11) A, beta = 96.97(4) degrees, V = 1069(1) A3, Z = 2, dm = 1.295(5) Mgm-3, and dc = 1.297(4) Mgm-3. The structure was determined by direct methods using SHELXS86. The structure was refined by the block-diagonal least-squares procedure to an R value of 0.074 for 1002 observed reflections. The C alpha 2-C beta 2 distance of 1.33(2) A is an appropriate double bond length. The angle C alpha 2-C beta 2-C gamma 2 is 133(1) degrees. The peptide backbone torsion angles are theta 1 = -167(1) degrees, omega 0 = 179(1) degrees, phi 1 = -48(1) degrees, psi 1 = 137(1) degrees, omega 1 = 175(1) degrees, phi 2 = 65(2) degrees, psi 2 = 15(2) degrees, omega 2 = -179(1) degrees, and phi 3 = -166(1) degrees. These values show that the Boc group has a trans-trans conformation while the peptide backbone adopts a beta-turn II conformation, which is stabilized by an intramolecular hydrogen bond of length of 3.05(1) A. The structures of dehydro-Phe containing peptides suggest that the dehydro-Phe promotes the beta-turn II conformation. The five-membered pyrrolidine ring of the Pro residue adopts an ideal C gamma-exo conformation with torsion angles chi 1(1) = -24(1) degrees, chi 2(1) = 34(1) degrees, chi 3(1) = -30(1) degrees, chi 4(1) = 15(1) degrees, and theta 0(1) = 6(1) degrees. The side-chain torsion angles in dehydro-Phe are chi 1(2) = -1(2) degrees, chi 2,1(2) = -176(1) degrees, and chi 2,2(2) = 8(2) degrees. The plane of C alpha 2-C beta 2-C gamma 2 is rotated with respect to the plane of the phenyl ring at 7(1) degrees, which indicates that the atoms of the side chain of dehydro-Phe are essentially coplanar. The molecules form a 2(1) screw axis related hydrogen-bonded rows along the b axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号