首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
小干扰RNAs(siRNAs)能够有效降解具有互补序列的RNA.在SARS-CoV的基因组RNA和所有亚基因组RNA的5′端均有一段共同的leader序列,而且该leader序列在不同的病毒分离物中高度保守,因此leader序列可作为一个用于抑制SARS-CoV复制的有效靶点.研究表明,针对leader序列化学合成的siRNA和DNA载体表达的shRNA都可以有效抑制SARS-CoV mRNA的表达.Leader序列特异的siRNA或shRNA不仅可以有效抑制leader与报告基因EGFP融合基因的表达,而且还可以有效抑制leader与刺突蛋白(spikeprotein)、膜蛋白(membrane protein)和核衣壳蛋白(nucleocapsid protein)基因的融合转录产物的表达.结果表明,针对leader序列的RNA干扰可以发展成为一种抗SARS-CoV治疗的有效策略.  相似文献   

2.
3.
4.
两种高效 RNA 干涉载体系统的构建及应用   总被引:1,自引:0,他引:1  
在真核细胞基因功能研究中, RNA 干涉 (RNAi) 已成为一种强有力的选择性沉默基因表达的实验工具. 建立一套可在哺乳动物培养细胞中高效、经济地表达 siRNA 的载体系统是 RNA 干涉研究的必要前提之一. 从 HepG2 细胞基因组 DNA 中克隆得到 H1 全长启动子 (374 bp),以之为基础构建了两套 RNA 干涉载体系统, pSL 和带有绿色荧光蛋白 (EGFP) 标签的 pESL ,并对 p53 基因进行了相应的 RNA 干涉研究. 干涉质粒瞬时转染 HepG2 细胞后,分别利用半定量 RT-PCR 和蛋白质印迹检测 p53 表达水平. 与商品化载体 pSilencerTM 3.1-H1 hygro 相比, pSL 和 pESL 对 p53 基因表达具有更高的干涉效率. 结果显示:干涉载体 pSL 和 pESL 能高效特异地下调目的基因表达,可作为哺乳动物中基因功能分析的有效工具.  相似文献   

5.
A heat shock inducible and inheritable RNA interference (RNAi) system was developed in the silkworm (Bombyx mori). RNAi transgenic silkworms were generated by injecting silkworm eggs with a piggyBac transposon plasmid carrying RNAi sequence against target gene driven by the Drosophila heat shock protein 70 (HSP70) promoter and the helper plasmid expressing piggyBac transposase. The transgenic EGFP gene and the endogenous eclosion hormone (EH) gene were chosen respectively as the target genes. In the RNAi transgenic silkworms, heat shock at 42 degrees C significantly and specifically reduced the expression of EGFP or EH gene in silkworms according to the corresponding RNAi targeting sequence but not in silkworms with the irrelevant RNAi sequence demonstrating the efficiency and specificity of the RNAi effect. Heat shock in the pupal stage hampered pupal-adult eclosion and reduced egg fertility in EH RNAi transgenic silkworms but not in the wild type or EGFP RNAi transgenic silkworms. The establishment of this heat inducible and inheritable conditional RNA interference system in silkworms provided an approach for the first time to dissect the functions of target genes in silkworms at different stages.  相似文献   

6.
UDP-glucose dehydrogenase (UGDH) catalyzes two oxidations of UDP-glucose to yield UDP-glucuronic acid. Pathological over-production of extracellular matrix components may be linked to the availability of UDP-glucuronic acid, therefore UGDH is a potential therapeutic target. RNA interference (RNAi) has been adapted to knock down the expression of human UGDH. A UGDH siRNA plasmid was constructed using a pRNA-U6.1/Neo vector and transfected into breast cancer cells, ZR-75-1, with an efficiency of up to 50%. Western blot analysis showed that the UGDH expression was efficiently knocked down at protein levels by RNAi in ZR-75-1 cells.  相似文献   

7.
Specific and potent RNAi in the nucleus of human cells   总被引:13,自引:0,他引:13  
  相似文献   

8.
9.
The RNA interference pathway functions as an antiviral defense in invertebrates. In order to generate a phenotypic marker which "senses" the status of the RNAi pathway in Aedes aegypti, transgenic strains were developed to express EGFP and DsRED marker genes in the eye, as well as double-stranded RNA homologous to a portion of the EGFP gene. Transgenic "sensor" mosquitoes exhibited robust eye-specific DsRED expression with little EGFP, indicating RNAi-based silencing. Cloning and high-throughput sequencing of small RNAs confirmed that the inverted-repeat transgene was successfully processed into short-interfering RNAs by the mosquito RNAi pathway. When the A. aegypti homologues of the genes DCR-2 or AGO-2 were knocked down, a clear increase in EGFP fluorescence was observed in the mosquito eyes. Knockdown of DCR-2 was also associated with an increase in EGFP mRNA levels, as determined by Northern blot and real-time PCR. Knockdown of AGO-3, a gene involved in the germline-specific piRNA pathway, did not restore EGFP expression at either the mRNA or protein level. This transgenic sensor strain can now be used to identify other components of the mosquito RNAi pathway and has the potential to be used in the identification of arboviral suppressors of RNAi.  相似文献   

10.
Subtype- and species-specific knockdown of PKC using short interfering RNA   总被引:20,自引:0,他引:20  
RNA interference (RNAi), the targeted mRNA degradation induced by double-stranded RNA (dsRNA), is a powerful tool for analyzing gene function in many organisms. Recently, it has been shown that RNAi is also applicable to cultured mammalian cells by using short interfering RNA (siRNA) [Nature 411 (2001) 494]. To examine whether this siRNA method is useful for analyzing the subtype-specific functions of protein kinase C (PKC), we first prepared siRNAs which target human alphaPKC and human deltaPKC and applied them into mammalian cells to suppress the expression of endogenous alphaPKC and deltaPKC, respectively. Each siRNA for alpha or deltaPKC specifically suppressed the endogenous expression of corresponding PKC subtype in human-derived cell lines such as HEK-293 and HeLa cells, but not in cells derived from rat species. The suppression level of deltaPKC reached maximum 48-72h after the transfection of siRNA. In addition, the siRNA targeting rat deltaPKC suppressed endogenous and exogenous rat deltaPKCs but not human deltaPKC, suggesting that siRNAs targeting PKCs effectively knocked down endogenous/exogenous PKCs in mammalian cells, in subtype- and species-specific manner. Furthermore, we also developed the method to discriminate the siRNA-transfected cells using the antibody recognizing thymine dimer. Our present results strongly suggest that siRNA method enable us to examine the subtype-specific function of PKC, not only by knockdown of the endogenous target PKC subtype, but also by subsequent compensation with the exogenous corresponding wild/mutant PKC derived from other species.  相似文献   

11.
12.
RNA interference (RNAi) is widely used to study gene functions as a reverse genetic means from first-generation siRNA to second-generation short hairpin RNA (shRNA) or the newly developed microRNA (shRNA-miR). Here we report a gene knockdown vector system based on the mouse miR-21 hairpin structure. In this system, the pre-miRNA hairpin of the miR-21 gene was modified by replacing the 22-nucleotide mature sequence with shRNA sequences that target genes of interest, flanked by 160-bp upstream and 65-bp downstream sequences of the mouse pre-miR-21. We tested this system by knocking down the enhanced green fluorescence protein (EGFP) reporter gene using different vectors, in which shRNA-miR was driven by the polymerase II (pol II) promoter. We found that miR-21 hairpin-based shRNA-miR can be directly placed under pol II promoter, like UbC or CMV promoter to knockdown the gene of interest. To facilitate the wide application of the miR-21 hairpin-based gene knockdown system, we further knocked down the endogenous gene lamin (A/C), which showed that endogenous lamin A/C expression can be efficiently silenced using the miR-21 hairpin-based lentiviral vector. The miR-21 hairpin-based gene knockdown vector will provide a new genetic tool for gene functional studies in vitro and in vivo.  相似文献   

13.
14.
15.
16.
17.

Background  

Since prion gene-knockout mice do not contract prion diseases and animals in which production of prion protein (PrP) is reduced by half are resistant to the disease, we hypothesized that bovine animals with reduced PrP would be tolerant to BSE. Hence, attempts were made to produce bovine PRNP (bPRNP) that could be knocked down by RNA interference (RNAi) technology. Before an in vivo study, optimal conditions for knocking down bPRNP were determined in cultured mammalian cell systems. Factors examined included siRNA (short interfering RNA) expression plasmid vectors, target sites of PRNP, and lengths of siRNAs.  相似文献   

18.
RNA干扰技术已经成为基因功能研究等领域的有力工具,构建带有筛选标记的siRNA载体可以在细胞中持续抑制靶基因的表达.为了利用RNAi技术开展生物学研究,在克隆载体pUC19的基础上改造构建了人类细胞小干扰RNA(small interference RNA,siRNA)表达质粒pUC19NU.该质粒具有新霉素抗性标记和真核细胞复制起点,利用连入的人U6 snRNA启动子起始siRNA的转录.以EGFP 和p53为靶基因的干扰实验证明,所构建的siRNA表达质粒可以显著抑制细胞外源性增强绿色荧光蛋白(enhanced green fluorescent protein,EGFP)及细胞内源性p53蛋白的表达,而且抑制效果具有特异性.  相似文献   

19.
Gene therapy of virus replication with RNAi   总被引:3,自引:0,他引:3  
Yokota T 《Uirusu》2005,55(1):1-7
  相似文献   

20.
RNA interference (RNAi), mediated by either long double-stranded RNA (dsRNA) or short interfering RNA (siRNA), has become a routine tool for transient knockdown of gene expression in a wide range of organisms. The antisense strand of the siRNA duplex (antisense siRNA) was recently shown to have substantial mRNA depleting activity of its own. Here, targeting human Tissue Factor mRNA in HaCaT cells, we perform a systematic comparison of the activity of antisense siRNA and double-strand siRNA, and find almost identical target position effects, appearance of mRNA cleavage fragments and tolerance for mutational and chemical backbone modifications. These observations, together with the demonstration that excess inactive double-strand siRNA blocks antisense siRNA activity, i.e. shows sequence-independent competition, indicate that the two types of effector molecules share the same RNAi pathway. Interest ingly, both FITC-tagged and 3′-deoxy antisense siRNA display severely limited activity, despite having practically wild-type activity in a siRNA duplex. Finally, we find that maximum depletion of target mRNA expression occurs significantly faster with antisense siRNA than with double-strand siRNA, suggesting that the former enters the RNAi pathway at a later stage than double-strand siRNA, thereby requiring less time to exert its activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号