首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A conserved G4 DNA binding domain in RecQ family helicases   总被引:1,自引:0,他引:1  
RecQ family helicases play important roles at G-rich domains of the genome, including the telomeres, rDNA, and immunoglobulin switch regions. This appears to reflect the unusual ability of enzymes in this family to unwind G4 DNA. How RecQ family helicases recognize this substrate has not been established. Here, we show that G4 DNA is a preferred target for BLM helicase within the context of long DNA molecules. We identify the RQC domain, found only in RecQ family enzymes, as an independent, high affinity and conserved G4 DNA binding domain; and show that binding to Holliday junctions involves both the RQC and the HRDC domains. These results provide mechanistic understanding of differences and redundancies of function and activities among RecQ family helicases, and of how deficiencies in human members of this family may contribute to genomic instability and disease.  相似文献   

2.
RecQ family helicases play important roles in coordinating genome maintenance pathways in living cells. In the absence of functional RecQ proteins, cells exhibit a variety of phenotypes, including increased mitotic recombination, elevated chromosome missegregation, hypersensitivity to DNA-damaging agents, and defects in meiosis. Mutations in three of the five human RecQ family members give rise to genetic disorders associated with a predisposition to cancer and premature aging, highlighting the importance of RecQ proteins and their cellular activities for human health. Current evidence suggests that RecQ proteins act at multiple steps in DNA replication, including stabilization of replication forks and removal of DNA recombination intermediates, in order to maintain genome integrity. The cellular basis of RecQ helicase function may be explained through interactions with multiple components of the DNA replication and recombination machinery. This review focuses on biochemical and structural aspects of the RecQ helicases and how these features relate to their known cellular function, specifically in preventing excessive recombination.  相似文献   

3.
4.
Helicases are molecular motor proteins that couple the hydrolysis of NTP to nucleic acid unwinding. The growing number of DNA helicases implicated in human disease suggests that their vital specialized roles in cellular pathways are important for the maintenance of genome stability. In particular, mutations in genes of the RecQ family of DNA helicases result in chromosomal instability diseases of premature aging and/or cancer predisposition. We will discuss the mechanisms of RecQ helicases in pathways of DNA metabolism. A review of RecQ helicases from bacteria to human reveals their importance in genomic stability by their participation with other proteins to resolve DNA replication and recombination intermediates. In the light of their known catalytic activities and protein interactions, proposed models for RecQ function will be summarized with an emphasis on how this distinct class of enzymes functions in chromosomal stability maintenance and prevention of human disease and cancer.  相似文献   

5.
RecQ family helicases are highly conserved from bacteria to humans and have essential roles in maintaining genome stability. Mutations in three human RecQ helicases cause severe diseases with the main features of premature aging and cancer predisposition. Most RecQ helicases shared a conserved domain arrangement which comprises a helicase core, an RecQ C-terminal domain, and an auxiliary element helicase and RNaseD C-terminal (HRDC) domain, the functions of which are poorly understood. In this study, we systematically characterized the roles of the HRDC domain in E. coli RecQ in various DNA transactions by single-molecule FRET. We found that RecQ repetitively unwinds the 3′-partial duplex and fork DNA with a moderate processivity and periodically patrols on the ssDNA in the 5′-partial duplex by translocation. The HRDC domain significantly suppresses RecQ activities in the above transactions. In sharp contrast, the HRDC domain is essential for the deep and long-time unfolding of the G4 DNA structure by RecQ. Based on the observations that the HRDC domain dynamically switches between RecA core- and ssDNA-binding modes after RecQ association with DNA, we proposed a model to explain the modulation mechanism of the HRDC domain. Our findings not only provide new insights into the activities of RecQ on different substrates but also highlight the novel functions of the HRDC domain in DNA metabolisms.  相似文献   

6.
Organisms are constantly exposed to various environmental insults which could adversely affect the stability of their genome. To protect their genomes against the harmful effect of these environmental insults, organisms have evolved highly diverse and efficient repair mechanisms. Defective DNA repair processes can lead to various kinds of chromosomal and developmental abnormalities. RecQ helicases are a family of evolutionarily conserved, DNA unwinding proteins which are actively engaged in various DNA metabolic processes, telomere maintenance and genome stability. Bacteria and lower eukaryotes, like yeast, have only one RecQ homolog, whereas higher eukaryotes including humans possess multiple RecQ helicases. These multiple RecQ helicases have redundant and/or non-redundant functions depending on the types of DNA damage and DNA repair pathways. Humans have five different RecQ helicases and defects in three of them cause autosomal recessive diseases leading to various kinds of cancer predisposition and/or aging phenotypes. Emerging evidence also suggests that the RecQ helicases have important roles in telomere maintenance. This review mainly focuses on recent knowledge about the roles of RecQ helicases in DNA double strand break repair and telomere maintenance which are important in preserving genome integrity.  相似文献   

7.
RecQ family helicases and topoisomerase 3 enzymes form evolutionary conserved complexes that play essential functions in DNA replication, recombination, and repair, and in vitro, show coordinate activities on model recombination and replication intermediates. Malfunctioning of these complexes in humans is associated with genomic instability and cancer-prone syndromes. Although both RecQ-like and topoisomerase 3 enzymes are present in archaea, only a few of them have been studied, and no information about their functional interaction is available. We tested the combined activities of the RecQ-like helicase, Hel112, and the topoisomerase 3, SsTop3, from the thermophilic archaeon Sulfolobus solfataricus. Hel112 showed coordinate DNA unwinding and annealing activities, a feature shared by eukaryotic RecQ homologs, which resulted in processing of synthetic Holliday junctions and stabilization of model replication forks. SsTop3 catalyzed DNA relaxation and annealing. When assayed in combination, SsTop3 inhibited the Hel112 helicase activity on Holliday junctions and stimulated formation and stabilization of such structures. In contrast, Hel112 did not affect the SsTop3 DNA relaxation activity. RecQ-topoisomerase 3 complexes show structural similarity with the thermophile-specific enzyme reverse gyrase, which catalyzes positive supercoiling of DNA and was suggested to play a role in genome stability at high temperature. Despite such similarity and the high temperature of reaction, the SsTop3-Hel112 complex does not induce positive supercoiling and is thus likely to play different roles. We propose that the interplay between Hel112 and SsTop3 might regulate the equilibrium between recombination and anti-recombination activities at replication forks.  相似文献   

8.
RecQ helicases: at the heart of genetic stability   总被引:14,自引:0,他引:14  
The checkpoint-mediated control of DNA replication is essential for maintaining the stability of the genome and preventing cancer in humans. The RecQ family of helicases has been shown to be important for the maintenance of genomic integrity in organisms ranging from bacteria to man. We propose that the RecQ homologue, Sgs1p, has an important function in the S-phase checkpoint response of budding yeast, where it may be both a 'sensor' for damage during replication and a 'resolvase' for structures that arise at paused forks. RecQ helicases may serve a unique function that integrates checkpoint proteins with the recombination and replication fork machinery.  相似文献   

9.
RecQ DNA helicases are multidomain enzymes that play pivotal roles in genome maintenance pathways. While the ATPase and helicase activities of these enzymes can be attributed to the conserved catalytic core domain, the role of the Helicase-and-RNase-D-C-terminal (HRDC) domain in RecQ function has yet to be elucidated. Here, we report the crystal structure of the E. coli RecQ HRDC domain, revealing a globular fold that resembles known DNA binding domains. We show that this domain preferentially binds single-stranded DNA and identify its DNA binding surface. HRDC domain mutations in full-length RecQ lead to surprising differences in its structure-specific DNA binding properties. These data support a model in which naturally occurring variations in DNA binding residues among diverse RecQ homologs serve to target these enzymes to distinct substrates and provide insight into a mechanism whereby RecQ enzymes have evolved distinct functions in organisms that encode multiple recQ genes.  相似文献   

10.
RecQ family helicases play important roles in coordinating genome maintenance pathways in living cells. In the absence of functional RecQ proteins, cells exhibit a variety of phenotypes, including increased mitotic recombination, elevated chromosome missegregation, hypersensitivity to DNA-damaging agents, and defects in meiosis. Mutations in three of the five human RecQ family members give rise to genetic disorders associated with a predisposition to cancer and premature aging, highlighting the importance of RecQ proteins and their cellular activities for human health. Current evidence suggests that RecQ proteins act at multiple steps in DNA replication, including stabilization of replication forks and removal of DNA recombination intermediates, in order to maintain genome integrity. The cellular basis of RecQ helicase function may be explained through interactions with multiple components of the DNA replication and recombination machinery. This review focuses on biochemical and structural aspects of the RecQ helicases and how these features relate to their known cellular function, specifically in preventing excessive recombination.  相似文献   

11.
Human diseases deficient in RecQ helicases   总被引:6,自引:0,他引:6  
Harrigan JA  Bohr VA 《Biochimie》2003,85(11):1185-1193
RecQ helicases are conserved from bacteria to man. Mutations in three of the human RecQ family members give rise to genetic disorders characterized by genomic instability and a predisposition to cancer. RecQ helicases are therefore caretakers of the genome, and although they do not directly regulate tumorigenesis, they influence stability and the rate of accumulation of genetic alterations, which in turn, result in tumorigenesis. Maintenance of genome stability by RecQ helicases likely involves their participation in DNA replication, recombination, and repair pathways.  相似文献   

12.
13.
RecQ enzymes are broadly conserved Superfamily-2 (SF-2) DNA helicases that play critical roles in DNA metabolism. RecQ proteins use the energy of ATP hydrolysis to drive DNA unwinding; however, the mechanisms by which RecQ links ATPase activity to DNA-binding/unwinding are unknown. In many Superfamily-1 (SF-1) DNA helicases, helicase sequence motif III links these activities by binding both single-stranded (ss) DNA and ATP. However, the ssDNA-binding aromatic-rich element in motif III present in these enzymes is missing from SF-2 helicases, raising the question of how these enzymes link ATP hydrolysis to DNA-binding/unwinding. We show that Escherichia coli RecQ contains a conserved aromatic-rich loop in its helicase domain between motifs II and III. Although placement of the RecQ aromatic-rich loop is topologically distinct relative to the SF-1 enzymes, both loops map to similar tertiary structural positions. We examined the functions of the E.coli RecQ aromatic-rich loop using RecQ variants with single amino acid substitutions within the segment. Our results indicate that the aromatic-rich loop in RecQ is critical for coupling ATPase and DNA-binding/unwinding activities. Our studies also suggest that RecQ's aromatic-rich loop might couple ATP hydrolysis to DNA-binding in a mechanistically distinct manner from SF-1 helicases.  相似文献   

14.
解螺旋酶RecQ家族的研究进展   总被引:1,自引:0,他引:1  
章诺贝  张吉翔 《生命科学》2007,19(2):203-207
DNA解螺旋酶RecQ家族在抑制人类肿瘤发生及早衰方面发挥着重要作用。本文介绍了RecQ家族成员的结构与生物学特性,并在此基础上对其在DNA复制、重组、修复以及在维持端粒稳定方面的作用机制作一综述。  相似文献   

15.
RecQ family helicases function as safeguards of the genome. Unlike Escherichia coli, the Gram-positive Bacillus subtilis bacterium possesses two RecQ-like homologues, RecQ[Bs] and RecS, which are required for the repair of DNA double-strand breaks. RecQ[Bs] also binds to the forked DNA to ensure a smooth progression of the cell cycle. Here we present the first biochemical analysis of recombinant RecQ[Bs]. RecQ[Bs] binds weakly to single-stranded DNA (ssDNA) and blunt-ended double-stranded DNA (dsDNA) but strongly to forked dsDNA. The protein exhibits a DNA-stimulated ATPase activity and ATP- and Mg2+-dependent DNA helicase activity with a 3′→5′ polarity. Molecular modeling shows that RecQ[Bs] shares high sequence and structure similarity with E. coli RecQ. Surprisingly, RecQ[Bs] resembles the truncated Saccharomyces cerevisiae Sgs1 and human RecQ helicases more than RecQ[Ec] with regard to its enzymatic activities. Specifically, RecQ[Bs] unwinds forked dsDNA and DNA duplexes with a 3′-overhang but is inactive on blunt-ended dsDNA and 5′-overhung duplexes. Interestingly, RecQ[Bs] unwinds blunt-ended DNA with structural features, including nicks, gaps, 5′-flaps, Kappa joints, synthetic replication forks, and Holliday junctions. We discuss these findings in the context of RecQ[Bs]''s possible functions in preserving genomic stability.  相似文献   

16.
The RecQ gene family in plants   总被引:3,自引:0,他引:3  
RecQ helicases are conserved throughout all kingdoms of life regarding their overall structure and function. They are 3'-5' DNA helicases resolving different recombinogenic DNA structures. The RecQ helicases are key factors in a number of DNA repair and recombination pathways involved in the maintenance of genome integrity. In eukaryotes the number of RecQ genes and the structure of RecQ proteins vary strongly between organisms. Therefore, they have been named RecQ-like genes. Knockouts of several RecQ-like genes cause severe diseases in animals or harmful cellular phenotypes in yeast. Until now the largest number of RecQ-like genes per organism has been found in plants. Arabidopsis and rice possess seven different RecQ-like genes each. In the almost completely sequenced genome of the moss Physcomitrella patens at least five RecQ-like genes are present. One of the major present and future research aims is to define putative plant-specific functions and to assign their roles in DNA repair and recombination pathways in relation to RecQ genes from other eukaryotes. Regarding their intron positions, the structures of six RecQ-like genes of dicots and monocots are virtually identical indicating a conservation over a time scale of 150 million years. In contrast to other eukaryotes one gene (RecQsim) exists exclusively in plants. It possesses an interrupted helicase domain but nevertheless seems to have maintained the RecQ function. Owing to a recent gene duplication besides the AtRecQl4A gene an additional RecQ-like gene (AtRecQl4B) exists in the Brassicaceae only. Genetic studies indicate that a AtRecQl4A knockout results in sensitivity to mutagens as well as an hyper-recombination phenotype. Since AtRecQl4B was still present, both genes must have non-redundant roles. Analysis of plant RecQ-like genes will not only increase the knowledge on DNA repair and recombination, but also on the evolution and radiation of protein families.  相似文献   

17.
18.
RecQ DNA helicases are critical components of DNA replication, recombination, and repair machinery in all eukaryotes and bacteria. Eukaryotic RecQ helicases are known to associate with numerous genome maintenance proteins that modulate their cellular functions, but there is little information regarding protein complexes involving the prototypical bacterial RecQ proteins. Here we use an affinity purification scheme to identify three heterologous proteins that associate with Escherichia coli RecQ: SSB (single-stranded DNA-binding protein), exonuclease I, and RecJ exonuclease. The RecQ-SSB interaction is direct and is mediated by the RecQ winged helix subdomain and the C terminus of SSB. Interaction with SSB has important functional consequences for RecQ. SSB stimulates RecQ-mediated DNA unwinding, whereas deletion of the C-terminal RecQ-binding site from SSB produces a variant that blocks RecQ DNA binding and unwinding activities, suggesting that RecQ recognizes both the SSB C terminus and DNA in SSB.DNA nucleoprotein complexes. These findings, together with the noted interactions between human RecQ proteins and Replication Protein A, identify SSB as a broadly conserved RecQ-binding protein. These results also provide a simple model that explains RecQ integration into genome maintenance processes in E. coli through its association with SSB.  相似文献   

19.
The processing of various DNA structures by RecQ helicases is crucial for genome maintenance in both bacteria and eukaryotes. RecQ helicases perform active destabilization of DNA duplexes, based on tight coupling of their ATPase activity to moderately processive translocation along DNA strands. Here, we determined the ATPase kinetic mechanism of E. coli RecQ helicase to reveal how mechanoenzymatic coupling is achieved. We found that the interaction of RecQ with DNA results in a drastic acceleration of the rate-limiting ATP cleavage step, which occurs productively due to subsequent rapid phosphate release. ADP release is not rate-limiting and ADP-bound RecQ molecules make up a small fraction during single-stranded DNA translocation. However, the relatively rapid release of the ADP-bound enzyme from DNA causes the majority of translocation run terminations (i.e. detachment from the DNA track). Thus, the DNA interactions of ADP-bound RecQ helicase, probably dependent on DNA structure, will mainly determine translocation processivity and may control the outcome of DNA processing. Comparison with human Bloom''s syndrome (BLM) helicase reveals that similar macroscopic parameters are achieved by markedly different underlying mechanisms of RecQ homologs, suggesting diversity in enzymatic tuning.  相似文献   

20.
Helicases are specialized molecular motors that separate duplex nucleic acids into single strands. The RecQ family of helicases functions at the interface of DNA replication, recombination and repair in bacterial and eukaryotic cells. They are key, multifunctional enzymes that have been linked to three human diseases: Bloom's, Werner's and Rothmund–Thomson's syndromes. This review summarizes recent studies that relate the structures of RecQ proteins to their biochemical activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号