首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesenchymal stem cells (MSCs) show unexplained differences in differentiation potential. In this study, differentiation of human (h) MSCs derived from embryonic, fetal and adult sources toward cardiomyocytes, endothelial and smooth muscle cells was investigated. Labeled hMSCs derived from embryonic stem cells (hESC-MSCs), fetal umbilical cord, bone marrow, amniotic membrane and adult bone marrow and adipose tissue were co-cultured with neonatal rat cardiomyocytes (nrCMCs) or cardiac fibroblasts (nrCFBs) for 10 days, and also cultured under angiogenic conditions. Cardiomyogenesis was assessed by human-specific immunocytological analysis, whole-cell current-clamp recordings, human-specific qRT-PCR and optical mapping. After co-culture with nrCMCs, significantly more hESC-MSCs than fetal hMSCs stained positive for α-actinin, whereas adult hMSCs stained negative. Furthermore, functional cardiomyogenic differentiation, based on action potential recordings, was shown to occur, but not in adult hMSCs. Of all sources, hESC-MSCs expressed most cardiac-specific genes. hESC-MSCs and fetal hMSCs contained significantly higher basal levels of connexin43 than adult hMSCs and co-culture with nrCMCs increased expression. After co-culture with nrCFBs, hESC-MSCs and fetal hMSCs did not express α-actinin and connexin43 expression was decreased. Conduction velocity (CV) in co-cultures of nrCMCs and hESC-MSCs was significantly higher than in co-cultures with fetal or adult hMSCs. In angiogenesis bioassays, only hESC-MSCs and fetal hMSCs were able to form capillary-like structures, which stained for smooth muscle and endothelial cell markers.Human embryonic and fetal MSCs differentiate toward three different cardiac lineages, in contrast to adult MSCs. Cardiomyogenesis is determined by stimuli from the cellular microenvironment, where connexin43 may play an important role.  相似文献   

2.
3.
Mesenchymal stem cells (MSCs) are multipotent, can be easily expanded in culture and hence are an attractive therapeutic tool for cardiac repair. MSCs have tremendous potential to transdifferentiate to cardiac lineage both in vitro and in vivo. The present study examined the differentiation capacity of conditioned media derived from ischemic cardiac tissue on human MSCs. Human Bone marrow-derived MSCs after due characterization by immunocytochemistry and flow cytometry for MSC specific markers were induced by culture media derived from ischemic (n = 13) and non-ischemic (n = 18) human cardiac tissue. Parallel cultures were treated with 5-azacytidine (5-azaC), a potent cardiomyogen. MSCs induced with ischemic conditioned media formed myotube like structures, expressed sarcomeric Troponin I, alpha myosin heavy chain proteins and were positive for cardiac specific markers (Nkx2.5, human atrial natriuretic peptide, myosin light chain-2a, GATA-4) as was observed in 5-azaC treated cells. However, uninduced MSCs as well as those induced with non-ischemic cardiac conditioned media still maintained the fibroblast morphology even after 3 weeks post-induction. Transmission electron microscopic studies of cardiomyocyte-like cells derived from MSCs revealed presence of sarcomeric bands but failed to show gap junctions and intercalated discs as of adult cardiomyocytes. These findings demonstrate that ischemic cardiac conditioned media induces morphological and molecular changes in MSCs with cardiac features, but at a primitive stage. Proteomics analysis of the ischemic conditioned media revealed differential expression of three relevant proteins (C-type lectin superfamily member 13, Testis-specific chromodomain protein Y2 and ADP/ATP translocase 1), whose exact role in cardiac regeneration needs further analysis.  相似文献   

4.
To increase the accessibility of myogenic cells for cell therapy in the infarcted heart, we identified conditions to improve the reproducible conversion of bone marrow mesenchymal stromal cells (BMSCs) into myogenic cells. Such cells may permit functional regeneration following a myocardial infarction. BMSCs derived from green fluorescent protein (GFP) transgenic rats were co-cultured with neonatal rat cardiomyocytes (1:1, 1:10, 1:20, and 1:40 ratios) for 7 days. Some BMSCs contracted synchronously with the neonatal cardiomyocytes, and exhibited action potentials that were confirmed with current clamp recordings. The myogenic phenotype of the BMSCs was confirmed by immunohistochemical staining and flow cytometry (antibodies against cardiac specific α-sarcomeric actinin, Troponin I, MEF-2C). An increase in the number of BMSCs expressing cardiac markers correlated with increasing numbers of neonatal cardiomyocytes in the culture. When BMSCs were co-cultured with DiI-labeled neonatal cardiomyocytes, a small percentage of GFP/DiI/Troponin I triple-positive cells were observed after 7 days. This type of myogenic conversion increased nearly twofold when BMSCs were co-cultured with apoptotic (TNF-α-treated) cardiomyocytes. BMSCs co-cultured with cardiomyocytes acquired a functional myogenic phenotype in a dose-dependent manner. Myogenic conversion increased when the BMSCs were cultured with apoptotic cells.  相似文献   

5.
Potentially, adult stem cell-based therapy provides a new therapeutic option for myocardial regeneration. However, to date, with regard to the benefits seen, the mechanisms involved in stem cell-based therapy are not well understood. Suggested pathways proposed so far include fusion of stem cells with cardiomyocytes, transdifferentiation into cardiac and vascular cells and secretion of paracrine factors. In a recent study, our group examined the fate of human adipose tissue-derived stem cells (hASCs) fused with rat cardiomyocytes after treatment with fusion-inducing hemagglutinating virus of Japan (HVJ). In this study, we demonstrated that cells of fused hASC cardiomyocytes display a cardiomyocyte phenotype and spontaneous rhythmic contraction and generate an action potential in vitro. As part of the work underlying this paper, we co-cultured rat neonatal cardiomyocytes with hASCs or pig bone marrow-derived mesenchymal stem cells (MSCs), where ASCs or MSCs had previously been transduced with a lentivirus encoding eGFP. Our data evidence early cardiac contractile proteins, such as Titin and MF20, identified in eGFP-positive cells, suggesting a cardiomyogenic phenotype. Recent work by others has shown that the myogenic conversion increased when BMSCs were cultured with apoptotic cells. In this Extra View article, we review the current understanding of stem cell-derived factors, fusion/partial fusion and the manner in which the exchange of cellular contents between stem cells and cardiomyocytes might contribute to the reprogramming of fully differentiated cardiomyocytes based on recently published literature.  相似文献   

6.
Recent studies have shown that block wnt/β-catenin signaling pathway is integrant for cardiomyocytes differentiation from bone marrow mesenchymal stem cells (MSCs). By transducing the MSCs with lentivirus which contain β-catenin interference RNA, we screened out the non β-catenin expression clone. In the establishment of knockdown β-catenin in MSCs, we investigated the role of 5-azacytidine (5-aza), salvianolic acid B (salB), and cardiomyocytes lysis medium (CLM) in inducing MSCs to differentiate into cardiomyocyte-like cells. A method for culturing MSCs and cardiomyocytes was established. Purified MSCs were investigated by flow cytometry. The MSCs were positive for CD90 and CD29, but negative for CD34 and CD45. Meanwhile, the cardiomyocytes contracted spontaneously after 24 h of seeding into the plates. The fourth-passage non-β-catenin expression MSCs were divided into eight groups: control group, 5-aza, salB, CLM, 5-aza + salB, 5-aza + CLM, salB + CLM, and 5-aza + salB + CLM. The gene and protein expression of cTnT, α-actin, β-myosin, β-catenin, and GSK-3β were detected by quantitative real-time PCR and Western blotting. Our results showed that cTnT expression in 5-aza + salB + CLM group was ninefold higher than in the control group in the non-β-catenin MSCs model, implying that cardiomyocytes differentiation from MSCs is an extremely complicated process and it is necessary to consider the internal and external environmental conditions, such as suitable pharmaceutical inducers, cardiomyocytes microenvironments, inhibition of the negative signaling pathway and so on.  相似文献   

7.
Mesenchymal stem cells (MSCs) are multipotent cells that are able to differentiate into mesodermal lineages (osteogenic, adipogenic, chondrogenic), but also towards non-mesodermal derivatives (e.g. neural cells). Recent in vitro studies revealed that, in the absence of any kind of differentiation stimuli, undifferentiated MSCs express neural differentiation markers, but the literature data do not all concur. Considering their promising therapeutic potential for neurodegenerative diseases, it is very important to expand our knowledge about this particular biological property of MSCs. In this study, we confirmed the spontaneous expression of neural markers (neuronal, glial and progenitor markers) by undifferentiated human MSCs (hMSCs) and in particular, we demonstrated that the neuronal markers βIII-tubulin and NeuN are expressed by a very high percentage of hMSCs, regardless of the number of culture passages and the culture conditions. Moreover, the neuronal markers βIII-tubulin and NeuN are still expressed by hMSCs after in vitro osteogenic and adipogenic differentiation. On the other hand, chondrogenically differentiated hMSCs are negative for these markers. Our findings suggest that the expression of neuronal markers could be common to a wide range of cellular types and not exclusive for neuronal lineages. Therefore, the expression of neuronal markers alone is not sufficient to demonstrate the differentiation of MSCs towards the neuronal phenotype. Functional properties analysis is also required.  相似文献   

8.
9.
10.
The aim of the present study was to investigate the effect of small molecules: Reversine and 5‐azacytidine (5‐AC), in an indirect co‐culture condition with the cardiac fibroblasts as well as non co‐culture condition, in order to explore the effect of such molecules in the process of differentiation of the ovine bone‐marrow mesenchymal stem cells (BM‐MSCs) towards cardiomyocytes. Surface antigens of the isolated cells were analysed using flow‐cytometry. In addition, following to three passages cells were examined for their differentiation capacity into osteocytes and adipose cells, in order to ensure the mesenchymal origin of the stem cells. Six types of treatments were carried out in the present investigation, such that, in the first treatment BM‐MSCs were cultured for 28 days as control group; the second treatment was composed of culturing ovine fetal cardiac fibroblasts on inserts, aiming to use these inserts for culturing plates which were seeded with BM‐MSCs (Chamber group). As the third treatment, BM‐MSCs were supplemented with 10‐μM 5‐AC and incubated for 48 h. The fourth treatment was composed of supplementing BM‐MSCs with the 600‐nM reversine, incubated for 48 h, and subsequently the incubation was further extended for another 48 h in the presence of 5‐AC. The fifth treatment was composed of supplementing the chamber group with 10‐μM 5‐AC and incubation for 48 h, and the last or the sixth treatment was such that chamber group was supplemented with 600‐nM reversine and an incubation period of 48 h. Following to the incubation, medium was replaced with 10‐μM 5‐AC and further incubated for another round of 48 h. In all treatments, following to addition of the small molecules incubations were carried out for 28 days; same as controls. Expression of cardiac alpha‐actinin was analysed by immunocytochemistry. BM‐MSCs have shown to express CD44 and CD166 along with a weak expression of the CD90, CD34, in addition to CD45. Multilineage differentiation has indicated that BM‐MSCs could differentiate into adipose and osteocytes cells as well. In the treatment 4 it was observed that FGF signalling involved genes and all cardiac‐related genes (ANP, MYH6 and Troponin I) were significantly expressed, except connexin 43 compared to other treatments. All treatments received small molecules, either alone or as a co‐culture were seen to express sarcomeric alpha‐actinin. This finding was partially supported by immunocytochemistry. These results validate that reversine and 5‐AC have an effect on ovine BM‐MSC differentiation into cardiomyocytes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The present study characterized the structure, organization, and expression of the rat cardiac myosin light chain (MLC) -2 gene. The rat cardiac MLC-2 gene has seven exons which display complete conservation with the exon structure of the rat fast twitch skeletal MLC-2 gene. A 250-base pair (bp) sequence of the 5'-flanking region contains CArG motifs and additional cis elements, each greater than 10 bp in length, which were conserved in sequence and relative position with the chick cardiac MLC-2 gene. A series of MLC-2/luciferase fusion genes consisting of nested 5' deletions of the MLC-2 5'-flanking region were constructed and transfected into primary neonatal rat myocardial cells and a non-myocardial cell line (CV-1), demonstrating that this 250 bp of the MLC-2 5'-flanking region was sufficient to confer cardiac specific expression on a luciferase reporter gene. This study suggests the presence of important proximal regulatory sequences in the MLC-2 5'-flanking region which are capable of directing the cardiac specific expression of the rat cardiac myosin light chain-2 gene.  相似文献   

12.
13.
Wei F  Wang T  Liu J  Du Y  Ma A 《Experimental cell research》2011,(18):2661-2670
Mesenchymal stem cells (MSCs) are regarded as a promising source of cell-based therapy for heart injury. In fact, less than 30% of MSCs contribute to cardiomyocytes differentiation, and the isolation procedure and biological characteristics of this population of cells remain unknown. Here we isolate and investigate the biological characteristics of this subpopulation of MSCs. Twenty four MSC clones were randomly selected using single-cell monoclonal technology. After induced with 5-azacytidine, eight clones displayed cardiomyocyte-like morphologies, and highly (over 90%) expressed cardiac-specific markers cTnT and α-actin, and displayed transient outward K+ current (Ito), inwardly rectifying K+ current (IK1) and delayed rectifier K+ current (IKDR), which were typical of cardiomocytes. Other clones merely showed Ito current, and the current densities were different from those of cardiomyocytes. In contrast to the other clones, before induced with 5-azacytidine, the eight clones expressed early cardiac markers GATA4 and NKX2.5, but not cTnT, α-actin, CD44 and CD90, and had no potentials for adiopogenesis, osteogenesis or chondrogenesis after induction. Our data suggest that the subgroup of MSCs that contributes to cardiomyocytes differentiation is cardiac progenitor cells. Moreover, we show the preliminary purification of this population of cells with a high potential for cardiomyocytes differentiation using single-cell monoclonal technology.  相似文献   

14.
15.

Background

Pluri-potent bone marrow stromal cells (MSCs) provide an attractive opportunity to generate unlimited glucose-responsive insulin-producing cells for the treatment of diabetes. We explored the potential for human MSCs (hMSCs) to be differentiated into glucose-responsive cells through a non-viral genetic reprogramming approach.

Methods and Findings

Two hMSC lines were transfected with three genes: PDX-1, NeuroD1 and Ngn3 without subsequent selection, followed by differentiation induction in vitro and transplantation into diabetic mice. Human MSCs expressed mRNAs of the archetypal stem cell markers: Sox2, Oct4, Nanog and CD34, and the endocrine cell markers: PDX-1, NeuroD1, Ngn3, and Nkx6.1. Following gene transfection and differentiation induction, hMSCs expressed insulin in vitro, but were not glucose regulated. After transplantation, hMSCs differentiated further and ∼12.5% of the grafted cells expressed insulin. The graft bearing kidneys contained mRNA of insulin and other key genes required for the functions of beta cells. Mice transplanted with manipulated hMSCs showed reduced blood glucose levels (from 18.9+/−0.75 to 7.63+/−1.63 mM). 13 of the 16 mice became normoglycaemic (6.9+/−0.64 mM), despite the failure to detect the expression of SUR1, a K+-ATP channel component required for regulation of insulin secretion.

Conclusions

Our data confirm that hMSCs can be induced to express insulin sufficient to reduce blood glucose in a diabetic mouse model. Our triple gene approach has created cells that seem less glucose responsive in vitro but which become more efficient after transplantation. The maturation process requires further study, particularly the in vivo factors influencing the differentiation, in order to scale up for clinical purposes.  相似文献   

16.
Cell transplantation shows potential for the treatment of cardiac diseases. Embryonic stem cells, cord blood and mesenchymal stem cells have been suggested as sources for transplantation therapy. Because of some technical limitations with the use of stem cells, transdifferentiation of fully differentiated cells is a potentially useful alternative. We investigated whether human peripheral blood cells could transdifferentiate into cardiomyocyte. Transdifferentiation was induced in a human B lymphocyte cell line (Raji). Cardiomyocyte extract was prepared from adult mouse cardiomyocytes. The cells were treated with 5-aza-2-deoxycytidine and trichostatin A, permeabilized with streptolysin O, and exposed to the mouse cardiomyocyte extract. They were cultured for 10 days, 3 weeks and 4 weeks. Cardiomyocyte markers were detected with immunohistochemistry and flow cytometry. Immunocytochemistry revealed that some cells expressed myosin heavy chain, α-actinin and cardiac troponin T after 3 and 4 weeks. Flow cytometry confirmed these data. In cells exposed to trichostatin A and 5-aza-2-deoxycytidine and permeabilized in the presence of the cardiomyocyte extract, troponin T expression was seen in 3.53% of the cells and 3.11% of them expressed α-actinin. After exposure to the cardiomyocyte extract, some permeabilized cells adhered to the plate loosely; however, the morphology did not change significantly, and they continued to show a rounded shape after 4 weeks. Our treated lymphocytes expressed cardiomyocyte markers. Our results suggest that lymphocytes may be useful in future research as a source of cells for reprogramming procedures.  相似文献   

17.
Bone marrow-derived mesenchymal stem cells (MSCs) have been reported to migrate to brain lesions of neurodegenerative diseases; however, the precise mechanisms by which MSCs migrate remain to be elucidated. In this study, we carried out an in vitro migration assay to investigate the chemoattractive factors for MSCs in the brains of prion-infected mice. The migration of immortalized human MSCs (hMSCs) was reduced by their pretreatment with antibodies against the chemokine receptors, CCR3, CCR5, CXCR3, and CXCR4 and by pretreatment of brain extracts of prion-infected mice with antibodies against the corresponding ligands, suggesting the involvement of these receptors, and their ligands in the migration of hMSCs. In agreement with the results of an in vitro migration assay, hMSCs in the corpus callosum, which are considered to be migrating from the transplanted area toward brain lesions of prion-infected mice, expressed CCR3, CCR5, CXCR3, and CXCR4. The combined in vitro and in vivo analyses suggest that CCR3, CCR5, CXCR3, and CXCR4, and their corresponding ligands are involved in the migration of hMSCs to the brain lesions caused by prion propagation. In addition, hMSCs that had migrated to the right hippocampus of prion-infected mice expressed CCR1, CX3CR1, and CXCR4, implying the involvement of these chemokine receptors in hMSC functions after chemotactic migration. Further elucidation of the mechanisms that underlie the migration of MSCs may provide useful information regarding application of MSCs to the treatment of prion diseases.  相似文献   

18.
Mesenchymal stem cells (MSCs) from healthy donors improve cardiac function in experimental acute myocardial infarction (AMI) models. However, little is known about the therapeutic capacity of human MSCs (hMSCs) from patients with ischemic heart disease (IHD). Therefore, the behavior of hMSCs from IHD patients in an immune-compromised mouse AMI model was studied. Enhanced green fluorescent protein-labeled hMSCs from IHD patients (hMSC group: 2 x 10(5) cells in 20 microl, n = 12) or vehicle only (medium group: n = 14) were injected into infarcted myocardium of NOD/scid mice. Sham-operated mice were used as the control (n = 10). Cardiac anatomy and function were serially assessed using 9.4-T magnetic resonance imaging (MRI); 2 wk after cell transplantation, immunohistological analysis was performed. At day 2, delayed-enhancement MRI showed no difference in myocardial infarction (MI) size between the hMSC and medium groups (33 +/- 2% vs. 36 +/- 2%; P = not significant). A comparable increase in left ventricular (LV) volume and decrease in ejection fraction (EF) was observed in both MI groups. However, at day 14, EF was higher in the hMSC than in the medium group (24 +/- 3% vs. 16 +/- 2%; P < 0.05). This was accompanied by increased vascularity and reduced thinning of the infarct scar. Engrafted hMSCs (4.1 +/- 0.3% of injected cells) expressed von Willebrand factor (16.9 +/- 2.7%) but no stringent cardiac or smooth muscle markers. hMSCs from patients with IHD engraft in infarcted mouse myocardium and preserve LV function 2 wk after AMI, potentially through an enhancement of scar vascularity and a reduction of wall thinning.  相似文献   

19.
A number of recent studies have examined the ability of stem cells derived from different sources to differentiate into dopamine‐producing cells and ameliorate behavioural deficits in Parkinsonian models. Recently, using the approach of cell reprogramming by small cell‐permeable biological active compounds that involved in the regulation of chromatin structure and function, and interfere with specific cell signalling pathways that promote neural differentiation we have been able to generate neural‐like cells from human bone marrow (BM)‐derived MSCs (hMSCs). Neurally induced hMSCs (NI‐hMSCs) exhibited several neural properties and exerted beneficial therapeutic effect on tissue preservation and locomotor recovery in spinal cord injured rats. In this study, we aimed to determine whether hMSCs neuralized by this approach can generate dopaminergic (DA) neurons. Immunocytochemisty studies showed that approximately 50–60% of NI‐hMSCs expressed early and late dopaminergic marker such as Nurr‐1 and TH that was confirmed by Western blot. ELISA studies showed that NI‐hMSCs also secreted neurotrophins and dopamine. Hypoxia preconditioning prior to neural induction increased hMSCs proliferation, viability, expression TH and the secretion level of dopamine induced by ATP. Taken together, these studies demonstrated that hMSCs neurally modified by this original approach can be differentiated towards DA‐like neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号