首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Purmorphamine is a novel small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells, but there has been no evaluation of its effect on human cells to date. The aim of this study was to investigate the induction of osteogenic activity by purmorphamine in human osteoblasts differentiated from bone marrow mesenchymal cells. Cells were cultured in 24-well plates at a density of 2x10(4)/well in medium containing 1, 2 or 3 microM purmorphamine, or vehicle. At 7, 14 and 21 days, cell proliferation, viability, and alkaline phosphatase (ALP) activity were evaluated. Bone-like nodule formation was evaluated at 21 days. Purmorphamine did not affect cell proliferation or viability, but increased ALP activity and bone-like nodule formation. These results indicate that events related to osteoblast differentiation, including increased ALP activity and bone-like nodule formation, are enhanced by purmorphamine.  相似文献   

2.
Mesenchymal stem cells (MSCs) are multipotent cells that are able to differentiate into mesodermal lineages (osteogenic, adipogenic, chondrogenic), but also towards non-mesodermal derivatives (e.g. neural cells). Recent in vitro studies revealed that, in the absence of any kind of differentiation stimuli, undifferentiated MSCs express neural differentiation markers, but the literature data do not all concur. Considering their promising therapeutic potential for neurodegenerative diseases, it is very important to expand our knowledge about this particular biological property of MSCs. In this study, we confirmed the spontaneous expression of neural markers (neuronal, glial and progenitor markers) by undifferentiated human MSCs (hMSCs) and in particular, we demonstrated that the neuronal markers βIII-tubulin and NeuN are expressed by a very high percentage of hMSCs, regardless of the number of culture passages and the culture conditions. Moreover, the neuronal markers βIII-tubulin and NeuN are still expressed by hMSCs after in vitro osteogenic and adipogenic differentiation. On the other hand, chondrogenically differentiated hMSCs are negative for these markers. Our findings suggest that the expression of neuronal markers could be common to a wide range of cellular types and not exclusive for neuronal lineages. Therefore, the expression of neuronal markers alone is not sufficient to demonstrate the differentiation of MSCs towards the neuronal phenotype. Functional properties analysis is also required.  相似文献   

3.
It was recently reported that pluripotent mesenchymal stem cells (MSCs) in rodent bone marrow (BM) have the capacity to generate insulin-producing cells (IPCs) in vitro. However, little is known about this capacity in human BM-MSCs. We developed a nongenetic method to induce human BM-MSCs to transdifferentiate into IPCs both phenotypically and functionally. BM-MSCs from 12 human donors were sequentially cultured in specially defined conditions. Their differentiation extent toward β-cell phenotype was evaluated systemically. Specifically, after induction human BM-MSCs formed spheroid islet-like clusters containing IPCs, which was further confirmed by dithizone (DTZ) staining and electron microscopy. These IPCs expressed multiple genes related to the development or function of pancreatic β cells (including NKX6.1, ISL-1, Beta2/Neurod, Glut2, Pax6, nestin, PDX-1, ngn3, insulin and glucagon). The coexpression of insulin and c-peptide was observed in IPCs by immunofluorescence. Moreover, they were able to release insulin in a glucose-dependent manner and ameliorate the diabetic conditions of streptozotocin (STZ)-treated nude mice. These results indicate that human BM-MSCs might be an available candidate to overcome limitations of islet transplantation.  相似文献   

4.
5.
Osteocytes are the most abundant cells in bone and there is increasing evidence that they control bone remodeling via direct cell-to-cell contacts and by soluble factors. In the present study, we have used the MLO-Y4 cell line to study the effect of osteocytes on the proliferation, differentiation and bone-forming capacity of bone marrow mesenchymal stem cells (MSC). Conditioned media (CM) from osteocytic MLO-Y4 and osteoblastic MC3T3-E1 cell lines were collected and added on mouse bone marrow cultures, in which MSC were induced to osteoblasts. There was a significant increase in alkaline phosphatase activity and osteocalcin expression in the presence of MLO-Y4 CM. No such stimulus could be observed with MC3T3-E1 CM. There was almost 4-fold increase in bone formation and up to 2-fold increase in the proliferation of MSC with MLO-Y4 CM. The highly proliferating bone marrow cells were negative for ALP and OCN, suggesting that they could represent early osteoblast precursors. MLO-Y4 CM did not enhance the viability of mature osteoblasts nor protected them of apoptosis. This is the first study to describe soluble signals between osteocytes and osteoblasts and there most likely are several still unidentified or unknown factors in osteocyte CM. We conclude that osteocytes have an active stimulatory role in controlling bone formation.  相似文献   

6.
Cheng H  Qiu L  Ma J  Zhang H  Cheng M  Li W  Zhao X  Liu K 《Molecular biology reports》2011,38(8):5161-5168
Mesenchymal stem cells (MSC) which have self-renewal and multiple differentiation potential in vitro play important roles in regenerative medicine and tissue engineering. However, long-term culture in vitro leads to senescence which results in the growth arrest and reduction of differentiation. In this study, MSC derived from human bone-marrow (BM-MSC) and umbilical cord (UC-MSC) were cultured in vitro lasted to senescence. Senescence and apoptosis detection showed that the senescent cells increased significantly but the increase of apoptosis was not significant in the long term culture. Senescence related genes p16, p21 and p53 increased gradually in BM-MSC. However, p16 and p53 reduced and then increased but with the gradual increase of p21 in UC-MSC. Adipogenic differentiation decreased whereas the propensity for osteogenic differentiation increased in senescent MSC. Real time RT-PCR demonstrated that both C/EBPα and PPARγ decreased in senescent BM-MSC. However, in UC-MSC, PPARγ decreased but C/EBPα increased in late phase compared to early phase. The study demonstrated p21 was important in the senescence of BM-MSC and UC-MSC. C/EBPα and PPARγ could regulate the balance of adipogenic differentiation in BM-MSC but only PPARγ not C/EBPα was involved in the adipogenic differentiation in UC-MSC.  相似文献   

7.
The presence within bone marrow of a population of mesenchymal stem cells (MSCs) able to differentiate into a number of different mesenchymal tissues, including bone and cartilage, was first suggested by Friedenstein nearly 40 years ago. Since then MSCs have been demonstrated in a variety of fetal and adult tissues, including bone marrow, fetal blood and liver, cord blood, amniotic fluid and, in some circumstances, in adult peripheral blood. MSCs from all of these sources can be extensively expanded in vitro and when cultured under specific permissive conditions retain their ability to differentiate into multiple lineages including bone, cartilage, fat, muscle, nerve, glial and stromal cells. There has been great interest in these cells both because of their value as a model for studying the molecular basis of differentiation and because of their therapeutic potential for tissue repair and immune modulation. However, MSCs are a rare population in these tissues. Here we tried to identify cells with MSC-like potency in human placenta. We isolated adherent cells from trypsin-digested term placentas and examined these cells for morphology, surface markers, and differentiation potential and found that they expressed several stem cell markers. They also showed endothelial and neurogenic differentiation potentials under appropriate conditions. We suggest that placenta-derived cells have multilineage differentiation potential similar to MSCs in terms of morphology and cell-surface antigen expression. The placenta may prove to be a useful source of MSCs.  相似文献   

8.
To characterize mesenchymal stem cells (MSC), we compared gene expression profiles in human bone marrow MSC (11 lines) and human fibroblasts (4 lines) by RT-PCR and real time PCR. Messenger RNA levels of MHC-DR-alpha, MHC-DR-beta, MHC-DR-associated protein CD74, tissue factor pathway inhibitor-2, and neuroserpin were much higher in MSC than in fibroblasts, even in the presence of large interindividual variations. Those of adrenomedullin, apolipoprotein D, C-type lectin superfamily member-2, collagen type XV alpha1, CUG triplet repeat RNA-binding protein, matrix metalloproteinase-1, protein tyrosine kinase-7, and Sam68-like phosphotyrosine protein/T-STAR were lower in MSC than in fibroblasts. FACS analysis showed that cell surface expression of MHC-DR was also higher in MSC than in fibroblasts. MHC-DR expression decreased after osteogenic differentiation, whereas the expression of adrenomedullin-a potent stimulator of osteoblast activity-along with collagen XV alpha1 and apolipoprotein D increased after osteogenic differentiation. The marker genes identified in this study should be useful for characterization of MSC both in basic and clinical studies.  相似文献   

9.
Stalled cell division in precursor bone cells and reduced osteoblast function are considered responsible for the microgravity‐induced bone loss observed during spaceflight. However, underlying molecular mechanisms remain unraveled. Having overcome technological difficulties associated with flying cells in a space mission, we present the first report on the behavior of the potentially osteogenic murine bone marrow stromal cells (BMSC) in a 3D culture system, flown inside the KUBIK aboard space mission ISS 12S (Soyuz TMA‐8 + Increment 13) from March 30 to April 8, 2006 (experiment “Stroma‐2”). Flight 1g control cultures were performed in a centrifuge located within the payload. Ground controls were maintained on Earth in another KUBIK payload and in Petri dishes. Half of the cultures were stimulated with osteo‐inductive medium. Differences in total RNA extracted suggested that cell proliferation was inhibited in flight samples. Affymetrix technology revealed that 1,599 genes changed expression after spaceflight exposure. A decreased expression of cell‐cycle genes confirmed the inhibition of cell proliferation in space. Unexpectedly, most of the modulated expression was found in genes related to various processes of neural development, neuron morphogenesis, transmission of nerve impulse and synapse, raising the question on the lineage restriction in BMSC. J. Cell. Biochem. 111: 442–452, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Bone marrow (BM) from human and rodent species contains a population of multipotential cells referred to as mesenchymal stem cells (MSCs). Currently, MSCs are isolated indirectly by using a culture step and then the generation of fibroblast colony-forming units (CFU-fs). Unprocessed or native BM MSCs have not yet been fully characterised. We have previously developed a direct enrichment method for the isolation of MSCs from human BM by using the CD49a protein (alpha1-integrin subunit). As the CD49a gene is highly conserved in mammals, we have evaluated whether this direct enrichment can be employed for BM cells from rodent strains (rat and mouse). We have also studied the native phenotype by using both immunodetection and immunomagnetic methods and have compared MSCs from mouse, rat and human BM. As is the case for human BM, we have demonstrated that all rodent multipotential CFU-fs are contained within the CD49a-positive cell population. However, in the mouse, the number of CFU-fs is strain-dependent. Interestingly, all rat and mouse Sca-1-positive cells are concentrated within the CD49a-positive fraction and also contain all CFU-fs. In human, the colonies have been detected in the CD49a/CD133 double-positive population. Thus, the CD49a protein is a conserved marker that permits the direct enrichment of BM MSCs from various mammalian species; these cells have been phenotyped as true BM stem cells.  相似文献   

11.
12.
The regeneration potential of mesenchymal stem cells (MSCs) diminishes with advanced age and this diminished potential is associated with changes in cellular functions. This study compared MSCs isolated from the bone marrow of rhesus monkeys (rBMSCs) in three age groups: young (< 5 years), middle (8-10 years), and old (> 12 years). The effects of aging on stem cell properties and indicators of stem cell fitness such as proliferation, differentiation, circadian rhythms, stress response proteins, miRNA expression, and global histone modifications in rBMSCs were analyzed. rBMSCs demonstrated decreased capacities for proliferation and differentiation as a function of age. The production of heat shock protein 70 (HSP70) and heat shock factor 1 (HSF1) were also reduced with increasing age. The level of a core circadian protein, Rev-erb α, was significantly increased in rBMSCs from old animals. Furthermore, analysis of miRNA expression profiles revealed an up-regulation of mir-766 and mir-558 and a down-regulation of mir-let-7f, mir-125b, mir-222, mir-199-3p, mir-23a, and mir-221 in old rBMSCs compare to young rBMSCs. However, there were no significant age-related changes in the global histone modification profiles of the four histone core proteins: H2A, H2B, H3, and H4 on rBMSCs. These changes represent novel insights into the aging process and could have implications regarding the potential for autologous stem cells therapy in older patients.  相似文献   

13.
Ling L  Ni Y  Wang Q  Wang H  Hao S  Hu Y  Jiang W  Hou Y 《Cell biology international》2008,32(9):1091-1098
The great shortage of human hepatic cells makes it desirable to generate extrahepatic stem or precursor cells. In recent years, it has been reported that human multipotential mesenchymal stem cells (hMSCs) differentiate into hepatocyte-like cells. The fetal lung is one of the largest organs containing many MSCs that can be easily obtained. Whether MSCs from fetal lung can differentiate into hepatocytes or bile duct cells is an important issue in basic medicine and clinical application. We isolated fetal lung cells, and expanded and analyzed them. At passage 4, their morphologic, immunophenotyping and cytokine secretions were similar to adult bone marrow-derived MSCs. We conclude that these cells from fetal lung are MSCs, indicating that human fetal lung is an ideal source of hMSCs. hMSCs from fetal lung induced in special differentiation medium showed homogeneous and small polygonal endothelial-like morphology, expressing weak mRNA, as well as Alb and AFP. This implies that hMSCs from fetal lung can differentiate into hepatocyte-like cells.  相似文献   

14.
15.
Embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs) have been studied for years as primary cell sources for regenerative biology and medicine. MSCs have been derived from cell and tissue sources, such as bone marrow (BM), and more recently from ESCs. This study investigated MSCs derived from BM, H1- and H9-ESC lines in terms of morphology, surface marker and growth factor receptor expression, proliferative capability, modulation of immune cell growth and multipotency, in order to evaluate ESC-MSCs as a cell source for potential regenerative applications. The results showed that ESC-MSCs exhibited spindle-shaped morphology similar to BM-MSCs but of various sizes, and flow cytometric immunophenotyping revealed expression of characteristic MSC surface markers on all tested cell lines except H9-derived MSCs. Differences in growth factor receptor expression were also shown between cell lines. In addition, ESC-MSCs showed greater capabilities for cell proliferation, and suppression of leukocyte growth compared to BM-MSCs. Using standard protocols, induction of ESC-MSC differentiation along the adipogenic, osteogenic, or chondrogenic lineages was less effective compared to that of BM-MSCs. By adding bone morphogenetic protein 7 (BMP7) into transforming growth factor beta 1 (TGFβ1)-supplemented induction medium, chondrogenesis of ESC-MSCs was significantly enhanced. Our findings suggest that ESC-MSCs and BM-MSCs show differences in their surface marker profiles and the capacities of proliferation, immunomodulation, and most importantly multi-lineage differentiation. Using modified chondrogenic medium with BMP7 and TGFβ1, H1-MSCs can be effectively induced as BM-MSCs for chondrogenesis.  相似文献   

16.
The biologic characteristics of mesenchymal stem cells (MSCs) isolated from two distinct tissues, bone marrow and adipose tissue were evaluated in these studies. MSCs derived from human and non-human primate (rhesus monkey) tissue sources were compared. The data indicate that MSCs isolated from rhesus bone marrow (rBMSCs) and human adipose tissue (hASCs) had more similar biologic properties than MSCs of rhesus adipose tissue (rASCs) and human bone marrow MSCs (hBMSCs). Analyses of in vitro growth kinetics revealed shorter doubling time for rBMSCs and hASCs. rBMSCs and hASCs underwent significantly more population doublings than the other MSCs. MSCs from all sources showed a marked decrease in telomerase activity over extended culture; however, they maintained their mean telomere length. All of the MSCs expressed embryonic stem cell markers, Oct-4, Rex-1, and Sox-2 for at least 10 passages. Early populations of MSCs types showed similar multilineage differentiation capability. However, only the rBMSCs and hASCs retain greater differentiation efficiency at higher passages. Overall in vitro characterization of MSCs from these two species and tissue sources revealed a high level of common biologic properties. However, the results demonstrate clear biologic distinctions, as well.  相似文献   

17.
Recent evidence suggests that cells with the properties of human mesenchymal stem cells (hMSCs) can be derived from adult peripheral tissues, including adipose tissue, muscle and dermis. We isolated hMSCs from the stromal-vascular portion of subcutaneous adipose tissue from seven adult subjects. These cells could be readily differentiated into cells of the chondrocyte, osteocyte and adipocyte lineage demonstrating their multipotency. We studied the functional properties of hMSCs-derived adipocytes and compared them with adipocytes differentiated from hMSCs obtained from bone marrow (BM-hMSC). The two cell types displayed similar lipolytic capacity upon stimulation with catecholamines, including a pronounced antilipolytic effect mediated through alpha2A-adrenoceptors, a typical trait in human but not rodent fat cells. Furthermore, both cell types secreted the fat cell-specific factors leptin and adiponectin in comparable amounts per time unit. The fat tissue-derived hMSCs retained their differentiation capacity up to at least fifteen passages. We conclude that hMSCs derived from adult human adipose tissue can be differentiated into fully functional adipocytes with a similar, if not identical, phenotype as that observed in cells derived from BM-hMSCs. Human adipose-tissue-derived MSCs could therefore constitute an efficient and easily obtainable renewable cellular source for studies of adipocyte biology.  相似文献   

18.
In this paper we describe an approach that aims to provide fundamental information towards a scientific, biomechanical basis for the use of natural coral scaffolds to initiate mesenchymal stem cells into osteogenic differentiation for transplant purposes. Biomaterial, such as corals, is an osteoconductive material that can be used to home human derived stem cells for clinical regenerative purposes. In bone transplantation, the use of biomaterials may be a solution to bypass two main critical obstacles, the shortage of donor sites for autografts and the risk of rejection with allograft procedures. Bone regeneration is often needed for multiple clinical purposes for instance, in aesthetic reconstruction and regenerative procedures. Coral graft Porites lutea has been used by our team for a decade in clinical applications on over a thousand patients with different bone pathologies including spinal stenosis and mandibular reconstruction. It is well accepted that human bone marrow (hBM) is an exceptional source of mesenchymal stem cells (MSCs), which may differentiate into different cell phenotypes such as osteoblasts, chondrocytes, adipocytes, myocytes, cardiomyocytes and neurons. Isolated MSCs from human bone marrow were induced into osteoblasts using an osteogenic medium enriched with two specific growth factors, FGF9 and vitamin D2. Part of the cultured MSCs were directly transferred and seeded onto coral scaffolds (Porites Lutea) and induced to differentiate into osteoblasts and part were cultured in flasks for osteocell culture. The data support the concept that hBM is a reliable source of MSCs which may be easily differentiated into osteoblasts and seeded into coral as an optimal device for clinical application. Within this project we have also discussed the biological nature of MSCs, their potential application for clinical transplantation and the prospect of their use in gene therapy.  相似文献   

19.
The use of electromagnetic fields (EMFs) to treat nonunion fractures developed from observations in the mid‐1900s. Whether EMF directly regulates the bone marrow mesenchymal stem cells (MSCs), differentiating into osteoblasts or adipocytes, remains unknown. In the present study, we investigated the roles of sinusoidal EMF of 15 Hz, 1 mT in differentiation along these separate lineages using rat bone marrow MSCs. Our results showed that EMF promoted osteogenic differentiation of the stem cells and concurrently inhibited adipocyte formation. EMF increased alkaline phosphatase (ALP) activity and mineralized nodule formation, and stimulated osteoblast‐specific mRNA expression of RUNX2, ALP, BMP2, DLX5, and BSP. In contrast, EMF decreased adipogenesis and inhibited adipocyte‐specific mRNA expression of adipsin, AP‐2, and PPARγ2, and also inhibited protein expression of PPARγ2. These observations suggest that commitment of MSCs into osteogenic or adipogenic lineages is influenced by EMF. Bioelectromagnetics 31:277–285, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号