首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J W Hell  L Edelmann  J Hartinger  R Jahn 《Biochemistry》1991,30(51):11795-11800
The gamma-aminobutyric acid transporter of rat brain synaptic vesicles was reconstituted in proteoliposomes, and its activity was studied in response to artificially created membrane potentials or proton gradients. Changes of the membrane potential were monitored using the dyes oxonol VI and 3,3'-diisopropylthiodicarbocyanine iodide, and changes of the H+ gradient were followed using acridine orange. An inside positive membrane potential was generated by the creation of an inwardly directed K+ gradient and the subsequent addition of valinomycin. Under these conditions, valinomycin evoked uptake of [3H]GABA which was saturable. Similarly, [3H]glutamate uptake was stimulated by valinomycin, indicating that both transporters can be driven by the membrane potential. Proton gradients were generated by the incubation of K(+)-loaded proteoliposomes in a buffer free of K+ or Na+ ions and the subsequent addition of nigericin. Proton gradients were also generated via the endogenous H+ ATPase by incubation of K(+)-loaded proteoliposomes in equimolar K+ buffer in the presence of valinomycin. These proton gradients evoked nonspecific, nonsaturable uptake of GABA and beta-alanine but not of glycine in proteoliposomes as well as protein-free liposomes. Therefore, transporter activity was monitored using glycine as an alternative substrate. Proton gradients generated by both methods elicited saturable glycine uptake in proteoliposomes. Together, our data confirm that the vesicular GABA transporter can be energized by both the membrane potential and the pH gradient and show that transport can be achieved by artificial gradients independently of the endogenous proton ATPase.  相似文献   

2.
A model originally developed for transport of neutral substrates in bacterial systems was tested for its suitability for depicting sucrose transport across the plasmalemma of the maize scutellum cell. The model contains a sucrose—proton symporter, a negatively-charged free carrier and a neutral sucrose—proton—carrier complex. Sucrose transport is driven by the sucrose gradient and by a proton electrochemical gradient set up by a proton-translocating ATPase. The results of experiments on sucrose uptake in scutellum slices are in accord with predictions based on the model. Evidence was obtained for an electrogenic proton pump in the plasmalemma, for sucrose—proton symport and for a sucrose transport mechanism driven by both electrical potential and pH gradients. It was found that treatments (dinitrophenol, N-ethylmaleimide or HCl) causing a net proton influx into the slices also caused an efflux of sucrose. Interpretations of these results compatible with the model are given.  相似文献   

3.
F H Gao  T Abee    W N Konings 《Applied microbiology》1991,57(8):2164-2170
The interaction of the peptide antibiotic nisin with liposomes has been studied. The effect of this interaction was analyzed on the membrane potential (inside negative) and the pH gradient (inside alkaline) in liposomes made from Escherichia coli phosphatidylethanolamine and egg phosphatidylcholine (9:1, wt/wt). The membrane potential and pH gradient were generated by artificial ion gradients or by the oxidation of ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine, and cytochrome c by the beef heart cytochrome c oxidase incorporated in the liposomal membranes. Nisin dissipated the membrane potential and the pH gradient in both types of liposomes and inhibited oxygen consumption by cytochrome c oxidase in proteoliposomes. The dissipation of the proton motive force in proteoliposomes was only to a minor extent due to a decrease of the oxidase activity by nisin. The results in these model systems show that a membrane potential and/or a pH gradient across the membrane enhances the activity of nisin. Nisin incorporates into the membrane and makes the membrane permeable for ions. As a result, both the membrane potential and pH gradient are dissipated. The activity of nisin was found to be influenced by the phospholipid composition of the liposomal membrane.  相似文献   

4.
The interaction of the peptide antibiotic nisin with liposomes has been studied. The effect of this interaction was analyzed on the membrane potential (inside negative) and the pH gradient (inside alkaline) in liposomes made from Escherichia coli phosphatidylethanolamine and egg phosphatidylcholine (9:1, wt/wt). The membrane potential and pH gradient were generated by artificial ion gradients or by the oxidation of ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine, and cytochrome c by the beef heart cytochrome c oxidase incorporated in the liposomal membranes. Nisin dissipated the membrane potential and the pH gradient in both types of liposomes and inhibited oxygen consumption by cytochrome c oxidase in proteoliposomes. The dissipation of the proton motive force in proteoliposomes was only to a minor extent due to a decrease of the oxidase activity by nisin. The results in these model systems show that a membrane potential and/or a pH gradient across the membrane enhances the activity of nisin. Nisin incorporates into the membrane and makes the membrane permeable for ions. As a result, both the membrane potential and pH gradient are dissipated. The activity of nisin was found to be influenced by the phospholipid composition of the liposomal membrane.  相似文献   

5.
ATP hydrolysis-induced proton translocation and electric potential generation have been studied in ATPase proteoliposomes by means of various optical probes. The proteoliposomes consisted of reconstituted ATPase complex and native lipid mixture isolated from the thermophilic cyanobacterium Synechococcus 6716 [Van Walraven et al. (1983) Eur. J. Biochem. 137, 101-106]. The native cartenoids and added oxonol VI served as probes for the electric membrane potential generated by the net charge separation (negative outside, positive inside). Their responses, with similar half-times as 9-tetradecylamino-6-chloro-2-methoxyacridine, are sensitive to valinomycin and stimulated by nigericin, as expected. The proton concentrations of extraliposomal and intraliposomal aqueous spaces were monitored by neutral red and cresol red; for internal measurements these pH indicators were trapped inside the vesicles during detergent dialysis. Internal acidification and external alkalinization induced by ATP hydrolysis are inhibited by nigericin and enhanced by valinomycin; at the commonly used higher valinomycin concentrations the neutral red response becomes transient, while the much slower cresol red response is diminished right from its onset. At smaller preset pH gradients both ATP hydrolysis activity and neutral red response are diminished. At increasing MgCl2 concentrations the neutral red responses are slowed down and the cresol red responses are slightly enhanced; this is observed for both internal and external dye responses. Neutral red permeation through the membrane is insignificant under our experimental conditions but is enhanced at temperatures below the lipid-phase transition. In the case of externally added neutral red the non-permeant buffer Hepes is only effective at high MgCl2 concentration, whereas some external cresol red response is visible only at high MgCl2 concentration in the presence of Hepes. The kinetics of the pH indicator and electric potential probe responses clearly distinguish fast interfacial and intra-membrane proton displacements from slow bulk proton equilibration. The data are summarized in a model that supports the importance of localized proton displacements for the primary energy-transducing events.  相似文献   

6.
Formation of a transmembrane electric potential coupled to ATP hydrolysis is demonstrated in chloroplast ATPase complex containing proteoliposomes. The ATP-induced signals were detected through absorbance changes of the membrane potential-responding dye oxonol VI. They were inhibited by the specific energy-transfer inhibitor, tentoxin and the ionophore valinomycin while stimulated by nigericin. Calibration of the transmembrane potential signal was possible by the application of a proton diffusion potential. The ATP-induced transmembrane potential was estimated to be 40–50 mV.  相似文献   

7.
ATP synthase is the key player of Mitchell's chemiosmotic theory, converting the energy of transmembrane proton flow into the high energy bond between ADP and phosphate. The proton motive force that drives this reaction consists of two components, the pH difference (ΔpH) across the membrane and transmembrane electrical potential (Δψ). The two are considered thermodynamically equivalent, but kinetic equivalence in the actual ATP synthesis is not warranted, and previous experimental results vary. Here, we show that with the thermophilic Bacillus PS3 ATP synthase that lacks an inhibitory domain of the ε subunit, ΔpH imposed by acid-base transition and Δψ produced by valinomycin-mediated K(+) diffusion potential contribute equally to the rate of ATP synthesis within the experimental range examined (ΔpH -0.3 to 2.2, Δψ -30 to 140 mV, pH around the catalytic domain 8.0). Either ΔpH or Δψ alone can drive synthesis, even when the other slightly opposes. Δψ was estimated from the Nernst equation, which appeared valid down to 1 mm K(+) inside the proteoliposomes, due to careful removal of K(+) from the lipid.  相似文献   

8.
ZitB is a member of the cation diffusion facilitator (CDF) family that mediates efflux of zinc across the plasma membrane of Escherichia coli. We describe the first kinetic study of the purified and reconstituted ZitB by stopped-flow measurements of transmembrane fluxes of metal ions using a metal-sensitive fluorescent indicator encapsulated in proteoliposomes. Metal ion filling experiments showed that the initial rate of Zn2+ influx was a linear function of the molar ratio of ZitB to lipid and was related to the concentration of Zn2+ or Cd2+ by a hyperbola with a Michaelis-Menten constant (K(m)) of 104.9 +/- 5.4 microm and 90.1 +/- 3.7 microm, respectively. Depletion of proton stalled Cd2+ transport down its diffusion gradient, whereas tetraethylammonium ion substitution for K+ did not affect Cd2+ transport, indicating that Cd2+ transport is coupled to H+ rather than to K+. H+ transport was inferred by the H+ dependence of Cd2+ transport, showing a hyperbolic relationship with a Km of 19.9 nm for H+. Applying H+ diffusion gradients across the membrane caused Cd2+ fluxes both into and out of proteoliposomes against the imposed H(+) gradients. Likewise, applying outwardly oriented membrane electrical potential resulted in Cd2+ efflux, demonstrating the electrogenic effect of ZitB transport. Taken together, these results indicate that ZitB is an antiporter catalyzing the obligatory exchange of Zn2+ or Cd2+ for H+. The exchange stoichiometry of metal ion for proton is likely to be 1:1.  相似文献   

9.
1. Generation of a transmembrane electric potential difference by oligomycin-sensitive ATPase complex, incorporated into spherical or planar phospholipid membrane, has been demonstrated. To this end, penetrating anion probe and direct voltmeter measurement of electric potential across phospholipid membrane were used. It was found that ATP-induced electric response is sensitive to oligomycin and protonophorous uncouplers. 2. The effect of variations in the phospholipid component of proteoliposomes on the electric generation was studied. It was revealed that the usage of mitochondrial phospholipids and phosphatidylethanolamine allows the highest values of membrane potential to be obtained in the case of ATPase proteoliposomes. In the case of cytochrome oxidase and bacteriorhodopsin proteoliposomes, phosphatidylserine was also shown to be quite suitable. Phosphatidylcholine was absolutely ineffective in all cases. 3. In proteoliposomes, containing both ATPase and bacteriorhodopsin, ATP and light induced generation of the electric field of the same direction. 4. In ATPase + cytochrome oxidase proteoliposomes, ATP hydrolysis and ascorbate oxidation was found to support electric generation of the same direction if cytochrome c was inside vesicles. Oxidation via external cytochrome c resulted in formation of electric field of the direction, opposite to that induced by ATP hydrolysis. 5. The data obtained in experiments with proteoliposomes of different types are discussed. The conclusion is made that conversion of energy of different resources into electric form is a common feature of membraneous energy transducers, which is in agreement with the Mitchellian principle of cellular energetics.  相似文献   

10.
Cytochromec oxidase oxidizes cytochromec and reduces molecular oxygen to water. When the enzyme is embedded across a membrane, this process generates electrical and pH gradients, and these gradients inhibit enzyme turnover. This respiratory control process is seen both in intact mitochondria and in reconstituted proteoliposomes. Generation of pH gradients and their role in respiratory control are described. Both electron and proton movement seem to be implicated. A topochemical arrangement of redox centers, like that in the photosynthetic reaction center and the cytochromebc 1 complex, ensures charge separation as a result of electron movement. Proton translocation does not require such a topology, although it does require alternating access to the two sides of the membrane by proton-donating and accepting groups. The sites of respiratory control within the enzyme are discussed and a model presented for electron transfer and proton pumping by the oxidase in the light of current knowledge of the transmembranous location of the redox centers involved.  相似文献   

11.
《BBA》1985,809(2):236-244
ATP synthesis driven by low pre-established electric potentials and pH gradients is studied in large ATPase proteoliposomes, prepared from the ATPase complex and native lipids from the thermophilic cyanobacterium Synechococcus 6716. Electric potentials and pH gradients were achieved by valinomycin and nigericin, respectively, in the presence of a K+ gradient across the membrane. External base-pulses were also applied. In this system ATP synthesis driven by valinomycin-induced K+ influx, nigericin-induced internal acidification and by external base-pulses is demonstrated. Electric potentials and pH gradients of equivalent size lead to roughly similar ATP synthesis activities. ATP synthesis is optimal at 80–100 nM valinomycin and at 0.75−1 μM nigericin at the proper pre-set ion gradients. Uncoupler and DCCD inhibit ATP synthesis. Prior activation of the complex by thiol agents or trypsin was not required for synthesis activity. The ATP synthesis rate increases with the size of electric potential or pH gradient. The threshold value of the electrochemical gradient for significant ATP synthesis is about 30 mV. ATP production proceeds for more than 60 min. The generation of ionophore-induced electric potentials and pH gradients have been followed by oxonol VI and intraliposomal Neutral red, respectively. The extent of the absorbance changes of both probes is proportional to the size of electric potential or pH gradient. Ionophore-induced oxonol VI and Neutral red responses are stable for at least 30 min. The results are discussed in terms of membrane permeability and vesicle size.  相似文献   

12.
Uptake of 22Na+ and 45Ca2+ into everted membrane vesicles from Escherichia coli was measured with imposed transmembrane pH gradients, acid interior, as driving force. Vesicles loaded with 0.5 M KCl were diluted into 0.5 M choline chloride to create a potassium gradient. Addition of nigericin to produce K+/H+ exchange resulted in formation of a pH gradient. This imposed gradient was capable of driving 45Ca2+ accumulation. In another method vesicles loaded with 0.5 M NH4Cl were diluted into 0.5 M choline chloride, creating an ammonium diffusion potential. A gradient of H+ was produced by passive efflux of NH3. With an ammonium gradient as driving force, everted vesicles accumulated both 45Ca2+ and 22Na+. The data suggest that 22Na+ uptake was via the sodium/proton antiporter and 45Ca2+ via the calcium/proton antiporter. Uptake of both cations required alkaline pHout. A minimum pH gradient of 0.9 unit was needed for transport of either ion, suggesting gating of the antiporters. Octyl glucoside extracts of inner membrane were reconstituted with E. coli phospholipids in 0.5 M NH4Cl. NH4+-loaded proteoliposomes accumulated both 22Na+ and 45Ca2+, demonstrating that the sodium/proton and calcium/proton antiporters could be solubilized and reconstituted in a functional form.  相似文献   

13.
The pH dependence of the antimicrobial and membrane activity of clavanin A, a peptide antibiotic that is rich in histidines and glycines, was analyzed in growth and membrane leakage experiments. Clavanin A more effectively inhibited the growth of the test organism Lactobacillus sake when the pH of the medium was lowered. Whereas the wild-type peptide efficiently released fluorophores from unilamellar vesicles at neutral pH according to a nonspecific permeabilization mechanism, it did not permeabilize model bilayers at low pH. It was therefore suggested that this peptide uses a distinct mode of action under acidic conditions different than that used around neutral pH. However, at low pH, the membrane is still the target for clavanin A, as the peptide collapsed both vital transmembrane proton gradients and ion gradients under these conditions. Clavanin A did not act as a ionophore across phospholipid bilayers, indicating that membrane constituents other than membrane phospholipids are involved in the dissipation of transmembrane ion gradients. Membrane proteins that generate transmembrane ion gradients are suggested to be the targets for clavanin A at low pH. In addition to the histidines, the three glycine residues of clavanin A are shown to play an important role in the specific mode of interaction with these membrane targets. These residues may induce a flexible hydrophobic conformation that allows the peptide to exert different membrane activities. This study demonstrates that clavanin A is a special membrane-active peptide that has access to two markedly distinct pH-dependent modes of actions.  相似文献   

14.
The effect of the transmembrane proton gradient (delta pH) and potential gradient (delta psi) upon the rate and extent of amine accumulation was investigated in chromaffin ghosts. The chromaffin ghosts were formed by hypo-osmotic lysis of isolated bovine chromaffin granules and extensive dialysis in order to remove intragranular binding components and dissipate the endogenous electrochemical gradients. Upon ATP addition to suspensions of chromaffin ghosts, a transmembrane proton gradient alone, a transmembrane gradient alone, or both, could be established, depending upon the compositions of the media in which the ghosts were formed and resuspended. When chloride was present in the medium, addition of ATP resulted in the generation of a transmembrane proton gradient, acidic inside of 1 pH unit (measured by [14C]methylamine distribution), and no transmembrane potential (measured by [14C]-thiocyanate distribution). When ATP was added to chromaffin ghosts suspended in a medium in which chloride was substituted by isethionate, a transmembrane potential, inside positive, of 45 mV and no transmembrane proton gradient, was measured. In each medium, the addition of agents known to affect proton or potential gradients, respectively, exerted a predictable mechanism of action. Accumulation of [14C]epinephrine or [14C]5-hydroxytryptamine was over 1 order of magnitude greater in the presence of the transmembrane proton gradient or the transmembrane potential than in the absence of any gradient and, moreover, was related to the magnitude of the proton or potential gradient in a dose-dependent manner. When ghosts were added to a medium containing chloride and isethionate, both a delta pH and delta psi could be generated upon addition of ATP. In this preparation, the maximal rate of amine accumulation was observed. The results indicate that amine accumulation into chromaffin ghosts can occur in the presence of either a transmembrane proton gradient, or a transmembrane potential gradient, and that the maximal rate of accumulation may exist when both components of the protonmotive force are present.  相似文献   

15.
The transmembrane movement of radiolabeled, nonmetabolizable glucose analogs in Streptococcus mutants Ingbritt was studied under conditions of differing transmembrane electrochemical potentials (delta psi) and pH gradients (delta pH). The delta pH and delta psi were determined from the transmembrane equilibration of radiolabeled benzoate and tetraphenylphosphonium ions, respectively. Growth conditions of S. mutants Ingbritt were chosen so that the cells had a low apparent phosphoenolpyruvate (PEP)-dependent glucose:phosphotransferase activity. Cells energized under different conditions produced transmembrane proton potentials ranging from -49 to -103 mV but did not accumulate 6-deoxyglucose intracellularly. An artificial transmembrane proton potential was generated in deenergized cells by creating a delta psi with a valinomycin-induced K+ diffusion potential and a delta pH by rapid acidification of the medium. Artificial transmembrane proton potentials up to -83 mV, although producing proton influx, could not accumulate 6-deoxyglucose in deenergized cells or 2-deoxyglucose or thiomethylgalactoside in deenergized, PEP-depleted cells. The transmembrane diffusion of glucose in PEP-depleted, KF-treated cells did not exhibit saturation kinetics or competitive inhibition by 6-deoxyglucose or 2-deoxyglucose, indicating that diffusion was not facilitated by a membrane carrier. As proton-linked membrane carriers have been shown to facilitate diffusion in the absence of a transmembrane proton potential, the results therefore are not consistent with a proton-linked glucose carrier in S. mutans Ingbritt. This together with the lack of proton-linked transport of the glucose analogs suggests that glucose transmembrane movement in S. mutans Ingbritt is not linked to the transmembrane proton potential.  相似文献   

16.
The pH dependence of electron and proton re-equilibration upon CO photolysis from two-electron-reduced aa3 oxidase was followed by time-resolved electrometry and optical spectroscopy. Optical spectroscopy on soluble Paracoccus denitrificans enzyme at alkaline pH revealed a slow (1 ms) component of electron re-equilibration coupled to the release of protons from the catalytic site. In the work [Br?ndén, M., et al. (2003) Biochemistry 42, 13178-13184], it was proposed that this proton is released from a water molecule in the catalytic site, located deep in the membrane dielectric. Movement of charged particles such as protons across the dielectric should create an electric potential. However, recording of the time course of the potential generation did not show any potential development in the millisecond time domain, but instead, potential generation was found with an apparent time constant of 50-100 micros. This potential was generated upon proton release from the level of the binuclear catalytic site through the K-channel, because mutation in this channel abolishes the potential generation altogether. The apparent inconsistency between results from optical spectroscopy and electrometry was solved by optical experiments on the membrane-incorporated enzyme. Reconstituting the enzyme into proteoliposomes speeds up the slow electron redistribution process by a factor of 10 and shows the same time constant as potential generation. The possible mechanism of such dramatic change in the rate of proton transfer is discussed.  相似文献   

17.
The H(+)-ATPase from chloroplasts (CF0F1) was isolated, purified and reconstituted into liposomes from phosphatidylcholine/phosphatidic acid. A transmembrane pH difference, delta pH, and a transmembrane electric potential difference, delta psi, were generated by an acid/base transition. The rate of ATP synthesis was measured at constant delta pH and constant delta psi as a function of temperature between 5 degrees C and 45 degrees C. The activation energy was 55 kJ mol-1. CF0F1 was coreconstituted with bacteriorhodopsin at a molar ratio of approximately 1:170 in the same type of liposomes. Illumination of the proteoliposomes leads to proton transport into the vesicles generating a constant delta pH = 1.8. The dependence of the rate of ATP synthesis on ADP concentration was measured with CF0F1 in the oxidized state, E(ox), and in the reduced state, E(red). The results can be described by Michaelis-Menten kinetics with the following parameters: Vmax = 0.5 s-1, Km = 8 microM for E(ox) and Vmax = 2.0 s-1, Km = 8 microM for E(red).  相似文献   

18.
Lipoprotein complexes, containing (1) bacteriochlorophyll reaction centers, (2) bacteriochlorophyll light-harvesting antenna or (3) both reaction centers and antenna, have been isolated from chromatophores of non-sulphur purple bacteria Rhodospirillum rubrum by detergent treatments. The method of reconstituting the proteoliposomes containing these complexes is described. Being associated with planar azolectin membrane, proteoliposomes as well as intact chromatophores were found to generate a light-dependent transmembrane electric potential difference measured by Ag/AgCl electrodes and voltmeter. The direction of the electric field in proteoliposomes can be regulated by the addition of antenna complexes to the reconstitution mixture. The reaction center complex proteoliposomes generate an electric field of a direction opposite to that in chromatophores, whereas proteoliposomes containing reaction center complexes and a sufficient amount of antenna complexes produce a potential difference as in chromatophores. ATP and inorganic pyrophosphate, besides light, were shown to be usable as energy sources for electric generation in chromatophores associated with planar membrane.  相似文献   

19.
1. Photoinduced generation of electric current by bacteriorhodopsin, incorporated into the planar phospholipid membrane, has been directly measured with conventional electrometer techniques. 2. Two methods for bacteriorhodopsin incorporation have been developed: (a) formation of planar membrane from a mixture of decane solution of phospholipids and of the fraction of violet fragments of the Halobacterium halobium membrane (bacteriorhodopsin sheets), and (b) adhesion of bacteriorhodopsin-containing reconstituted spherical membranes (proteoliposomes) to the planar membrane in the presence of Ca2+ or some other cations. In both cases, illumination was found to induce electric current generation directed across the planar membrane, an effect which was measured by macroelectrodes immersed into electrolyte solutions on both sides of the membrane. 3. The maximal values of the transmembrane electric potential were of about 150 mV at a current of about 10(-11) A. The electromotive force measured by means of counterbalancing the photoeffect by an external battery, was found to reach the value of 300 mV. 4. The action spectrum of the photoeffect coincides with the bacteriorhodopsin absorption spectrum (maximum about 570 nm). 5. Both components of the electrochemical potential of H+ ions (electric potential and delta pH) across the planar membrane affect the bacteriorhodopsin photoelectric response in a fashion which could be expected if bacteriorhodopsin were a light-dependent electrogenic proton pump. 6. La3+ ions were shown to inhibit operation of those bacteriorhodopsin which pump out H+ ions from the La3+-containing compartment. 7. The photoeffect, mediated by proteoliposomes associated with thick planar membrane, is decreased by gramicidin A at concentrations which do not influence the planar membrane resistance in the light. On the contrary, a protonophorous uncoupler, trichlorocarbonylcyanidephenylhydrazone, decreases the photoeffect only if it is added at a concentration lowering the light resistance. The dark resistance is shown to be higher than the light one, and decreases to the light level by gramicidin. 8. A simple equivalent electric scheme consistent with the above results has been proposed.  相似文献   

20.
To directly characterize the bioenergetic properties of the cytochrome bd terminating branch of the Azotobacter vinelandii electron transport chain, the purified cytochrome bd oxidase was reconstituted into a phospholipid environment consisting of phosphatidylethanolamine and phosphatidylglycerol (3:1). The average diameter of the proteoliposomes after extrusion through a polycarbonate membrane was 94 +/- 4 nm. Initiation of respiration upon the addition of 20 microM ubiquinone-1 to proteoliposomes loaded with the pH-sensitive dye pyranine resulted in an immediate alkalization of the vesicle lumen by an average pH change of 0.11 unit. This pH gradient was readily collapsed upon the addition of nigericin, carbonyl cyanide p-(tri-fluoromethoxy) phenyl-hydrazone, gramicidin, Triton X-100, or 2-heptyl-4-hydroxyquinoline N-oxide (HQNO). Proteoliposomal respiration initiated in the presence of the potentiometric membrane dye rhodamine 123 caused the generation of a transmembrane potential; the potential was collapsed upon the addition of either valinomycin or HQNO. The formation of both pH and potential gradients during turnover demonstrates that the A. vinelandii cytochrome bd oxidase is coupled to energy conservation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号