首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Competition is a key process in plant populations and communities. We thus need, if we are to predict the responses of ecological systems to environmental change, a comprehensive and mechanistic understanding of plant competition. Considering competition, however, only at the population level is not sufficient because plant individuals usually are different, interact locally, and can adapt their behaviour to the current state of themselves and of their biotic and abiotic environment. Therefore, simulation models that are individual-based and spatially explicit are increasingly used for studying competition in plant systems. Many different individual-based modelling approaches exist to represent competition, but it is not clear how good they are in reflecting essential aspects of plant competition. We therefore first summarize current concepts and theories addressing plant competition. Then, we review individual-based approaches for modelling competition among plants. We distinguish between approaches that are used for more than 10 years and more recent ones. We identify three major gaps that need to be addressed more in the future: the effects of plants on their local environment, adaptive behaviour, and below-ground competition. To fill these gaps, the representation of plants and their interactions have to be more mechanistic than most existing approaches. Developing such new approaches is a challenge because they are likely to be more complex and to require more detailed knowledge and data on individual-level processes underlying competition. We thus need a more integrated research strategy for the future, where empirical and theoretical ecologists as well as computer scientists work together on formulating, implementing, parameterization, testing, comparing, and selecting the new approaches.  相似文献   

2.
Abstract. 1. A laboratory competition experiment is described in which the growth and development rates of larvae of the damselfly Ischnura elegans (Lind.) were measured over an entire instar.
2. Two larval instars which commonly occur together in the field were used in the experiment; they were maintained with a superabundance of prey and either larvae from the same or the larger/smaller instar.
3. Small larvae suffered increased development times and decreased size increases at the moult in the presence of large larvae but similar interference effects were not evident when these smaller larvae were in the presence of other small larvae.
4. Development time and size increases of large larvae were not significantly affected by the presence of small larvae.
5. Irrespective of the instar combinations investigated, interference effects were reduced when there were more perches available, although in only a few cases was this reduction significant.
6. The consequences of the asymmetric competition reported in the experiment for the study of lifetime reproductive success in damselflies are discussed. Late emerging adults may incur reduced reproductive success.  相似文献   

3.
A plant's morphology is both strongly influenced by local light availability and, simultaneously, strongly influences this local light availability. This reciprocal relationship is complex, but lies at the heart of understanding plant growth and competition. Here, we develop a sub-individual-based simulation model, cast at the level of interacting plant components. The model explicitly simulates growth, development and competition for light at the level of leaves, branches, etc., located in 3D space. In this way, we are able to explore the manner in which the low-level processes governing plant growth and development give rise to individual-, cohort-, and community-level phenomena. In particular, we show that individual-level trade-offs between growing up and growing out arise naturally in the model, and robustly give rise to cohort-level phenomena such as self-thinning, and community processes such as the effect of ecological disturbance on the maintenance of biodiversity. We conclude with a note on our methodology and how to interpret the results of simulation models such as this one.  相似文献   

4.
Can a difference in the heights at which plants place their leaves, a pattern we call canopy partitioning, make it possible for two competing plant species to coexist? To find out, we examine a model of clonal plants living in a nonseasonal environment that relates the dynamical behavior and competitive abilities of plant populations to the structural and functional features of the plants that form them. This examination emphasizes whole plant performance in the vertical light gradient caused by self-shading. This first of three related papers formulates a prototype single species Canopy Structure Model from biological first principles and shows how all plant properties work together to determine population persistence and equilibrium abundance. Population persistence is favored, and equilibrium abundance is increased, by high irradiance, high maximum photosynthesis rate, rapid saturation of the photosynthetic response to increased irradiance, low tissue respiration rate, small amounts of stem and root tissue necessary to support the needs of leaves, and low density of leaf, stem, and root tissues. In particular, equilibrium abundance decreases as mean leaf height increases because of the increased cost of manufacturing and maintaining stem tissue. All conclusions arise from this formulation by straightforward analysis. The argument concludes by stating this formulation's straightforward extension, called a Canopy Partitioning Model, to two competing species.  相似文献   

5.
Berger  Uta  Hildenbrandt  Hanno 《Plant Ecology》2003,167(1):89-96
We simulated the self-thinning of Rhizophora mangle mangrove forests with the spatially explicit simulation model KiWi. This model is an application of the field-of-neighbourhood (FON) approach, which describes an individual tree by a competition function defined on the zone of influence (ZOI) around the stem. The FON causes growth depression of the trees involved. Sustained growth depression results in tree death. We propose a subdivision of the biomass density trajectories (bdt), obtained during the thinning process, into four segments related to characteristic shapes of the stem diameter distribution of the cohort. A positive skewness of the stem diameter distribution, indicating that the majority of the individuals are small and hindered in growth, is necessary for the occurrence of a linear segment within the bdt, the so-called 'self-thinning line'. This segment is the third bdt segment according to our classification. It is reached when the positive skewness of the stem diameter distribution is maximal and ends when the skewness reaches its second zero transition. The thinning line is therefore linked to the homogenisation process, which forces the symmetry of the stem distribution. We show that the ongoing search for a universal slope for the linear segment of the biomass-density trajectory (bdt) cannot succeed, since it is species-specific and may also be site-dependent. The slope increases with increasing competition strength of the individuals. Nevertheless, the lower limit of the slope is pre-defined by geometrical constraints and modified by the actual strength of the neighbourhood competition. Although the simulations were all carried out with growth parameters of the mangrove species Rhizophora mangle, our results should be qualitatively valid and form a plausible theoretical framework to account for different biomass-density trajectories.  相似文献   

6.
We examine the influence of canopy partitioning on the outcome of competition between two plant species that interact only by mutually shading each other. This analysis is based on a Kolmogorov-type canopy partitioning model for plant species with clonal growth form and fixed vertical leaf profiles (Vance and Nevai in J. Theor. Biol., 2007, to appear). We show that canopy partitioning is necessary for the stable coexistence of the two competing plant species. We also use implicit methods to show that, under certain conditions, the species’ nullclines can intersect at most once. We use nullcline endpoint analysis to show that when the nullclines do intersect, and in such a way that they cross, then the resulting equilibrium point is always stable. We also construct surfaces that divide parameter space into regions within which the various outcomes of competition occur, and then study parameter dependence in the locations of these surfaces. The analysis presented here and in a companion paper (Nevai and Vance, The role of leaf height in plant competition for sunlight: analysis of a canopy partitioning model, in review) together shows that canopy partitioning is both necessary and, under appropriate parameter values, sufficient for the stable coexistence of two hypothetical plant species whose structure and growth are described by our model. A. L. Nevai was supported in part by the National Institutes of Health, National Research Service Award (T32-GM008185) from the National Institute of General Medical Sciences (NIGMS).  相似文献   

7.
Although clonal plants comprise most of the biomass of several widespread ecosystems, including many grasslands, wetlands, and tundra, our understanding of the effects of clonal attributes on community patterns and processes is weak. Here we present the conceptual basis for experiments focused on manipulating clonal attributes in a community context to determine how clonal characteristics affect interactions among plants at both the individual and community levels. All treatments are replicated at low and high density in a community density series to compare plant responses in environments of different competitive intensity. We examine clonal integration, the sharing of resources among ramets, by severing ramets from one another and comparing their response to ramets with intact connections. Ramet aggregation, the spacing of ramets relative to each other, is investigated by comparing species that differ in their natural aggregation (either clumped growth forms, with ramets tightly packed together, or runner growth forms, with ramets loosely spread) and by planting individual ramets of all species evenly spaced throughout a mesocosm. We illustrate how to test predictions to examine the influence of these two clonal traits on competitive interactions at the individual and community levels. To evaluate the effect of clonal integration on competition, we test two predictions: at the individual level, species with greater clonal integration will be better individual-level competitors, and at the community level, competition will cause a greater change in community composition when ramets are integrated (connected) than when they are not. For aggregation we test at the individual level: clumped growth forms are better competitors than runner growth forms because of their ability to resist invasion, and at the community level: competition will have a greater effect on community structure when ramets are evenly planted. An additional prediction connects the individual- and community-level effects of competition: resistance ability better predicts the effects of competition on relative abundance in a community than does invasion ability. We discuss additional experimental design considerations as revealed by our ongoing studies. Examining how clonal attributes affect both the individual- and community-level effects of competition requires new methods and metrics such as those presented here, and is vital to understanding the role of clonality in community structure of many ecosystems.  相似文献   

8.
Predator-mediated interactions among the seeds of desert plants   总被引:2,自引:0,他引:2  
J. A. Veech 《Oecologia》2000,124(3):402-407
In theory, seed predators are capable of inducing indirect interactions among the seeds they consume. However, empirical evidence of predator-mediated interactions among seeds is rare. Rodents in the Heteromyidae are highly granivorous and therefore likely to induce indirect interactions among the seeds of desert plants. The indirect interactions may be in the form of apparent competition and apparent mutualism between seeds within a patch. Apparent competition exists when the survival of seeds of a focal species is lessened because of the presence of additional seeds of other species in the patch. Apparent mutualism exists when the presence of the other seeds results in an increase in survival of seeds of the focal species. By measuring seed removal from trays placed in the field, apparent competition between the seeds of several plant species was detected. Apparent mutualism might also exist, but there was no strong evidence of it. Apparent competition appeared most likely to occur among the species whose seeds were the most heavily predated. For instance, predation on seeds of Astragalus cicer, Oryzopsis hymenoides, and Sphaeralcea coccinea was substantial with more than 50% of the seeds removed from the trays, on average. The intensity of apparent competition (measured by the indirect effect, IS) between these species and two others was significant; IS ranged from –0.02 to –0.39 on a scale of 0 to –1. This indicates that, in some communities, indirect effects are most likely to exist when direct effects are strong. Received: 5 August 1999 / Accepted: 2 March 2000  相似文献   

9.
Abstract.
  • 1 Competition in cattle dung pads between two dung beetles, Onthophagus ferox Harold and Onthophagus binodis Thunberg, and the bush fly, Musca vetustissima Walker, was investigated in laboratory experiments, to determine why spring fly abundance in the field did not fall following the introduction of O. binodis.
  • 2 At low beetle densities, the number of eggs laid by each species was reduced by the second species. A similar amount of dung was buried by each species alone or by both together.
  • 3 At high beetle densities O. binodis egg production was substantially affected by each additional O.ferox, but O.ferox egg production was not affected by each additional O.binodis. Asymmetric competition occurred because O.ferox buried more dung than O.binodis, and a greater proportion in day 1 (pre-emptive dung burial).
  • 4 O.ferox caused greater M. vetustissima egg-puparia mortality than O. binodis. Mortality mostly occurred in young M. vetustissima larvae less than 1 day old. Total egg-puparia fly mortality was correlated better with the dung buried on day 1 than dung buried on day 8 (pre-emptive dung burial). O.binodis did not add to fly mortality by O.ferox at high densities because of asymmetric competition between the beetles.
  相似文献   

10.
1. Crops are often colonised by aphids having different life-history traits, and the aphids and their offspring compete for the shared resource. The intraspecific competition and dispersal characteristics of two strains (A and B) of the cotton aphid Aphis gossypii on cucumber were examined in a greenhouse study. Strain A normally feeds on cucumber, whereas strain B originated from melon but develops on cucumber. Both strains reproduce exclusively via parthenogenesis and can be discriminated using molecular markers. 2. The strains were released at the same time on different plants in a greenhouse. Total density and their dispersion within and between plants were recorded through time, and the frequency of each strain was assessed using DNA fingerprinting. The Lotka–Volterra competition model was used to test for inter-strain competition and to estimate its intensity. 3. Strain A had the highest rate of increase and carrying capacity, and became the most frequent strain, nearly displacing strain B. Strain B was the most common only on the plants it infested first. The competition was unbalanced as strain B was affected strongly by strain A, but strain A was only affected minimally by strain B. This asymmetrical relationship for strain B was not due only to competition for the shared resource. 4. Such competition may in part explain the reduction of genetic polymorphism observed by others in the field where colonising strains coming from different hosts compete and some are eliminated. Polymorphism in A. gossypii populations in nature is thought to be maintained by heterogeneous patches of hosts differentially favourable for different clones.  相似文献   

11.
In the Chaîne des Puys, a mid-elevation volcanic mountain of the French Massif Central, Scots pine proves to be an invasive species colonizing abandoned lawns or heathlands, and forms in a few years monospecific natural forests. Most of the abandonment occurred 30 to 40 years ago and this process has now stopped. Thus, we lack data on the very first phase of tree colonization. We anticipate that a simulation tool could bring an appreciable help in (i) rebuilding the entire colonization process – including the initial phase – of pine settlement and (ii) answering questions about the origin of the narrow and unimodal distributions of age of pine stands we observed. In addition, such a simulator could help managers to forecast extension of Scots pine and to predict growth and evolution of present secondary forests. A spatially explicit individual-based model is presented. The model takes into account both space and time and includes growth of trees, seed production and seed dispersal, death and competition between individuals. The influence of the initial parameters are analyzed and elements of validation given. The model was then used to predict tree settlement and stand establishment using the initial conditions from a natural stand studied in the field whose characteristics before abandonment were known (number and age-distribution of trees, location of mother trees, time of abandonment). Three simulations were achieved by using the same initial conditions but following different scenarios for the recruitment process. The scenario of a fluctuating resistance of the resident vegetation (that controls the susceptibility of the environment to tree establishment) seemed as one of the most probable to explain the actual stand characteristics. We thus concluded that dynamic models could be improved by taking into account the resistance of the vegetation to colonization as a fluctuating parameter instead of a static and permanent attribute.  相似文献   

12.
The effects of competition on the genetic composition of natural populations are not well understood. We combined demography and molecular genetics to study how intraspecific competition affects microevolution in cohorts of volunteer plants of cassava (Manihot esculenta) originating from seeds in slash-and-burn fields of Palikur Amerindians in French Guiana. In this clonally propagated crop, genotypic diversity is enhanced by the incorporation of volunteer plants into farmers' stocks of clonal propagules. Mortality of volunteer plants was density-dependent. Furthermore, the size asymmetry of intraspecific competition increased with local clustering of plants. Size of plants was correlated with their multilocus heterozygosity, and stronger size-dependence of survival in clusters of plants, compared with solitary plants, increased the magnitude of inbreeding depression when competition was severe. The density-dependence of inbreeding depression of volunteer plants helps explain the high heterozygosity of volunteers that survive to harvest time and thus become candidates for clonal propagation. This effect could help favour the maintenance of sex in this 'vegetatively' propagated crop plant.  相似文献   

13.
Local competitive interactions strongly influence plant community dynamics. To maintain their performance under competition, clonal plants may plastically modify their network architecture to grow in the direction of least interference. The adaptive value of this plastic avoidance response may depend, however, on traits linked with the plant’s structural blueprint and ontogeny. We tested this hypothesis using virtual populations. We used an Individual Based Model to simulate competitive interactions among clones within a plant population. Clonal growth was studied under three competition intensities in plastic and non-plastic individuals. Plasticity buffered the negative impacts of competition at intermediate densities of competitors by promoting clone clumping. Success despite competition was promoted by traits linked with (1) the plant’s structural blueprint (weak apical dominance and sympodial growth) and (2) ontogenetic processes, with an increasing or a decreasing dependence of the elongation process on the branch generation level or length along the competition intensity gradient respectively. The adaptive value of the plastic avoidance response depended on the same traits. This response only modulated their importance for clone success. Our results show that structural blueprint and ontogeny can be primary filters of plasticity and can have strong implications for evolutionary ecology, as they may explain why clonal plants have developed many species-specific plastic avoidance behaviours.  相似文献   

14.
The challenge hypothesis posits that acute increases in testosterone (T) during male-male competition enhance performance and survivability while limiting the physiological costs of consistently high T. Human challenge hypothesis research focuses on young men in industrial populations, who have higher baseline T levels than men in subsistence populations. We tested whether the Tsimane, pathogenically stressed forager-horticulturalists of the Bolivian Amazon, would express acute T increases in response to physical competition. Saliva was collected from 88 Tsimane men (aged 16-59 years) before and after a competitive soccer match. Tsimane men had significantly lower baseline levels of T (β = -0.41, p < 0.001) when compared with age-matched United States (US) males. Linear mixed-effects models were used to establish that T increased significantly immediately following competition (β = 0.23, p < 0.001), remaining high 1 h later (β = 0.09, p = 0.007); equivalent to 30.1 and 15.5 per cent increases in T, respectively. We did not find larger increases in T among winners (p = 0.412), although T increases were positively associated with self-rated performance (β = 9.07, p = 0.004). These results suggest that despite lower levels of T than US males, Tsimane males exhibit acute increases in T at the same relative magnitude reported by studies in industrialized settings, with larger increases in T for those who report better individual performance.  相似文献   

15.
Plant interactions are suggested to shift from competition to facilitation and collapse with increasing grazing pressure. The existence of this full range of plant interactions and the role of underlying mechanisms (i.e. release from competition and protecting effect) in response to herbivory remains poorly documented and mainly described in terrestrial systems. We use a large grazing disturbance gradient (five levels of grazing) to test its effect on the outcome of plant interactions and underlying mechanisms in freshwater ecosystems. In a mesocosm experiment, we manipulated the presence of neighbouring plants to test their negative (competition) or protective (facilitation) effects on target plants along the grazing pressure gradient. We predicted that plant interactions 1) shift from competition to indirect facilitation with increased grazing pressure, 2) indirect facilitation collapses at high levels of grazing, 3) release from competition mainly drives the outcome in lowly grazed conditions and, 4) decreased protection occurs in highly grazed conditions responsible for the collapse of facilitation. This study shows the occurrence of the full range of outcomes in plant interactions under a wide spectrum of grazing pressure and indicates how the complex combination of underlying mechanisms shapes variations in plant interactions. We show that both, the release from competition and the increased protection by neighbouring plants drove the shift from competition to indirect facilitation. Declined protection by neighbouring plants resulted in a collapse of indirect facilitation for survival under intense herbivory. Our study provides the first experimental evidence of indirect facilitation structuring freshwater ecosystems thereby validating important ecological concepts mainly developed for terrestrial ecosystems.  相似文献   

16.
Biocatalytic hydrolysis of meso and racemic aryl- and alkyl-oxiranes was accomplished by employing the epoxide hydrolase activity of the soluble fraction of Vicia sativa seedlings. Whereas meso epoxides were not hydrolyzed by this fraction, racemic compounds were transformed into the corresponding diols by formal anti-stereoselective water attack. Both substrate and product enantioselectivity were strongly influenced by the chains length and the presence of a hydroxyl group.  相似文献   

17.
Studies of facilitative interactions as drivers of plant richness along environmental gradients often assume the existence of an overarching stress gradient that equally affects the performance of all the species in a given community. However, co-existing species differ in their ecophysiological adaptations, and do not experience the same stress level under particular environmental conditions. Moreover, these studies assume a unimodal relationship between richness and biomass, which is not as general as previously thought. We ignored these assumptions to assess changes in plant–plant interactions and their effect on local species richness across environmental gradients in semi-arid areas of Spain and Australia. We aimed to understand the relative importance of direct (microhabitat amelioration) and indirect (changes in the competitive relationships among the understorey species: niche segregation, competitive exclusion or intransitivity) mechanisms that might underlie the effects of nurse plants on local species richness. By jointly studying these direct and indirect mechanisms using a unifying framework, we found that nurse plants (trees, shrubs and tussock grasses) increased local richness not only by expanding the niche of neighbouring species but also by increasing niche segregation among them, though the latter was not important in all cases. The outcome of the competition-facilitation continuum varied depending on the study area, likely because the different types of stress gradient considered. When driven by both rainfall and temperature, or rainfall alone, the community-wide importance of nurse plants remained constant (Spanish sites), or showed a unimodal relationship along the gradient (Australian sites). This study expands our understanding of the relative roles of plant–plant interactions and environmental conditions as drivers of local species richness in semi-arid environments. The results can also be used to refine predictions about the response of plant communities to environmental change, and to clarify the relative importance of biotic interactions as drivers of such responses.  相似文献   

18.
Documenting the basic patterns of biodiversity and accurately determining the priority areas are the first steps for conservation studies. Threatened species and IUCN (International Union for Conservation of Nature) Red Lists are among the widely used tools to identify protected areas. Turkey is one of the most important biodiversity centres in the world. The plant diversity of Turkey with over 30% endemic species of approximately 12000 natural vascular plant taxa is well documented through use of a Grid System. However, Turkey has suffered heavy anthropogenic effects having been a settlement for many civilisations throughout the history of humankind. Therefore, Turkey needs a quantitative evaluation of the importance of different grid squares for conserving plant diversity. This paper offers a quantitative approach for aiding the identification of priority areas for biodiversity conservation by analysing the threatened plants in each grid square in terms of endemism, risk categories and distribution characteristics. The grid squares (nearly 220 x 170 km2) were then classified within four different groups in terms of their conservation importance. This national-level information can be used for further research and decision-making processes for conservation planning.  相似文献   

19.
20.
Little is known of the foraging abilities of children in modern cultures, especially when children forage in groups. Here we present a test of optimal foraging theory in groups of street children working for money. The children we observed were selling bottles of water to drivers distributed in two lanes at a crossroad of Istanbul, Turkey. As predicted by the ideal free distribution (a model of optimal group foraging), the ratio of children working in the two lanes was sensitive to the ratio of cars (and therefore the ratio of potential buyers) present in each lane. Deviations from the ideal free model arose largely from numerical restrictions on the set of possible ratios compatible with a small group size. When these constraints were taken into account, optimal behavior emerged as a robust aspect of the children's group distribution. Our results extend to human children aspects of group foraging that were previously tested in human adults or other animal species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号